Special Issue

Geologic Environment Characterizations and Numerical Modeling of Early Mars Climate Change into a Cold and Dry World

Message from the Guest Editor

Dear Colleagues,

Approximately 3.8 billion years ago, Mars experienced its most dramatic climatic transition; it went from being an “Earth-like” planet with an active surface hydrosphere (thought to have connected vast rivers, lakes, seas and oceans) to a world dominated by extremely cold and dry desert environments, which have persisted until today.

Mechanisms leading to this episode of climate change remain one of the key mysteries in Mars geosciences. Here, we invite contributions, which—based on surface geologic analyses and/or the implementation of numerical models—would describe geologic environments and processes resulting from, and/or contributing to, the climatic transition.

Dr. Alexis Palmero Rodriguez
Guest Editor

Author Benefits

- **Open Access**: free for readers, with publishing fees paid by authors or their institutions.
- **High visibility**: Indexed in Scopus and other databases.
- **Rapid publication**: manuscripts are peer-reviewed and a first decision provided to authors approximately 32 days after submission; acceptance to publication is undertaken in 9.5 days (median values for papers published in this journal in 2016).