Entropy Generation in Nanofluid Flows II

Message from the Guest Editors

Recent advances in nanotechnology have allowed the development of a new category of fluids named nanofluids. Using nanofluids is a promising method to achieve a higher heat transfer rate in different thermal systems. Nanofluid also can be used to develop better oils and lubricants in real applications, it can also be employed in solar energy systems to enhance the efficiency of these systems and have some applications in medical process by heat treatment.

The entropy generation or second law analysis is a good method for evaluating a thermal system. The aim of this Special Issue is to encourage the researchers to present their latest original researches on entropy generation and exergy analysis for nanofluid thermal systems. Both experimental and numerical methods can be used to perform an entropy generation analysis for these systems. Entropy generation analyses for Newtonian and Non-Newtonian nanofluid flows in simple or complex geometries with different sizes are welcome. Entropy generation analysis for different applications of nanofluids including renewable energy devices, heat exchangers, and medical processes can be considered for review process.
Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

*Entropy* is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. *Entropy* is inviting innovative and insightful contributions. Please consider *Entropy* as an exceptional home for your manuscript.

Author Benefits

**Open Access:** free for readers, with article processing charges (APC) paid by authors or their institutions.

**High visibility:** indexed by the Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Inspec (IET), Scopus and other databases.

**Rapid publication:** manuscripts are peer-reviewed and a first decision provided to authors approximately 21 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in the first six months of 2018).

Contact us

*Entropy*
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/entropy
entropy@mdpi.com
@Entropy_MDPI