Special Issue "Smart Fabrics Technologies and Applications"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Materials".

Deadline for manuscript submissions: closed (30 June 2018)

Special Issue Editor

Guest Editor
Dr. Giuseppe Andreoni

(1) Politecnico di Milano Dip. di Design, Laboratory TeDH - Technology and Design for Healthcare, via Durando, Milano 38/A - 20158, Italy (2) IBFM - CNR, Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Via F.lli Cervi, Segrate (MI) 93 - 20090, Italy
Website | E-Mail
Phone: +39 0223998881
Interests: wearable sensors; ergonomics; design; innovation; healthcare; sport

Special Issue Information

Dear Colleagues,

Smart garments and their related technologies started about 20 years ago; nowadays, they are exploited into several applications. Today, clothes are able to measure signals, process data, communicate information, perform actions, provide protection against electrical, thermal, fire, or other agents, i.e., they are essential in several applications. These solutions belong to the more general category of wearable systems, which are smart integrated systems close to, or in contact with, the human body, and that are able to measure, process and transmit biomedical, physical and chemical data or parameters, and/or execute mechanical actions if necessary. They also integrate advanced technical fabrics and innovative processes for fabric functionalization, e.g., creation of flexible circuits, embroidery with conductive fibres, conductive ink printing, coupling different textile layers, etc.

Smart fabrics and clothes integrate a multifactorial and multi-technological complexity: Each element is essential, even in its extreme simplicity: Sensors; Actuators; Materials; Wireless communication; Power supply; Computing resources; User interface; Algorithms for data processing; Connectors; Sensors washability and stability; Sensors position in body (in relation to activities, tasks, signals and anthropometry); Elasticity and adherence.

In this task, multidisciplinarity is the keyword for a complete development of smart fabric solutions.

This Special Issue aims to build and share a common vision, state-of-the-art knowledge and applications, new research frontiers, and challenges in Smart Fabrics Technologies and Applications.

Dr. Giuseppe Andreoni
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Smart fabrics

  • Sensorized garments

  • Technical Textiles and fibers

  • Textile embedded technologies

  • Healthcare

  • Sport

  • Lifestyle

  • Workplace ergonomics and safety

  • Wearable systems

  • Responsive clothes

Published Papers (2 papers)

View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Open AccessFeature PaperArticle Analysis of the Relationship between Road Accidents and Psychophysical State of Drivers through Wearable Devices
Appl. Sci. 2018, 8(8), 1230; https://doi.org/10.3390/app8081230
Received: 29 June 2018 / Revised: 23 July 2018 / Accepted: 24 July 2018 / Published: 26 July 2018
PDF Full-text (2890 KB) | HTML Full-text | XML Full-text
Abstract
A driver’s behavior and their psychophysical state are the most common causes of road accidents. The research presented in the paper proposes a method that allows the identification of highly dangerous road stretches/intersections in advance, based on the localization of stressful/relaxing situations measured
[...] Read more.
A driver’s behavior and their psychophysical state are the most common causes of road accidents. The research presented in the paper proposes a method that allows the identification of highly dangerous road stretches/intersections in advance, based on the localization of stressful/relaxing situations measured on drivers. These were measured through the collection of physiological parameters using wearable devices. A correlation between stressful/relaxing situations and locations with high accident rates, based on a historical statistical database (black spots), was investigated. A series of driving tests was conducted in the city of Milan. The first set was mostly oriented to the research and validation of the parameters related to the driver’s psychophysical state. Subsequent tests allowed the definition of a correlation between black spots and relaxing/stressful areas. The results showed that the most stressful areas for drivers fell mainly within those with high accident rates. Furthermore, 80% of the most dangerous zones of the route were identified using this method, thus confirming the validity of the approach as a support tool for a priori preventive analysis for road safety. The wearable devices allowed the study and the integration of specific elements relating to human behavior in the field of road safety, which typically involves a technical-engineering approach. Full article
(This article belongs to the Special Issue Smart Fabrics Technologies and Applications)
Figures

Figure 1

Open AccessArticle Validation of a Wearable IMU System for Gait Analysis: Protocol and Application to a New System
Appl. Sci. 2018, 8(7), 1167; https://doi.org/10.3390/app8071167
Received: 8 June 2018 / Revised: 3 July 2018 / Accepted: 12 July 2018 / Published: 18 July 2018
PDF Full-text (1372 KB) | HTML Full-text | XML Full-text
Abstract
Miniaturized wearable Inertial Measurement Units (IMU) offer new opportunities for the functional assessment of motor functions for medicine, sport, and ergonomics. Sparse reliability validation studies have been conducted without a common specific approach and protocol. A set of guidelines to design validation protocol
[...] Read more.
Miniaturized wearable Inertial Measurement Units (IMU) offer new opportunities for the functional assessment of motor functions for medicine, sport, and ergonomics. Sparse reliability validation studies have been conducted without a common specific approach and protocol. A set of guidelines to design validation protocol for these systems is proposed hereafter. They are based on the comparison between video analysis and the gold standard optoelectronic motion capture system for Gait Analysis (GA). A setup of the protocol has been applied to a wearable device implementing an inertial measurement unit and a dedicated harmonic oscillator kinematic model of the center of mass. In total, 10 healthy volunteers took part in the study, and four trials of walking at a self-selected speed and step length have been simultaneously recorded by the two systems, analyzed, and compared blindly (40 datasets). The model detects the steps and the foot which supports body weight. The stride time and the cadence have a mean absolute percentage error of 5.7% and 4.9%, respectively. The mean absolute percentage error in the measurement of step’s length and step’s speed is 5.6% and 13.5%, respectively. Results confirm that the proposed methodology is complete and effective. It is demonstrated that the developed wearable system allows for a reliable assessment of human gait spatio-temporal parameters. Therefore, the goal of this paper is threefold. The first goal is to present and define structured Protocol Design Guidelines, where the related setup is implemented for the validation of wearable IMU systems particularly dedicated to GA and gait monitoring. The second goal is to apply these Protocol Design Guidelines to a case study in order to verify their feasibility, user-friendliness, and efficacy. The third goal is the validation of our biomechanical kinematic model with the gold standard reference. Full article
(This article belongs to the Special Issue Smart Fabrics Technologies and Applications)
Figures

Figure 1

Back to Top