Message from the Guest Editor

Dear Colleagues,

In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from health monitoring systems for the purpose of fault diagnosis and prognosis. The health monitoring big data are characterized by large volume and diversity. Effectively mining features from such data, accurately diagnosing the faults and predicting the remaining useful life (RUL) of the equipment in use with new advanced methods become new issues in the field of prognostics and health management (PHM). In recent years, deep learning methods are becoming a popular approach for big data process and analysis. Deep learning represents an attractive option to process big data for fault diagnosis and prognosis as deep learning has the ability to automatically select features that otherwise require much skill, time, and experience. This Special Issues call for papers that address developing effective and efficient deep learning based fault diagnosis and prognosis methods.

Author Benefits

- **Open Access:** free for readers, with publishing fees paid by authors or their institutions.
- **High visibility:** Indexed by the Science Citation Index Expanded (Web of Science) [search for "Applied Sciences-Basel"], Scopus, INSPEC (IET) and other databases.
- **Rapid publication:** manuscripts are peer-reviewed and a first decision provided to authors approximately 24 days after submission; acceptance to publication is undertaken in 8 days (median values for papers published in this journal in 2016).