Special Issue

Clean Energy and Fuel (Hydrogen) Storage

Message from the Guest Editors

Clean energy and fuel storage is often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies are hydrogen storage, direct electric storage, mechanical energy storage, solar-thermal energy storage, electrochemical (batteries), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure. We invite contributions in topics that include but not limited to various state-of-the-art energy and alternative fuel storage technologies.

Author Benefits

Open Access: free for readers, with publishing fees paid by authors or their institutions.

High visibility: Indexed by the Science Citation Index Expanded (Web of Science) [search for "Applied Sciences-Basel"], Scopus, INSPEC (IET) and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 24 days after submission; acceptance to publication is undertaken in 8 days (median values for papers published in this journal in 2016).