DSP for Next Generation Fibre Communication Systems

Guest Editors:

Dr. Stylianos Sygletos
Aston Institute of Photonic Technologies, Aston University, Aston Express Way, Birmingham B4 7ET, UK
s.sygletos@aston.ac.uk

Prof. Dr. Andrew Ellis
Institute of Photonics Technologies, Aston University, Aston Express Way, Birmingham B4 7ET, UK
andrew.ellis@aston.ac.uk

Deadline for manuscript submissions: 31 August 2018

Message from the Guest Editors

Currently, the so-called fifth generation of fibre-optic systems has been benefited by the advances in high-speed digital signal processing (DSP) and the global adoption of coherent detection. Key to this success has been the mitigation of linear impairments, such as, chromatic dispersion and polarization mode dispersion by appropriate DSP algorithms, leaving fibre nonlinearity and amplified spontaneous emission as the next most important barrier. Even with multi-mode/multi-core fibre systems, the nonlinearity impact can’t be avoided. As a result, the development of advanced digital methods will be crucial for the capacity expansion of next generation fibre communication systems.

Topics include, but are not limited to the following:

- Advanced Digital Back Propagation methods
- Volterra based nonlinear equalization
- Machine learning based nonlinear DSP methods
- MIMO non-linear equalizers for few mode/core transmission systems
- DSP for multi-carrier transmission systems (OFDM/Nyquist)
- Channel coding in the presence of non-Gaussian noise
- Mixed signal processing
- Autonomous transponder cooperation/transponder o