Open AccessArticle
Bacterial Communities and Antibiotic Resistance Communities in a Full-Scale Hospital Wastewater Treatment Plant by High-Throughput Pyrosequencing
Water 2016, 8(12), 580; doi:10.3390/w8120580 (registering DOI) -
Abstract
The community of whole microbes and antibiotic resistance bacteria (ARB) in hospital wastewater treatment plants (WWTP) receiving domestic wastewater (DWW) and hospital wastewater (HWW) was investigated. Samples from an influent of a secondary clarifier, at each treatment train, were characterized for the whole
[...] Read more.
The community of whole microbes and antibiotic resistance bacteria (ARB) in hospital wastewater treatment plants (WWTP) receiving domestic wastewater (DWW) and hospital wastewater (HWW) was investigated. Samples from an influent of a secondary clarifier, at each treatment train, were characterized for the whole microbial community and ARB on the antibiotic resistance database, based on high-throughput pyrosequencing. The pyrosequencing analysis revealed that the abundance of Bacteroidetes in the DWW sample was higher (~1.6 times) than in the HWW sample, whereas the abundance of Proteobacteria in the HWW sample was greater than in the DWW sample. At the top twenty of the genus level, distinct genera were observed—Saprospiraceae in the DWW and Zoogloea in the HWW. Apart from the top twenty genera, minor genera showed various antibiotic resistance types based on the antibiotic resistance gene database. Full article
Open AccessArticle
Effects of Environmental Factors on the Temporal Stability of Phytoplankton Biomass in a Eutrophic Man-Made Lake
Water 2016, 8(12), 582; doi:10.3390/w8120582 (registering DOI) -
Abstract
The stability of phytoplankton biomass is important in maintaining the health of an aquatic ecosystem. In this study, the main environmental factors and phytoplankton biomass were investigated monthly from May 2011 to April 2013 in a eutrophic lake. The influence of both the
[...] Read more.
The stability of phytoplankton biomass is important in maintaining the health of an aquatic ecosystem. In this study, the main environmental factors and phytoplankton biomass were investigated monthly from May 2011 to April 2013 in a eutrophic lake. The influence of both the mean values and variability (standard deviation) of environmental factors on the temporal stability index (TSI, measured as coefficient of variation) of phytoplankton was analyzed. Complex relationships were observed between the mean environmental factors and phytoplankton TSI: a positive relationship for dissolved oxygen (DO) and pH, a negative relationship for total nitrogen (TN) and ammonia nitrogen (NH4+-N), a unimodal relationship for total phosphorus (TP), and no relationship for water temperature (WT). Mean values of DO and pH mainly influenced the stability of phytoplankton through increasing the average total biomass. However, mean TN and NH4+-N concentrations destabilized phytoplankton TSI primarily through increasing the variability of community biomass. There were also complex relationships between the variability of environmental factors and phytoplankton TSI: a negative relationship for TN, a unimodal relationship for NH4+-N and TP, and no relationship for WT, DO, and pH. The variability of nutrient concentrations mainly affected phytoplankton TSI through influencing the variability of community biomass, while their influence on the average total biomass was weak. Results in this research will be helpful in understanding the influence of environmental factors on the temporal stability of phytoplankton. Full article
Open AccessReview
Assessment of Managed Aquifer Recharge through Modeling—A Review
Water 2016, 8(12), 579; doi:10.3390/w8120579 (registering DOI) -
Abstract
Managed aquifer recharge (MAR) is the purposeful recharge of an aquifer for later recovery or environmental benefits and represents a valuable method for sustainable water resources management. Models can be helpful tools for the assessment of MAR systems. This review encompasses a survey
[...] Read more.
Managed aquifer recharge (MAR) is the purposeful recharge of an aquifer for later recovery or environmental benefits and represents a valuable method for sustainable water resources management. Models can be helpful tools for the assessment of MAR systems. This review encompasses a survey and an analysis of case studies which apply flow and transport models to evaluate MAR. The observed modeling objectives include the planning or optimization of MAR schemes as well as the identification and quantification of geochemical processes during injection, storage and recovery. The water recovery efficiency and the impact of the injected water on the ambient groundwater are further objectives investigated in the reviewed studies. These objectives are mainly solved by using groundwater flow models. Unsaturated flow models, solute transport models, reactive geochemical models as well as water balance models are also frequently applied and often coupled. As each planning step to setup a new MAR facility requires cost and time investment, modeling is used to minimize hazard risks and assess possible constraints of the system such as low recovery efficiency, clogging and geochemical processes. Full article
Open AccessArticle
Efficiency Criteria as a Solution to the Uncertainty in the Choice of Population Size in Population-Based Algorithms Applied to Water Network Optimization
Water 2016, 8(12), 583; doi:10.3390/w8120583 (registering DOI) -
Abstract
Different Population-based Algorithms (PbAs) have been used in recent years to solve all types of optimization problems related to water resource issues. However, the performances of these techniques depend heavily on correctly setting some specific parameters that guide the search for solutions. The
[...] Read more.
Different Population-based Algorithms (PbAs) have been used in recent years to solve all types of optimization problems related to water resource issues. However, the performances of these techniques depend heavily on correctly setting some specific parameters that guide the search for solutions. The initial random population size P is the only parameter common to all PbAs, but this parameter has received little attention from researchers. This paper explores P behaviour in a pipe-sizing problem considering both quality and speed criteria. To relate both concepts, this study applies a method based on an efficiency ratio E. First, specific parameters in each algorithm are calibrated with a fixed P. Second, specific parameters remain fixed, and the initial population size P is modified. After more than 600,000 simulations, the influence of P on obtaining successful solutions is statistically analysed. The proposed methodology is applied to four well-known benchmark networks and four different algorithms. The main conclusion of this study is that using a small population size is more efficient above a certain minimum size. Moreover, the results ensure optimal parameter calibration in each algorithm, and they can be used to select the most appropriate algorithm depending on the complexity of the problem and the goal of optimization. Full article
Open AccessArticle
Impact of Climate Change on Drought in the Upstream Yangtze River Region
Water 2016, 8(12), 576; doi:10.3390/w8120576 (registering DOI) -
Abstract
Based on Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset and a variable infiltration capacity (VIC) hydrological model, this study assesses the possible influence of climate change in the upstream region of the Yangtze River on droughts in the future 30 years. Long-term
[...] Read more.
Based on Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset and a variable infiltration capacity (VIC) hydrological model, this study assesses the possible influence of climate change in the upstream region of the Yangtze River on droughts in the future 30 years. Long-term daily soil moisture content were simulated by VIC model at a 50 km × 50 km resolution from 1951 to 2013. Regional historical drought events were then recognized based on soil moisture anomaly percentage index and validated with field data. Five relatively independent representative global circulation models were selected and the outputs of them were downscaled temporally and spatially as the inputs of VIC model for daily soil moisture content simulations both in the period of 1971–2000 for the present-day climate and in the period of 2021–2050 for the future. The results show that the projected annual mean temperature is likely to increase from 1.4 °C to 1.8 °C. The projected change in mean annual precipitation could be increased slightly by 0.6% to 1.3%, but the trend of precipitation change in summer and autumn might be opposite of that. Comparing the drought characteristics values recognized in 1971–2000, seven to eight additional regional drought events are likely to happen in 2021–2050. Drought duration and drought intensity are also likely to extend for 18 d to 25 d and increase by 1.2% to 6.2%, respectively. But, drought area could decrease slightly by 1.3% to 2.7% on average. These changes in drought characteristics values suggest that regional drought could become more severely prolonged and frequent in future. Full article
Open AccessArticle
Investigating Multiple Household Water Sources and Uses with a Computer-Assisted Personal Interviewing (CAPI) Survey
Water 2016, 8(12), 574; doi:10.3390/w8120574 (registering DOI) -
Abstract
The investigation of multiple sources in household water management is considered overly complicated and time consuming using paper and pen interviewing (PAPI). We assess the advantages of computer-assisted personal interviewing (CAPI) in Pacific Island Countries (PICs). We adapted an existing PAPI survey on
[...] Read more.
The investigation of multiple sources in household water management is considered overly complicated and time consuming using paper and pen interviewing (PAPI). We assess the advantages of computer-assisted personal interviewing (CAPI) in Pacific Island Countries (PICs). We adapted an existing PAPI survey on multiple water sources and expanded it to incorporate location of water use and the impacts of extreme weather events using SurveyCTO on Android tablets. We then compared the efficiency and accuracy of data collection using the PAPI version (n = 44) with the CAPI version (n = 291), including interview duration, error rate and trends in interview duration with enumerator experience. CAPI surveys facilitated high-quality data collection and were an average of 15.2 min faster than PAPI. CAPI survey duration decreased by 0.55% per survey delivered (p < 0.0001), whilst embedded skip patterns and answer lists lowered data entry error rates, relative to PAPI (p < 0.0001). Large-scale household surveys commonly used in global monitoring and evaluation do not differentiate multiple water sources and uses. CAPI equips water researchers with a quick and reliable tool to address these knowledge gaps and advance our understanding of development research priorities. Full article
Open AccessArticle
Cumulative Effects Analysis of the Water Quality Risk of Herbicides Used for Site Preparation in the Central North Island, New Zealand
Water 2016, 8(12), 573; doi:10.3390/w8120573 (registering DOI) -
Abstract
Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale.
[...] Read more.
Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale. A cumulative effects analysis was conducted in the upper Rangitaiki catchment (118,345 ha) in New Zealand, to determine the risk to water quality from two herbicides commonly used for post-plant weed control: terbuthylazine and hexazinone. Data from a 12.5 ha catchment study within the Rangitaiki Basin, where these herbicides were aerially applied in two consecutive years, were used to model herbicide concentrations entering the Rangitaiki River for the remaining treated areas in the catchment for the same two spray seasons. A spreadsheet model routed herbicide residues from their point of entry into the river to a flow gauge on the Rangitaiki River. Modeling of chemical residue loadings and concentrations of terbuthylazine and hexazinone indicated that potential herbicide residues in stream waters would be mainly below analytical detection limits and pose no risk to the aquatic environment or human health and safety. Safety factors for drinking water quality standards, aquatic organisms, and human Acceptable Daily Intake levels were very large. Full article
Open AccessArticle
Canals vs. Streams: To What Extent Do Water Quality and Proximity Affect Real Estate Values? A Hedonic Approach Analysis
Water 2016, 8(12), 577; doi:10.3390/w8120577 (registering DOI) -
Abstract
The presence of and proximity to water influences human settlement decisions, because water has been able to characterize the environment and affect human health since prehistoric times. Many scholars have studied the effects of environmental amenities on the real estate market; however, only
[...] Read more.
The presence of and proximity to water influences human settlement decisions, because water has been able to characterize the environment and affect human health since prehistoric times. Many scholars have studied the effects of environmental amenities on the real estate market; however, only a few of them have explored the effects of water. This study stresses the role of water with a focus on the dichotomy between artificial and natural waterways (canals vs. streams), which involves managerial and qualitative differences. A hedonic approach, based on a large web scraped and geo-referenced dataset of 10,530 observations, is used to analyze the effect of water proximity and quality on residential housing prices in the province of Milan (Italy). Our main results show a significant but conflicting impact of water proximity on real estate value: reducing the canal distance, we observe an increase in the residential housing sale price, in urban more than peri-urban environments; in contrast, reducing the stream distance, our results show decreases in property value. Moreover, a significant moderating effect of water quality on distance from streams is identifiable. Full article
Open AccessArticle
Performance and N2O Formation of the Deammonification Process by Suspended Sludge and Biofilm Systems—A Pilot-Scale Study
Water 2016, 8(12), 578; doi:10.3390/w8120578 (registering DOI) -
Abstract
A two-stage deammonification pilot plant with two different second-stage reactors, namely a sequencing batch reactor (SBR) with suspended sludge and a moving bed biofilm reactor (MBBR) with biofilm carriers, was investigated over a 1.5-year period to compare reactor performances. Additionally, dissolved nitrous oxide
[...] Read more.
A two-stage deammonification pilot plant with two different second-stage reactors, namely a sequencing batch reactor (SBR) with suspended sludge and a moving bed biofilm reactor (MBBR) with biofilm carriers, was investigated over a 1.5-year period to compare reactor performances. Additionally, dissolved nitrous oxide (N2O) was measured to determine the reactors’ N2O formation potential. Although the nitritation performance was moderate (NO2-N/NH4-N effluent ratio of 0.32 ± 0.15 in combination with SBR and 0.25 ± 0.14 with MBBR), nitrogen turnover and degradation rates exceeding 500 g N/(m3∙day) and 80%, respectively, were achieved in both second stages, yet requiring additional aeration. The SBR’s average nitrogen removal was 19% higher than the MBBR’s; however, the SBR’s nitrite influent concentration was comparably elevated. Concerning N2O formation, the nitritation reactor exhibited the lowest N2O concentrations, while the buffer tank, interconnecting the first and second stages, exhibited the highest N2O concentrations of all reactors. Given these high concentrations, a transfer of N2O into the second stage was observed, where anoxic phases enabled N2O reduction. Frequent biomass removal and a decreased hydraulic retention time in the buffer tank would likely minimize N2O formation. For the second stage, enabling anoxic periods in the intermittent aeration cycles right after feeding to support N2O reduction and thus minimize the stripping effects or the implementation of a complete anoxic ammonium oxidation will mitigate N2O emissions. Full article
Open AccessArticle
A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations
Water 2016, 8(12), 575; doi:10.3390/w8120575 (registering DOI) -
Abstract
The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection
[...] Read more.
The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed. Full article
Open AccessArticle
Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas
Water 2016, 8(12), 569; doi:10.3390/w8120569 -
Abstract
Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and
[...] Read more.
Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form) into green water (gas or saturated water form) for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage) into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1) Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2) Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3) Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4) The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar problems. Full article
Open AccessArticle
Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter Wheat
Water 2016, 8(12), 571; doi:10.3390/w8120571 -
Abstract
Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the
[...] Read more.
Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration. Full article
Open AccessArticle
Integrated Water Resources Management in a Lake System: A Case Study in Central Italy
Water 2016, 8(12), 570; doi:10.3390/w8120570 -
Abstract
Lake Trasimeno is a closed lake in Central Italy and in historically its water level has been affected by wide fluctuations mostly depending on the climate. The lake has suffered many water crises due to water scarcity and in recent decades, droughts have
[...] Read more.
Lake Trasimeno is a closed lake in Central Italy and in historically its water level has been affected by wide fluctuations mostly depending on the climate. The lake has suffered many water crises due to water scarcity and in recent decades, droughts have also severely affected the economic and environmental situation. The aim of this study was to analyze the possibility of limiting these severe level fluctuations by evaluating of feasible water resource management policies that could also reduce the environmental stress of this area. Therefore, a specific decision support system (DSS) has been developed in order to simulate different scenarios for the entire water system of the Trasimeno area. In particular, the hydrological model implemented in the DSS allowed for the simulation and validation of different management policy hypotheses for the water resource in order to mitigate environmental and water crises for the Lake Trasimeno. Results indicated that it is possible to transfer a certain amount of water from nearby reservoirs without affecting the availability of the resource for specific users. In this way, Lake Trasimeno can benefit both from an increase in water levels in the lake, so a possible better situation in quantitatively and qualitatively. Full article
Open AccessArticle
Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings
Water 2016, 8(12), 572; doi:10.3390/w8120572 -
Abstract
We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to
[...] Read more.
We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5) output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century) development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa. Full article
Open AccessArticle
Distribution and Potential Health Risks of Arsenic, Selenium, and Fluorine in Natural Waters in Tibet, China
Water 2016, 8(12), 568; doi:10.3390/w8120568 -
Abstract
The contents of major and trace elements were analyzed in 204 different types of water samples in 138 villages across 51 counties and cities of Tibet. The average concentrations of arsenic (As), selenium, and fluorine for each water category decreased in the following
[...] Read more.
The contents of major and trace elements were analyzed in 204 different types of water samples in 138 villages across 51 counties and cities of Tibet. The average concentrations of arsenic (As), selenium, and fluorine for each water category decreased in the following order: arsenic (in μg/L: hot spring 241.37 > lake 27.46 > stream 22.11 > shallow well 11.57 > deep well 6.22), selenium (in μg/L: deep well 0.85 > shallow well 0.68 > stream 0.62 > hot spring 0.39 > lake 0.36), and fluorine (in mg/L: hot spring 2.10 > lake 1.06 > deep well 0.45 > stream 0.20 > shallow well 0.15). The distribution of arsenic in Tibetan waters ranged between 77.35 μg/L in Ali prefecture and 1.17 μg/L in Chamdo prefecture, with intermediate values of 4.39, 2.52, 2.10, 1.68, and 1.51 μg/L in the prefectures of Shigatse, Nagchu, Lhasa, Lhoka, and Nyingchi, respectively. Carbonatite is a major source of elements in these waters. The non-carcinogenic risk in Tibet caused by heavy metals in drinking water is low overall, except in Ali prefecture’s surface and shallow ground waters, which contain high levels of As. Thus, deep well water in Tibet is safe to drink. Full article
Open AccessArticle
Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries
Water 2016, 8(12), 566; doi:10.3390/w8120566 -
Abstract
River flow dynamics play an important role for aquatic and riparian ecosystems. Climate change is projected to significantly alter river flow regimes in Europe and worldwide. In this study, we evaluate future river flow alterations in the entire Danube River basin by means
[...] Read more.
River flow dynamics play an important role for aquatic and riparian ecosystems. Climate change is projected to significantly alter river flow regimes in Europe and worldwide. In this study, we evaluate future river flow alterations in the entire Danube River basin by means of ecologically relevant river flow indicators under different climate warming scenarios (Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and RCP 8.5). The process-based watershed model SWIM was applied for 1124 sub-catchments to simulate daily time series of river discharge for the Danube River and its tributaries under future scenario conditions. The derived hydrological data series were then statistically analyzed using eight eco-hydrological indicators to distinguish intra-year variations in the streamflow regime. The results are used to: (a) analyze the possible impacts of climate change on the ecologically relevant flow regime components; and (b) identify regions at the highest risk of climate change-driven flow alterations. Our results indicate that climate change will distinctively alter the recent ecological flow regime of the Danube River and, in particular, the tributaries of the Middle and Lower Danube basin. While for the RCP 2.6 scenario the projected flow alterations might still be considered moderate for many rivers, the impacts might strongly accelerate if global mean temperatures rise more than 2 °C compared to pre-industrial times. Under RCP 4.5 and RCP 8.5 warming scenarios, the recent ecological flow regime might be highly altered, posing a serious threat to river and floodplain ecosystems. Full article
Open AccessArticle
Paleohydraulic Reconstruction of Modern Large Floods at Subcritical Speed in a Confined Valley: Proof of Concept
Water 2016, 8(12), 567; doi:10.3390/w8120567 -
Abstract
The present study aims to show the accuracy of paleoflood reconstruction techniques based on two-dimensional (2D) hydraulic modelling of a large flood. Using this reconstruction technique, we determined trends in flood stages over time in a regulated river. A stretch of the Guadalquivir
[...] Read more.
The present study aims to show the accuracy of paleoflood reconstruction techniques based on two-dimensional (2D) hydraulic modelling of a large flood. Using this reconstruction technique, we determined trends in flood stages over time in a regulated river. A stretch of the Guadalquivir River (Southern Spain) was selected as the study site. High-resolution orthophotos and LiDAR (Light Detection and Ranging) elevations were acquired just after modern floods. They were used for the identification and location of stage indicators. In addition, water gradients were estimated from gauging records, documentary information and paleostage indicators (PSIs) in two situations: (i) pre-vegetation encroachment; and (ii) post-vegetation encroachment due to upstream impoundment. Standard two-dimensional, flow depth-averaged equations over fixed beds were used in the hydraulic modelling. In a first stage, long records of instrumental data at gauging stations and documentary evidence of flood levels served to calibrate the input parameters of the hydraulic model. In a second stage, paleoflood signatures within sedimentary and botanical sequences served to verify the flood stages in the numerical simulations not only at the river reach where instrumental data exist but also in the downstream river reach. Interestingly, the rating curve obtained from the combined use of documentary information and imagery was nearly as accurate as gauging measurements. The thoughtful comparison of 2D modelled hydraulic variables against inferred values from PSIs and instrumental data supports the paleoflood reconstruction method over fixed beds. Vegetation encroachment provoked 10% deeper floods at the water discharge of 2000 m3·s−1, which implied an increase of Manning’s roughness coefficient from 0.04 to 0.055 s·m−1/3 in less than 15 years. Full article
Open AccessCase Report
Storm Flood Characteristics and Identification of Periodicity for Flood-Causing Rainstorms in the Second Songhua River Basin
Water 2016, 8(12), 529; doi:10.3390/w8120529 -
Abstract
Rainstorm weather systems and storm flood characteristics were studied to explore the relationship between the rainstorm weather system, the type of rainstorm, the cause of the flood and the time of occurrence, and some basic characteristics law of storm floods are summarized in
[...] Read more.
Rainstorm weather systems and storm flood characteristics were studied to explore the relationship between the rainstorm weather system, the type of rainstorm, the cause of the flood and the time of occurrence, and some basic characteristics law of storm floods are summarized in the Second Songhua River Basin (Northeastern China). Then, the periodicity of catastrophic years was identified using the commensurability method and is shown to have an average of 11 years. Compared with simple flood forecasting, forecasting of flood-causing precipitation has a longer forecast period, which can gain the requisite time to discharge a reservoir and regain storage capacity, lower the limitation level, and manage the occurrence of flooding. Full article
Open AccessArticle
Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China
Water 2016, 8(12), 564; doi:10.3390/w8120564 -
Abstract
The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors.
[...] Read more.
The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors. In this paper, the dynamics of stream flow and precipitation in the Poyang Lake Basin between 1961 and 2012 were evaluated with the Mann–Kendall test, Theil–Sen approaches, Pettitt test, and Pearson’s correlation. Stream flow was measured at the outlets of five major tributaries of Poyang Lake, while precipitation was recorded by fourteen meteorological stations located within the Poyang Lake Basin. Results showed that annual stream flow of all tributaries and the precipitation over the study area had insignificant (P > 0.1) temporal trends and change points, while significant trends and shifts were found in monthly scale. Stream flow concentration indices (SCI) at Waizhou, Meigang, and Wanjiabu stations showed significant (P < 0.05) decreasing trends with change points emerging in 1984 at Waizhou and 1978 at Wanjiabu, while there was no significant temporal trend and change point detected for the precipitation concentration indices (PCI). Correlation analysis indicated that area-average stream flow was closely related to area-average precipitation, but area-average SCI was insignificantly correlated with area-average PCI after change point (1984). El Niño/Southern Oscillation (ENSO) had greater impacts on stream flow than other climate indices, and La Niña events played a more important role in stream flow changes than EI Niño. Human activities, particularly in terms of reservoir constructions, largely altered the intra-annual distribution of stream flow but its effects on the amount of stream flow were relatively low. Results of this study provided a useful reference to regional water resource management and the prevention of flood and drought disasters. Full article
Open AccessCommunication
Use of Multi-Carbon Sources by Zooplankton in an Oligotrophic Lake in the Tibetan Plateau
Water 2016, 8(12), 565; doi:10.3390/w8120565 -
Abstract
We applied natural abundance stable isotope δ13C and radiocarbon ∆14C analyses to investigate trophic linkages between zooplankton and their potential food sources (phytoplankton, submersed plants, and allochthonous organic carbon) in Lake Nam Co, one of the largest oligosaline and
[...] Read more.
We applied natural abundance stable isotope δ13C and radiocarbon ∆14C analyses to investigate trophic linkages between zooplankton and their potential food sources (phytoplankton, submersed plants, and allochthonous organic carbon) in Lake Nam Co, one of the largest oligosaline and oligotrophic lakes in the Tibetan Plateau, in south-west China. The δ13C and ∆14C levels of the calanoid copepod Arctodiaptomus altissimus pectinatus indicate that it uses different carbon sources. Thus, based on a two-isotope mixing model, our results suggested that recently synthesized but 14C-depleted primary producers (phytoplankton and submersed plants) were the most important sources of carbon, together contributing 92.2% of the zooplankton biomass. Allochthonous organic carbon and dissolved organic carbon constituted 4.7% and 3.1% of the carbon in the diet of zooplankton, respectively. Our findings from Lake Nam Co suggest that the carbon in the food webs of lakes located in a glaciated environment originates from various sources of different ages. Full article