Open AccessArticle
Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins
Viruses 2017, 9(10), 271; doi:10.3390/v9100271 -
Abstract
Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the
[...] Read more.
Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases. Full article
Figures

Open AccessArticle
Inference of a Geminivirus−Host Protein−Protein Interaction Network through Affinity Purification and Mass Spectrometry Analysis
Viruses 2017, 9(10), 275; doi:10.3390/v9100275 -
Abstract
Viruses reshape the intracellular environment of their hosts, largely through protein-protein interactions, to co-opt processes necessary for viral infection and interference with antiviral defences. Due to genome size constraints and the concomitant limited coding capacity of viruses, viral proteins are generally multifunctional and
[...] Read more.
Viruses reshape the intracellular environment of their hosts, largely through protein-protein interactions, to co-opt processes necessary for viral infection and interference with antiviral defences. Due to genome size constraints and the concomitant limited coding capacity of viruses, viral proteins are generally multifunctional and have evolved to target diverse host proteins. Inference of the virus-host interaction network can be instrumental for understanding how viruses manipulate the host machinery and how re-wiring of specific pathways can contribute to disease. Here, we use affinity purification and mass spectrometry analysis (AP-MS) to define the global landscape of interactions between the geminivirus Tomato yellow leaf curl virus (TYLCV) and its host Nicotiana benthamiana. For this purpose, we expressed tagged versions of each of TYLCV-encoded proteins (C1/Rep, C2/TrAP, C3/REn, C4, V2, and CP) in planta in the presence of the virus. Using a quantitative scoring system, 728 high-confidence plant interactors were identified, and the interaction network of each viral protein was inferred; TYLCV-targeted proteins are more connected than average, and connect with other proteins through shorter paths, which would allow the virus to exert large effects with few interactions. Comparative analyses of divergence patterns between N. benthamiana and potato, a non-host Solanaceae, showed evolutionary constraints on TYLCV-targeted proteins. Our results provide a comprehensive overview of plant proteins targeted by TYLCV during the viral infection, which may contribute to uncovering the underlying molecular mechanisms of plant viral diseases and provide novel potential targets for anti-viral strategies and crop engineering. Interestingly, some of the TYLCV-interacting proteins appear to be convergently targeted by other pathogen effectors, which suggests a central role for these proteins in plant-pathogen interactions, and pinpoints them as potential targets to engineer broad-spectrum resistance to biotic stresses. Full article
Open AccessArticle
Immunogenicity of eGFP-Marked Recombinant Lactobacillus casei against Transmissible Gastroenteritis Virus and Porcine Epidemic Diarrhea Virus
Viruses 2017, 9(10), 274; doi:10.3390/v9100274 -
Abstract
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are the causative agents of highly fatal acute diarrhea in pigs, resulting in enormous losses in the pig industry worldwide. To develop an effective bivalent oral vaccine against TGEV and PEDV infection,
[...] Read more.
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are the causative agents of highly fatal acute diarrhea in pigs, resulting in enormous losses in the pig industry worldwide. To develop an effective bivalent oral vaccine against TGEV and PEDV infection, the D antigenic site of the TGEV spike (S) protein and the major antigen site (core neutralizing epitope—COE) of the PEDV S protein were used as immunogens, and the enhanced green fluorescent protein (eGFP) gene was used as a reporter to construct genetically engineered Lactobacillus casei rLpPGF-T7g10-eGFP-6D-COE. The expression of proteins of interest by the recombinant L. casei was confirmed by confocal laser scanning microscopy and a Western blot assay, and the immunogenicity of rLpPGF-T7g10-eGFP-6D-COE in orally immunized mice was evaluated. The results showed that levels of anti-PEDV and anti-TGEV serum immunoglobulin G (IgG) and mucosal secreted immunoglobulin A (sIgA) antibodies obtained from the mice immunized with rLpPGF-T7g10-eGFP-6D-COE, as well as the proliferation levels of lymphocytes, were significantly higher than those in mice orally administered phosphate-buffered saline (PBS) or rLpPG-T7g10. Moreover, the serum IgG antibodies showed neutralizing effects against PEDV and TGEV. Our data suggest that the antibiotic resistance-free genetically engineered L. casei bivalent oral vaccine provides a safe and promising strategy for vaccine development against PEDV and TGEV. Full article
Figures

Figure 1

Open AccessReview
The Incredible Journey of Begomoviruses in Their Whitefly Vector
Viruses 2017, 9(10), 273; doi:10.3390/v9100273 -
Abstract
Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into
[...] Read more.
Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction. Full article
Figures

Figure 1

Open AccessReview
Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle
Viruses 2017, 9(10), 270; doi:10.3390/v9100270 -
Abstract
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct
[...] Read more.
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response. Full article
Figures

Figure 1

Open AccessCommunication
A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity
Viruses 2017, 9(10), 265; doi:10.3390/v9100265 -
Abstract
Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles
[...] Read more.
Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine. Full article
Figures

Figure 1

Open AccessReview
Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops
Viruses 2017, 9(10), 264; doi:10.3390/v9100264 -
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has
[...] Read more.
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant–virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants. Full article
Figures

Figure 1

Open AccessArticle
Oncolytic Reovirus Infection Is Facilitated by the Autophagic Machinery
Viruses 2017, 9(10), 266; doi:10.3390/v9100266 -
Abstract
Mammalian reovirus is a double-stranded RNA virus that selectively infects and lyses transformed cells, making it an attractive oncolytic agent. Despite clinical evidence for anti-tumor activity, its efficacy as a stand-alone therapy remains to be improved. The success of future trials can be
[...] Read more.
Mammalian reovirus is a double-stranded RNA virus that selectively infects and lyses transformed cells, making it an attractive oncolytic agent. Despite clinical evidence for anti-tumor activity, its efficacy as a stand-alone therapy remains to be improved. The success of future trials can be greatly influenced by the identification and the regulation of the cellular pathways that are important for reovirus replication and oncolysis. Here, we demonstrate that reovirus induces autophagy in several cell lines, evident from the formation of Atg5-Atg12 complexes, microtubule-associated protein 1 light chain 3 (LC3) lipidation, p62 degradation, the appearance of acidic vesicular organelles, and LC3 puncta. Furthermore, in electron microscopic images of reovirus-infected cells, autophagosomes were observed without evident association with viral factories. Using UV-inactivated reovirus, we demonstrate that a productive reovirus infection facilitates the induction of autophagy. Importantly, knock-out cell lines for specific autophagy-related genes revealed that the expression of Atg3 and Atg5 but not Atg13 facilitates reovirus replication. These findings highlight a central and Atg13-independent role for the autophagy machinery in facilitating reovirus infection and contribute to a better understanding of reovirus-host interactions. Full article
Figures

Open AccessReview
Natural History of HPV Infection across the Lifespan: Role of Viral Latency
Viruses 2017, 9(10), 267; doi:10.3390/v9100267 -
Abstract
Large-scale epidemiologic studies have been invaluable for elaboration of the causal relationship between persistent detection of genital human papillomavirus (HPV) infection and the development of invasive cervical cancer. However, these studies provide limited data to adequately inform models of the individual-level natural history
[...] Read more.
Large-scale epidemiologic studies have been invaluable for elaboration of the causal relationship between persistent detection of genital human papillomavirus (HPV) infection and the development of invasive cervical cancer. However, these studies provide limited data to adequately inform models of the individual-level natural history of HPV infection over the course of a lifetime, and particularly ignore the biological distinction between HPV-negative tests and lack of infection (i.e., the possibility of latent, undetectable HPV infection). Using data from more recent epidemiological studies, this review proposes an alternative model of the natural history of genital HPV across the life span. We argue that a more complete elucidation of the age-specific probabilities of the alternative transitions is highly relevant with the expanded use of HPV testing in cervical cancer screening. With routine HPV testing in cervical cancer screening, women commonly transition in and out of HPV detectability, raising concerns for the patient and the provider regarding the source of the positive test result, its prognosis, and effective strategies to prevent future recurrence. Alternative study designs and analytic frameworks are proposed to better understand the frequency and determinants of these transition pathways. Full article
Figures

Figure 1

Open AccessReview
Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling
Viruses 2017, 9(10), 268; doi:10.3390/v9100268 -
Abstract
Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of
[...] Read more.
Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals. Full article
Figures

Figure 1

Open AccessArticle
Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA
Viruses 2017, 9(10), 269; doi:10.3390/v9100269 -
Abstract
The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013–2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each
[...] Read more.
The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013–2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation. Full article
Figures

Figure 1

Open AccessArticle
PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication
Viruses 2017, 9(9), 262; doi:10.3390/v9090262 -
Abstract
Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut
[...] Read more.
Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5′-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5′-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal pathway modulates dynamic translation of proteins and helps mosquito cells survive continuous replication of the DENV2. It was ecologically important for virus amplification in mosquitoes and transmission to humans. Full article
Figures

Open AccessFeature PaperEditorial
Viruses of Microbes
Viruses 2017, 9(9), 263; doi:10.3390/v9090263 -
Abstract
Viruses of microbes encompass all viruses that infect archaea, bacteria, and single-celled eukaryotes, especially algae and protozoa [...]
Full article
Open AccessReview
Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes
Viruses 2017, 9(9), 261; doi:10.3390/v9090261 -
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found
[...] Read more.
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells. Full article
Figures

Figure 1

Open AccessArticle
LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends
Viruses 2017, 9(9), 259; doi:10.3390/v9090259 -
Abstract
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal
[...] Read more.
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation. Full article
Figures

Figure 1

Open AccessReview
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race
Viruses 2017, 9(9), 256; doi:10.3390/v9090256 -
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt
[...] Read more.
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. Full article
Figures

Figure 1

Open AccessArticle
A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice
Viruses 2017, 9(9), 260; doi:10.3390/v9090260 -
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could
[...] Read more.
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459–606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine. Full article
Figures

Figure 1

Open AccessArticle
Identification of a Novel Inhibitor against Middle East Respiratory Syndrome Coronavirus
Viruses 2017, 9(9), 255; doi:10.3390/v9090255 -
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012, and circulated worldwide with high mortality. The continual outbreaks of MERS-CoV highlight the importance of developing antiviral therapeutics. Here, we rationally designed a novel fusion inhibitor named MERS-five-helix bundle (MERS-5HB) derived
[...] Read more.
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012, and circulated worldwide with high mortality. The continual outbreaks of MERS-CoV highlight the importance of developing antiviral therapeutics. Here, we rationally designed a novel fusion inhibitor named MERS-five-helix bundle (MERS-5HB) derived from the six-helix bundle (MERS-6HB) which was formed by the process of membrane fusion. MERS-5HB consists of three copies of heptad repeat 1 (HR1) and two copies of heptad repeat 2 (HR2) while MERS-6HB includes three copies each of HR1 and HR2. As it lacks one HR2, MERS-5HB was expected to interact with viral HR2 to interrupt the fusion step. What we found was that MERS-5HB could bind to HR2P, a peptide derived from HR2, with a strong affinity value (KD) of up to 0.24 nM. Subsequent assays indicated that MERS-5HB could inhibit pseudotyped MERS-CoV entry effectively with 50% inhibitory concentration (IC50) of about 1 μM. In addition, MERS-5HB significantly inhibited spike (S) glycoprotein-mediated syncytial formation in a dose-dependent manner. Further biophysical characterization showed that MERS-5HB was a thermo-stable α-helical secondary structure. The inhibitory potency of MERS-5HB may provide an attractive basis for identification of a novel inhibitor against MERS-CoV, as a potential antiviral agent. Full article
Figures

Figure 1

Open AccessArticle
Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression
Viruses 2017, 9(9), 257; doi:10.3390/v9090257 -
Abstract
Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses.
[...] Read more.
Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and the βC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB). The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, , was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T1 plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible) test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistant plants. Full article
Figures

Figure 1

Open AccessArticle
Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail
Viruses 2017, 9(9), 258; doi:10.3390/v9090258 -
Abstract
Staphylococcus aureus is a commensal and pathogenic bacterium that causes infections in humans and animals. It is a major cause of nosocomial infections worldwide. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the pathogen are necessary. In this respect, polyvalent
[...] Read more.
Staphylococcus aureus is a commensal and pathogenic bacterium that causes infections in humans and animals. It is a major cause of nosocomial infections worldwide. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the pathogen are necessary. In this respect, polyvalent staphylococcal myoviruses have been demonstrated to be excellent candidates for phage therapy. Here we present the characterization of the bacteriophage vB_SauM-fRuSau02 (fRuSau02) that was isolated from a commercial Staphylococcus bacteriophage cocktail produced by Microgen (Moscow, Russia). The genomic analysis revealed that fRuSau02 is very closely related to the phage MSA6, and possesses a large genome (148,464 bp), with typical modular organization and a low G+C (30.22%) content. It can therefore be classified as a new virus among the genus Twortlikevirus. The genome contains 236 predicted genes, 4 of which were interrupted by insertion sequences. Altogether, 78 different structural and virion-associated proteins were identified from purified phage particles by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The host range of fRuSau02 was tested with 135 strains, including 51 and 54 Staphylococcus aureus isolates from humans and pigs, respectively, and 30 coagulase-negative Staphylococcus strains of human origin. All clinical S. aureus strains were at least moderately sensitive to the phage, while only 39% of the pig strains were infected. Also, some strains of Staphylococcus intermedius, Staphylococcus lugdunensis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus pseudointer were sensitive. We conclude that fRuSau02, a phage therapy agent in Russia, can serve as an alternative to antibiotic therapy against S. aureus. Full article
Figures

Figure 1