Open AccessArticle
High Risk Subgroups Sensitive to Air Pollution Levels Following an Emergency Medical Admission
Toxics 2017, 5(4), 27; doi:10.3390/toxics5040027 (registering DOI) -
Abstract
For three cohorts (the elderly, socially deprived, and those with chronic disabling disease), the relationship between the concentrations of particulate matter (PM10), sulphur dioxide (SO2), or oxides of nitrogen (NOx) at the time of hospital admission and
[...] Read more.
For three cohorts (the elderly, socially deprived, and those with chronic disabling disease), the relationship between the concentrations of particulate matter (PM10), sulphur dioxide (SO2), or oxides of nitrogen (NOx) at the time of hospital admission and outcomes (30-day in-hospital mortality) were investigated All emergency admissions (90,423 episodes, recorded in 48,035 patients) between 2002 and 2015 were examined. PM10, SO2, and NOx daily levels from the hospital catchment area were correlated with the outcomes for the older admission cohort (>70 years), those of lower socio-economic status (SES), and with more disabling disease. Adjusted for acuity and complexity, the level of each pollutant on the day of admission independently predicted the 30-day mortality: for PM10–OR 1.11 (95% CI: 1.08, 1.15), SO2–1.20 (95% CI: 1.16, 1.24), and NOx–1.09 (1.06–1.13). For the older admission cohort (≥70 years), as admission day pollution increased (NOx quintiles) the 30-day mortality was higher in the elderly (14.2% vs. 11.3%: p < 0.001). Persons with a lower SES were at increased risk. Persons with more disabling disease also had worse outcomes on days with higher admission particulate matter (PM10 quintiles). Levels of pollutants on the day of admission of emergency medical admissions predicted 30-day hospital mortality. Full article
Figures

Figure 1

Open AccessArticle
Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae
Toxics 2017, 5(4), 28; doi:10.3390/toxics5040028 (registering DOI) -
Abstract
Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits,
[...] Read more.
Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels. Full article
Figures

Figure 1

Open AccessArticle
Heavy Metal Pollution of Chari River Water during the Crossing of N’Djamena (Chad)
Toxics 2017, 5(4), 26; doi:10.3390/toxics5040026 -
Abstract
This study was carried out to identify and assess the water quality of the Chari River. The Chari, 1200 km long, is Chad’s major water source. Municipal sewage, industrial wastewater discharge, and seasonal run-off from agriculture are regularly fed into the river. Several
[...] Read more.
This study was carried out to identify and assess the water quality of the Chari River. The Chari, 1200 km long, is Chad’s major water source. Municipal sewage, industrial wastewater discharge, and seasonal run-off from agriculture are regularly fed into the river. Several trace metals such as Cu, Zn, Fe, Ni, Cr, Mn, and Cd, were measured in different sampling stations located along the Chari River at N’Djamena in different campaigns from 2008 to 2010. Overall, manganese, zinc, chromium, and copper concentration levels were mainly in the range of the permissible limits prescribed by WHO guidelines (WHO 2011). Nickel, iron, and cadmium concentrations were still high. This preliminary study allowed us to identify the magnitude of toxic pollutants, which are responsible for Chari River water contamination in the study area. This study revealed that urgent measures must be taken to protect the local people from health problems resulting from high concentrations of heavy metals. Full article
Figures

Figure 1

Open AccessArticle
Hydrophobic Sand Is a Non-Toxic Method of Urine Collection, Appropriate for Urinary Metal Analysis in the Rat
Toxics 2017, 5(4), 25; doi:10.3390/toxics5040025 -
Abstract
Hydrophobic sand is a relatively new method of urine collection in the rodent, comparable to the established method using a metabolic cage. Urine samples are often used in rodent research, especially for biomarkers of health changes after internal contamination from embedded metals, such
[...] Read more.
Hydrophobic sand is a relatively new method of urine collection in the rodent, comparable to the established method using a metabolic cage. Urine samples are often used in rodent research, especially for biomarkers of health changes after internal contamination from embedded metals, such as in a model of a military shrapnel wound. However, little research has been done on the potential interference of hydrophobic sand with urine metal concentrations either by contamination from the sand particulate, or adsorption of metals from the urine. We compare urine collected from rats using the metabolic cage method and the hydrophobic sand method for differences in metal concentration of common urinary metals, and examine physical properties of the sand material for potential sources of contamination. We found minimal risk of internal contamination of the rat by hydrophobic sand, and no interference of the sand with several common metals of interest (cobalt, strontium, copper, and manganese), although we advise caution in studies of aluminum in urine. Full article
Figures

Figure 1

Open AccessArticle
Self-Reported Symptoms and Pesticide Use among Farm Workers in Arusha, Northern Tanzania: A Cross Sectional Study
Toxics 2017, 5(4), 24; doi:10.3390/toxics5040024 -
Abstract
The objective of the study was to describe self-reported health symptoms, the use of personal protective gear and clothing and poor safety procedures when applying pesticides among farm workers. A total of 128 adult farm workers were interviewed using a structured questionnaire during
[...] Read more.
The objective of the study was to describe self-reported health symptoms, the use of personal protective gear and clothing and poor safety procedures when applying pesticides among farm workers. A total of 128 adult farm workers were interviewed using a structured questionnaire during the farming season. The commonly used pesticides included profenofos, mancozeb, chlorpyrifos, cypermethrin, deltamethrin, permethrin, lambda-cyhalothrin, endosulfan and carbosulfan. The majority (>90%) of farm workers used no personal protective clothing while handling pesticides. More than one-third of farm workers ate and drank without washing their hands following pesticide handling, while a smaller number smoked or chewed gum. Wearing special boots during pesticide application was found to reduce the risk of skin rash (OR = 0.2, 95% CI: 0.06–0.66), whereas smoking when applying pesticides increased the risk of chest pain occurrence (OR = 4.0, 95% CI: 1.14–15.43), as well as forgetfulness (OR = 4.0, 95% CI: 1.30–14.02). Chewing gum and eating when applying pesticides was associated with diarrhoea (OR = 11.0, 95% CI: 1.80–6.84 and OR = 7.0, 95% CI: 1.27–3.67 respectively). The increased self-reported prevalence of post-exposure adverse health effects among farm workers was associated with poor use of personal protective clothing and poor safety practices during pesticide use and handling. These data indicate the need for improved availability and use of protective equipment, and training in crop and pest management practices to prevent risky behavioursand for safer and sustainable vegetable production. Full article
Open AccessReview
Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts
Toxics 2017, 5(4), 23; doi:10.3390/toxics5040023 -
Abstract
Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This
[...] Read more.
Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. Full article
Open AccessReview
Occupational Exposure to Bisphenol A (BPA): A Reality That Still Needs to Be Unveiled
Toxics 2017, 5(3), 22; doi:10.3390/toxics5030022 -
Abstract
Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, is one of the most utilized industrial chemicals worldwide, with the ability to interfere with/or mimic estrogenic hormones with associated biological responses. Environmental human exposure to this endocrine disruptor, mostly through oral intake, is considered a generalized phenomenon,
[...] Read more.
Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, is one of the most utilized industrial chemicals worldwide, with the ability to interfere with/or mimic estrogenic hormones with associated biological responses. Environmental human exposure to this endocrine disruptor, mostly through oral intake, is considered a generalized phenomenon, particularly in developed countries. However, in the context of occupational exposure, non-dietary exposure sources (e.g., air and contact) cannot be underestimated. Here, we performed a review of the literature on BPA occupational exposure and associated health effects. Relevantly, the authors only identified 19 studies from 2009 to 2017 that demonstrate that occupationally exposed individuals have significantly higher detected BPA levels than environmentally exposed populations and that the detection rate of serum BPA increases in relation to the time of exposure. However, only 12 studies performed in China have correlated potential health effects with detected BPA levels, and shown that BPA-exposed male workers are at greater risk of male sexual dysfunction across all domains of sexual function; also, endocrine disruption, alterations to epigenetic marks (DNA methylation) and epidemiological evidence have shown significant effects on the offspring of parents exposed to BPA during pregnancy. This overview raises awareness of the dramatic and consistent increase in the production and exposure of BPA and creates urgency to assess the actual exposure of workers to this xenoestrogen and to evaluate potential associated adverse health effects. Full article
Open AccessArticle
A Retrospective Analysis of Agricultural Herbicides in Surface Water Reveals Risk Plausibility for Declines in Submerged Aquatic Vegetation
Toxics 2017, 5(3), 21; doi:10.3390/toxics5030021 -
Abstract
The Albemarle-Pamlico Estuarine System (APES) is the second largest estuarine system within the mainland of the United States and is estimated to have lost about half of its submerged aquatic vegetation (SAV) over the past several decades. The issue of herbicide runoff and
[...] Read more.
The Albemarle-Pamlico Estuarine System (APES) is the second largest estuarine system within the mainland of the United States and is estimated to have lost about half of its submerged aquatic vegetation (SAV) over the past several decades. The issue of herbicide runoff and subsequent toxic effects to SAV is important because of the extensive agricultural production that occurs in the APES region. The aim of this study was to conduct a retrospective analysis of herbicide influx to waters of the APES region during the time period of documented SAV declines and to compare the measured concentrations to SAV toxicity thresholds and changes in agricultural land use. Surface water grab samples were collected at 26 sites in the APES region during May through July 2000. The most consistently measured herbicides were alachlor, atrazine, and metolachlor with geometric mean concentrations ranging from 29 to 2463 ng/L for alachlor, 14 to 7171 ng/L for atrazine, and 17 to 5866 ng/L for metolachlor. Concentrations of alachlor, atrazine, and metolachlor measured in water samples from the APES region in 2000 exceeded several of the established benchmarks, standards, or guidelines for protection of aquatic plants. Although this evaluation was of point-in-time herbicide samples (year 2000) and not analyzed for all possible herbicides used at the time, they were taken during the period of SAV declines, reveal the plausibility of exposure risk to SAV, and suggest that herbicide runoff should be studied along with other variables that influence SAV growth and distribution in future studies. Full article
Figures

Figure 1

Open AccessArticle
Metal Levels in Blood of Three Species of Shorebirds during Stopover on Delaware Bay Reflect Levels in Their Food, Horseshoe Crab Eggs
Toxics 2017, 5(3), 20; doi:10.3390/toxics5030020 -
Abstract
Understanding the relationship between metal level in predators and their prey is an important issue, and is usually difficult to determine because animals eat a variety of organisms. However, shorebirds that stop over during spring migration along Delaware Bay (New Jersey) stay for
[...] Read more.
Understanding the relationship between metal level in predators and their prey is an important issue, and is usually difficult to determine because animals eat a variety of organisms. However, shorebirds that stop over during spring migration along Delaware Bay (New Jersey) stay for only 2–3 weeks, and eat mainly horseshoe crab (Limulus polyphemus) eggs. In this paper, we examine the relationship between metal levels in horseshoe crab eggs, and blood and feather levels of metals in red knot (Calidris canutus rufa; n = 30), sanderling (Calidris alba; n = 20) and semipalmated sandpiper (Calidris pusilla; n = 38) from Delaware Bay. There is a rich literature on metal levels in feathers. For all three species, the levels of arsenic, cadmium, chromium, lead and mercury in blood were highly correlated with the levels of metals in the eggs of horseshoe crab (17 pooled samples). This indicates that the levels in the blood of these shorebirds quickly reflect levels in their prey (horseshoe crab eggs), while metals in the feathers were not correlated with the levels in eggs. Semipalmated sandpipers had the lowest levels of arsenic in blood and the highest levels of arsenic in feathers, compared to the other species. At Delaware Bay, semipalmated sandpipers have a diet higher in marsh invertebrates than the other species, which may account for the differences. The levels of cadmium and chromium in blood were significantly higher in knots than other species; knots only ate horseshoe crab eggs. For all of the metals except arsenic, the ratio of levels in blood/feathers was similar among species. For arsenic, the ratio of levels in blood/feathers were significantly lower in semipalmated sandpipers than in the other species, by an order of magnitude. Full article
Figures

Figure 1

Open AccessArticle
Farmers’ Training on Pesticide Use Is Associated with Elevated Safety Behavior
Toxics 2017, 5(3), 19; doi:10.3390/toxics5030019 -
Abstract
Occupational exposure to pesticides in agricultural applications may cause acute and long-term health effects to farmers, and thus research on factors that reduce exposure is useful. However, studies on the relevance and effectiveness of training are limited. The association of previous training in
[...] Read more.
Occupational exposure to pesticides in agricultural applications may cause acute and long-term health effects to farmers, and thus research on factors that reduce exposure is useful. However, studies on the relevance and effectiveness of training are limited. The association of previous training in the form of intensive seminars relating to pesticide use (e.g., use of spraying equipment, application parameters, use of personal protective equipment, risks to human health and the environment) with farmers’ knowledge and behavior in pesticide use was studied via the self-reporting method in a purposive sample of 82 trained and non-trained farmers. Most trained farmers showed higher levels of knowledge of pesticide use, higher levels of beliefs in pesticide hazard control, and higher levels of safety behavior than non-trained farmers. Knowledge of pesticide use and beliefs regarding pesticide hazard control were significantly correlated with safety behavior in both groups of farmers. Concerning farmers’ beliefs regarding pesticide hazard control, trained farmers were more likely to think that safety precautions work very well and less likely to feel they had little control over avoiding pesticide hazards. Overall, previous training was associated with increased levels of farmers’ knowledge of pesticides and beliefs about pesticide hazard control, was accompanied by elevated safety behavior in farmers, and thus was connected with lower occupational exposure to pesticides. Interventions that facilitate knowledge and compliance with safety behaviors should become a priority for decreasing exposure to pesticides among farmers. Full article
Open AccessArticle
Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals
Toxics 2017, 5(3), 18; doi:10.3390/toxics5030018 -
Abstract
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and
[...] Read more.
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite. Full article
Figures

Figure 1a

Open AccessArticle
Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?
Toxics 2017, 5(3), 17; doi:10.3390/toxics5030017 -
Abstract
Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on
[...] Read more.
Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate. Full article
Figures

Open AccessFeature PaperArticle
North Carolina Toxic Substance Incidents Program 2010–2015: Identifying Areas for Injury Prevention Efforts
Toxics 2017, 5(3), 16; doi:10.3390/toxics5030016 -
Abstract
The National Toxic Substance Incidents Program (NTSIP) is a surveillance system designed to capture acute toxic substance releases, factors contributing to the release, and any associated injuries. North Carolina has participated since 2010, when NTSIP was established. This article will present a descriptive
[...] Read more.
The National Toxic Substance Incidents Program (NTSIP) is a surveillance system designed to capture acute toxic substance releases, factors contributing to the release, and any associated injuries. North Carolina has participated since 2010, when NTSIP was established. This article will present a descriptive statistical summary from 2010 to 2015 focused on releases that resulted in injuries in order to identify areas for public health prevention efforts. Of the 1690 toxic releases in North Carolina, 155 incidents resulted in injuries and 500 people were injured. Carbon monoxide injured the greatest number of people. Of the incidents that resulted in injuries, 68 occurred at private vehicles or residences (44%), injuring 124 people (25%). Over half of events where at least one responder was injured occurred at private vehicles or residences. Events occurring at private residences did not have a significant relationship between evacuations and injuries, while for industry-related events, the odds of an evacuation being ordered were 8.18 times greater (OR = 8.18, 95% CI = 5.19, 12.89) when there were injuries associated with an event. Intervention efforts should focus on preventing responder injuries while responding to private residence releases and educating the general public on how to prevent injuries by self-evacuating areas where hazardous chemicals have been released. Full article
Open AccessArticle
Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging
Toxics 2017, 5(3), 15; doi:10.3390/toxics5030015 -
Abstract
The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs). Uptake behavior
[...] Read more.
The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs). Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549) and mouse fibroblast (NIH/3T3) cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC) and propidium iodide (PI). We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies. Full article
Figures

Figure 1

Open AccessArticle
Characterization of Aerosols of Titanium Dioxide Nanoparticles Following Three Generation Methods Using an Optimized Aerosolization System Designed for Experimental Inhalation Studies
Toxics 2017, 5(3), 14; doi:10.3390/toxics5030014 -
Abstract
Nanoparticles (NPs) can be released in the air in work settings, but various factors influence the exposure of workers. Controlled inhalation experiments can thus be conducted in an attempt to reproduce real-life exposure conditions and assess inhalation toxicology. Methods exist to generate aerosols,
[...] Read more.
Nanoparticles (NPs) can be released in the air in work settings, but various factors influence the exposure of workers. Controlled inhalation experiments can thus be conducted in an attempt to reproduce real-life exposure conditions and assess inhalation toxicology. Methods exist to generate aerosols, but it remains difficult to obtain nano-sized and stable aerosols suitable for inhalation experiments. The goal of this work was to characterize aerosols of titanium dioxide (TiO2) NPs, generated using a novel inhalation system equipped with three types of generators—a wet collision jet nebulizer, a dry dust jet and an electrospray aerosolizer—with the aim of producing stable aerosols with a nano-diameter average (<100 nm) and monodispersed distribution for future rodent exposures and toxicological studies. Results showed the ability of the three generation systems to provide good and stable dispersions of NPs, applicable for acute (continuous up to 8 h) and repeated (21-day) exposures. In all cases, the generated aerosols were composed mainly of small aggregates/agglomerates (average diameter <100 nm) with the electrospray producing the finest (average diameter of 70–75 mm) and least concentrated aerosols (between 0.150 and 2.5 mg/m3). The dust jet was able to produce concentrations varying from 1.5 to 150 mg/m3, and hence, the most highly concentrated aerosols. The nebulizer collision jet aerosolizer was the most versatile generator, producing both low (0.5 mg/m3) and relatively high concentrations (30 mg/m3). The three optimized generators appeared suited for possible toxicological studies of inhaled NPs. Full article
Figures

Figure 1

Open AccessArticle
Concentrations of Polybrominated Diphenyl Ethers (PBDEs) in Water from Asunle Stream, Ile-Ife, Nigeria
Toxics 2017, 5(2), 13; doi:10.3390/toxics5020013 -
Abstract
This study assessed the concentrations of polybrominated diphenylethers (PBDEs) in stream water obtained from Asunle stream, an adjoining stream of the Obafemi Awolowo University dumpsite. Water samples were collected for a period of eight months from six different locations comprising of a spot
[...] Read more.
This study assessed the concentrations of polybrominated diphenylethers (PBDEs) in stream water obtained from Asunle stream, an adjoining stream of the Obafemi Awolowo University dumpsite. Water samples were collected for a period of eight months from six different locations comprising of a spot upstream in an uphill area relative to the refuse dumpsite and five others downstream along the stream course. The sampled waters were extracted with dicholoromethane using liquid-liquid extraction method and cleanup was carried out with silica gel. The final extracts after concentration were analyzed using GC-MS/MS. The recovery experiments were adequate (105%–110%). The mean levels of Ʃ6PBDEs compounds analyzed ranged from 0.03 to 0.45 ng/mL. Seasonal variability of PBDEs indicated that higher levels were found during the wet season. The levels of PBDEs recorded in this work were relatively lower compared to the values reported in the literature from other developed nations. Full article
Figures

Figure 1

Open AccessArticle
The Investigation of Unexpected Arsenic Compounds Observed in Routine Biological Monitoring Urinary Speciation Analysis
Toxics 2017, 5(2), 12; doi:10.3390/toxics5020012 -
Abstract
This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive’s Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic
[...] Read more.
This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive’s Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic acid, MMA5+; and dimethylarsinic acid, DMA5+). Micro liquid chromatography coupled to inductively coupled plasma mass spectrometry (µLC-ICP-MS) and electrospray time of flight tandem mass spectrometry (ESI-QqTOF-MS/MS) were used to identify the two arsenic peaks by comparison to several characterized arsenicals: arsenocholine, AC; trimethyl arsine oxide, TMAO; dimethylarsenoacetate, DMAA; dimethylarsenoethanol, DMAE; thio-dimethylarsinate, thio-DMA; thio-dimethylarsenoacetate, thio-DMAA and thio-dimethylarsenoethanol, thio-DMAE. The results from both the ICP-MS and ESI-QqTOF-MS/MS investigations indicate that the unexpected arsenic species termed peak 1 was thio-DMA. While the unexpected arsenic species termed peak 2 has yet to be identified, this investigation shows that it was not AC, TMAO, DMAA, DMAE, thio-DMA, thio-DMAA or thio-DMAE. This study demonstrates the incidence of unexpected arsenic species in both routine and non-routine urine samples from both workers and hospital patients. Full article
Figures

Figure 1

Open AccessArticle
Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats
Toxics 2017, 5(2), 11; doi:10.3390/toxics5020011 -
Abstract
This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline
[...] Read more.
This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats. Full article
Figures

Open AccessArticle
Pharmaceutical Wastewater Effluent—Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (Glycine max)
Toxics 2017, 5(2), 10; doi:10.3390/toxics5020010 -
Abstract
Industrial discharge of active pharmaceutical ingredients (APIs) into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL)—one of the most commonly used over the counter (OTC) antibiotics, to soybean (Glycine max) is investigated.
[...] Read more.
Industrial discharge of active pharmaceutical ingredients (APIs) into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL)—one of the most commonly used over the counter (OTC) antibiotics, to soybean (Glycine max) is investigated. Relative growth rate (RGR) expressed in gram per gram per day (gg−1d−1) was applied to plants destructively harvested at maturity (42 d), to determine the toxicological impact. Differences between mean RGR of the three groups were performed at 0.05 significance level. Multiple comparisons suggest that there was a statistical significant difference among mean RGR for all treatment groups. Metronidazole is toxic to soybean plants (Glycine max) based on dose-response criterion. There is a need to enforce treatment of pharmaceutical wastewater effluent by Pharmaceutical Manufacturing Companies (PMCs) before discharge into the environment. Full article
Figures

Open AccessCommunication
The Food and Beverage Occurrence of Furfuryl Alcohol and Myrcene—Two Emerging Potential Human Carcinogens?
Toxics 2017, 5(1), 9; doi:10.3390/toxics5010009 -
Abstract
For decades, compounds present in foods and beverages have been implicated in the etiology of human cancers. The World Health Organization (WHO) International Agency for Research on Cancer (IARC) continues to classify such agents regarding their potential carcinogenicity in humans based on new
[...] Read more.
For decades, compounds present in foods and beverages have been implicated in the etiology of human cancers. The World Health Organization (WHO) International Agency for Research on Cancer (IARC) continues to classify such agents regarding their potential carcinogenicity in humans based on new evidence from animal and human studies. Furfuryl alcohol and β-myrcene are potential human carcinogens due to be evaluated. The major source of furfuryl alcohol in foods is thermal processing and ageing of alcoholic beverages, while β-myrcene occurs naturally as a constituent of the essential oils of plants such as hops, lemongrass, and derived products. This study aimed to summarize the occurrence of furfuryl alcohol and β-myrcene in foods and beverages using literature review data. Additionally, results of furfuryl alcohol occurrence from our own nuclear magnetic resonance (NMR) analysis are included. The highest content of furfuryl alcohol was found in coffee beans (>100 mg/kg) and in some fish products (about 10 mg/kg), while among beverages, wines contained between 1 and 10 mg/L, with 8 mg/L in pineapple juice. The content of β-myrcene was highest in hops. In conclusion, the data about the occurrence of the two agents is currently judged as insufficient for exposure and risk assessment. The results of this study point out the food and beverage groups that may be considered for future monitoring of furfuryl alcohol and β-myrcene. Full article
Figures

Figure 1