Open AccessArticle
Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria
Toxics 2016, 4(4), 28; doi:10.3390/toxics4040028 (registering DOI) -
Abstract
The indiscriminate use of pesticide is a treat to non-target organisms. This study evaluates the haematological and biochemical changes induced by inhalation of local Nigerian dichlorvos insecticide on rats. The rats were randomly assigned to a control group which received only food and
[...] Read more.
The indiscriminate use of pesticide is a treat to non-target organisms. This study evaluates the haematological and biochemical changes induced by inhalation of local Nigerian dichlorvos insecticide on rats. The rats were randomly assigned to a control group which received only food and water and a test group which, in addition to food and water, was exposed to the pesticide for a period of 4 h daily for 28 days, after which exposure was discontinued for seven days. Five animals were sacrificed from each group on days 1, 7, 14, 21, 28 and 35, and blood was collected by cardiac puncture for haematological, biochemical and antioxidant analysis. Results obtained showed lowered values of red blood cell count (RBC), packed cell volume (PCV), haemoglobin, mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) (p < 0.05) with increased white blood cell count (WBC) and platelet counts after day 14 when compared to the control group. Liver enzymes aspartate amino transaminase (AST) and alanine amino transaminase (ALT) were higher in the exposed rats compared to the control group (p < 0.05). Urea and creatinine concentrations increased significantly after day 1 and at day 28, while superoxide dismutase (SOD), gluthathione (GSH) and catalase (CAT) activity increased significantly compared to the control after day 1, day 14 and day 21, respectively. The RBC, PCV and haemoglobin values of all exposed rats were restored to normal following withdrawal of the pesticide, though AST, ALT, urea, creatinine and, glutathione values remained significantly high compared to the control. Inhalation of the local insecticide is toxic to the blood, liver and kidney of laboratory rats and may be deleterious to human health following long-term exposure. Full article
Figures

Figure 1

Open AccessCommunication
Hair Microelement Profile as a Prognostic Tool in Parkinson’s Disease
Toxics 2016, 4(4), 27; doi:10.3390/toxics4040027 -
Abstract
Changes in the homeostasis of metals and microelements have been demonstrated in Parkinson’s disease, whose etiology includes both a genetic and environmental basis. We studied the difference of microelements in the hair of Parkinson’s disease subjects (n = 46) compared with healthy
[...] Read more.
Changes in the homeostasis of metals and microelements have been demonstrated in Parkinson’s disease, whose etiology includes both a genetic and environmental basis. We studied the difference of microelements in the hair of Parkinson’s disease subjects (n = 46) compared with healthy controls (n = 24). Hair was chosen as a representative matrix to measure microelements, since it is a vehicle of substance excretion from the human body and it allows for long-term evaluation of metal exposure. An inductively coupled plasma mass spectrometry (ICP-MS) analysis of hair collected from 24 Parkinson’s patients compared with their healthy relatives used as controls shows a significant decrease in Ca (U = 166, p = 0.012),), Mg (U = 187, p = 0.037), and Sr (U = 183, p = 0.030). Cd and Ca/Mg were decreased, and Cu was increased, in patients with respect to their healthy related controls at the limit of significance (p = 0.0501). Principal Component Analysis (PCA) of these microelements in hair shows a clustering into two groups according to gender, disease severity according to the Hoehn–Yahr scale, and pharmacological therapy. This pilot study represents a starting point for future investigations where a larger group of subjects will be involved to define other microelements useful when screening for early biomarkers of Parkinson’s disease. Full article
Figures

Figure 1

Open AccessArticle
Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action
Toxics 2016, 4(4), 26; doi:10.3390/toxics4040026 -
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In
[...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects. Full article
Figures

Open AccessArticle
Association of Long-Term Pesticide Exposure and Biologic Parameters in Female Farm Workers in Tanzania: A Cross Sectional Study
Toxics 2016, 4(4), 25; doi:10.3390/toxics4040025 -
Abstract
The study aimed to assess the association of long-term pesticide exposure (≥5 years) with hematological, serum biochemical parameters and acetylcholinesterase activity in farm workers. These pesticides included organophosphorus pesticides, carbamates, pyrethroids, dithiocarbamates, and other pesticides such as endosulfan. Applying a cross-sectional study design,
[...] Read more.
The study aimed to assess the association of long-term pesticide exposure (≥5 years) with hematological, serum biochemical parameters and acetylcholinesterase activity in farm workers. These pesticides included organophosphorus pesticides, carbamates, pyrethroids, dithiocarbamates, and other pesticides such as endosulfan. Applying a cross-sectional study design, 69 females from a pesticide-exposed farm population and 30 females from a district not using pesticides (reference group) were studied. The mean red cell corpuscular volume and hematocrit values were significantly lower (74.7 ± 9.1 fl; 95% CI 72.5–76.9 and 32.0% ± 4.6%; 95% CI 30.9–33.1, respectively) in the exposed compared to the reference group, whereas mean corpuscular hemoglobin concentration and platelets were significantly higher (37.4 ± 3.8 g/dL; 95% CI 36.5–38.3 and 374.1 ± 95.3/L; 95% CI 351.2–396.9, respectively) in the exposed compared to the reference group. Mean serum glutamic oxaloacetate transaminase (20.7 ± 8.9 U/L; 95% CI 18.5–22.9) and creatinine (83.9 ± 6.6 μmol/L; 95% CI 82.3–85.5) were significantly higher in the exposed compared to the reference group. A higher mean esterase activity (AChE 0.6 ± 0.2 mM/min/mg protein; 95% CI 0.56–0.7; BChE 0.9 ± 0.4 mM/min/mg protein; 95% CI 0.9–1.1) was noted in the exposed group. Regression models suggest that occupational exposure (p < 0.001) could be a predictor of esterase (AChE and BChE) activity and biochemical changes (β = 0.4, 95% CI: 0.3–0.5; β = 0.7, 95% CI: 0.6–0.9, respectively). Long-term pesticide exposure affects the hemato-biochemical and esterase responses, establishing the need for further studies. Full article
Open AccessArticle
Effects of Estrogen, Nitric Oxide, and Dopamine on Behavioral Locomotor Activities in the Embryonic Zebrafish: A Pharmacological Study
Toxics 2016, 4(4), 24; doi:10.3390/toxics4040024 -
Abstract
Nitric oxide (NO) has been shown to affect motor function. Specifically, NO has been shown to act through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons. Recently, zebrafish have been proposed to be a new model for
[...] Read more.
Nitric oxide (NO) has been shown to affect motor function. Specifically, NO has been shown to act through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons. Recently, zebrafish have been proposed to be a new model for the study of various types of motor dysfunctions, since neurotoxin damage to their nigrostriatal-like neurons exhibit motor anomalies similar to those of mammalian models and human patients. Results from this study demonstrate that when NO synthesis is inhibited in zebrafish, using a neuronal NO synthase inhibitor (nNOSI), a condition called ‘listless’ occurs, where the fish lack swimming abilities, are rigid, and have difficulty maintaining balance. Additionally, co-treatment with either NO or estrogen (E2), an upstream regulator of NO synthase, can rescue fish from the ‘listless’ phenotype caused by exposure to the neurotoxin 6-hydroxydopamine (6 OHDA). In turn, NO deprived zebrafish were rescued from the ‘listless’ phenotype when co-treated with L-DOPA, a precursor to DA. Interestingly, the longer fish are exposed to a 6 OHDA + nNOSI co-treatment, the slower the recovery after washout, compared to a single treatment of each. Most significantly, NO involvement in the motor homeostasis of the embryonic zebrafish was shown to be expressed through the NO-cGMP-dependent pathway, and response to nNOSI treatments is developmentally regulated. In conclusion, these results indicate that there is a link between E2, NO, and DA systems that regulate motor functions in the embryonic zebrafish. Full article
Figures

Figure 1

Open AccessReview
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases
Toxics 2016, 4(4), 23; doi:10.3390/toxics4040023 -
Abstract
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk.
[...] Read more.
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. Full article
Figures

Figure 1

Open AccessArticle
Differences in Reproductive Behavior between Spawning and Non-Spawning Zebrafish Pairs and the Effects of 17α-Ethinylestradiol (EE2)
Toxics 2016, 4(3), 22; doi:10.3390/toxics4030022 -
Abstract
Reproductive success manifested by spawning and fertilization, in most fish, depends partly on an appropriate courtship behavior by both sexes. The zebrafish reproductive behavior can be resolved in some of its constituent elements by a computerized vision system and described in unbiased quantitative
[...] Read more.
Reproductive success manifested by spawning and fertilization, in most fish, depends partly on an appropriate courtship behavior by both sexes. The zebrafish reproductive behavior can be resolved in some of its constituent elements by a computerized vision system and described in unbiased quantitative terms. Pairs of adult male and female zebrafish were monitored with automatic video tracking at 16 Hz for 45 min in a tank with a spawning area in one corner. Subsequently, spawning, if any, was registered and the swimming behavior and mutual interactions of the two fish were quantified. Further, temporal and frequency distributions of average velocity and turning rate were produced. It is demonstrated that the courtship behavior in spawning pairs differs markedly from non-spawning pairs with differences in both male and female behavior. EE2 (17α-ethinylestradiol), a contraceptive hormone found in aquatic environments, has only a slight effect on these behavior differences between spawning and non-spawning pairs. Full article
Figures

Figure 1

Open AccessArticle
Evaluation of Common Use Brominated Flame Retardant (BFR) Toxicity Using a Zebrafish Embryo Model
Toxics 2016, 4(3), 21; doi:10.3390/toxics4030021 -
Abstract
Brominated flame retardants (BFRs) are used to reduce the flammability of plastics, textiles, and electronics. BFRs vary in their chemical properties and structures, and it is expected that these differences alter their biological interactions and toxicity. Zebrafish were used as the model organism
[...] Read more.
Brominated flame retardants (BFRs) are used to reduce the flammability of plastics, textiles, and electronics. BFRs vary in their chemical properties and structures, and it is expected that these differences alter their biological interactions and toxicity. Zebrafish were used as the model organism for assessing the toxicity of nine structurally-diverse BFRs. In addition to monitoring for overt toxicity, the rate of spontaneous movement, and acetylcholinesterase and glutathione-S-transferase (GST) activities were assessed following exposure. The toxicities of BFRs tested can be ranked by LC50 as tetrabromobisphenol A (TBBPA) < 4,4′-isopropylidenebis[2-(2,6-dibromophenoxyl)ethanol] (TBBPA-OHEE) < Pentabromochlorocyclohexane (PBCH) < 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) < hexabromocyclododecane (HBCD) < hexabromobenzene (HBB) < Tetrabromophthalic anhydride (PHT4). No adverse effect was observed in di(2-ethylhexyl) tetrabromophthalate (TBPH) or dibromoneopentyl glycol (DBNPG)-treated embryos. The rate of spontaneous movement was decreased in a concentration-dependent manner following exposure to four of the nine compounds. GST activity was elevated following treatment with PBCH, TBBPA, HBCD, and HBB. The results indicate that exposure to several BFRs may activate an antioxidant response and alter behavior during early development. Some of the BFRs, such as TBBPA and TBBPA-OHEE, induced adverse effects at concentrations lower than chemicals that are currently banned. These results suggest that zebrafish are sensitive to exposure to BFRs and can be used as a comparative screening model, as well as to determine alterations in behavior following exposure and probe mechanisms of action. Full article
Figures

Figure 1

Open AccessArticle
Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model
Toxics 2016, 4(3), 20; doi:10.3390/toxics4030020 -
Abstract
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of
[...] Read more.
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease. Full article
Figures

Figure 1

Open AccessReview
Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity
Toxics 2016, 4(3), 19; doi:10.3390/toxics4030019 -
Abstract
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being
[...] Read more.
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed. Full article
Figures

Figure 1

Open AccessReview
The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides
Toxics 2016, 4(3), 18; doi:10.3390/toxics4030018 -
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic
[...] Read more.
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies. Full article
Figures

Figure 1

Open AccessReview
Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review
Toxics 2016, 4(3), 17; doi:10.3390/toxics4030017 -
Abstract
Intensive crop production involves a high consumption of pesticides. This is a cause of major environmental concern because the presence of pesticides in water is becoming increasingly common. Physicochemical methods based on soil modification with organic residues have been developed to enhance the
[...] Read more.
Intensive crop production involves a high consumption of pesticides. This is a cause of major environmental concern because the presence of pesticides in water is becoming increasingly common. Physicochemical methods based on soil modification with organic residues have been developed to enhance the immobilization and/or degradation of pesticides in agricultural soils, which may control both the diffuse and the point pollution of soils and waters. This review summarizes the influence of spent mushroom substrate (SMS) on the environmental fate of pesticides when both are simultaneously applied in agriculture. The processes of adsorption, leaching and dissipation of these compounds in SMS-amended soils were evaluated at laboratory and field scale. Relationships were established between the experimental parameters obtained and the properties of the soils, the SMS, and the pesticides in order to determine the effect that the application of SMS in agricultural soils has on the environmental impact of pesticides. Accordingly, this review highlights the use of SMS as a strategy for the prevention and/or control of soil and water contamination by pesticides to strike a balance between agricultural development and the use of these compounds. Full article
Open AccessArticle
Groundwater Contamination by Uranium and Mercury at the Ridaura Aquifer (Girona, NE Spain)
Toxics 2016, 4(3), 16; doi:10.3390/toxics4030016 -
Abstract
Elevated concentrations of uranium and mercury have been detected in drinking water from public supply and agricultural wells in alluvial and granitic aquifers of the Ridaura basin located at Catalan Coastal Ranges (CCR). The samples showed high concentrations of U above the U.S.
[...] Read more.
Elevated concentrations of uranium and mercury have been detected in drinking water from public supply and agricultural wells in alluvial and granitic aquifers of the Ridaura basin located at Catalan Coastal Ranges (CCR). The samples showed high concentrations of U above the U.S. standards and the World Health Organization regulations which set a maximum value of 30 µg/L. Further, high mercury concentrations above the European Drinking Water Standards (1 μg/L) were found. Spatial distribution of U in groundwater and geochemical evolution of groundwater suggest that U levels appear to be highest in granitic areas where groundwater has long residence times and a significant salinity. The presence of high U concentrations in alluvial groundwater samples could be associated with hydraulic connection through fractures between the alluvial system and deep granite system. According to this model, oxidizing groundwater moving through fractures in the leucocratic/biotitic granite containing anomalous U contents are the most likely to acquire high levels of U. The distribution of Hg showed concentrations above 1 μg/L in 10 alluvial samples, mainly located near the limit of alluvial aquifer with igneous rocks, which suggests a possible migration of Hg from granitic materials. Also, some samples showed Hg concentrations comprised between 0.9 and 1.5 μg/L, from wells located in agricultural areas. Full article
Figures

Figure 1

Open AccessArticle
Air Quality and Hospital Outcomes in Emergency Medical Admissions with Respiratory Disease
Toxics 2016, 4(3), 15; doi:10.3390/toxics4030015 -
Abstract
Background: The impact of very low levels of air pollutants, particulate matter (PM10) and sulfur dioxide (SO2) concentrations, on human health is not well characterized. We examined the outcomes (30-day in-hospital mortality) of emergency hospitalizations of respiratory patients and the level
[...] Read more.
Background: The impact of very low levels of air pollutants, particulate matter (PM10) and sulfur dioxide (SO2) concentrations, on human health is not well characterized. We examined the outcomes (30-day in-hospital mortality) of emergency hospitalizations of respiratory patients and the level of local pollutants on the day of admission. Methods: All emergency admissions (82,421 episodes in 44,660 patients) were recorded over 13 years (2002–2014) and mortality assessed. The median interquartile ranges (IQR) age was 64.5 (43.9, 78.5) years with the proportion of males at 48.5%. Univariate and multivariate logistic regression was used to examine relationships between pollutant concentration (PM10 and SO2) and odds ratio (OR) for 30-day in hospital death, after adjustment for acuity. Results: Mortality related to each pollutant variable assessed (as quintiles of increasing atmospheric concentration). For PM10 mortality, the highest two quintiles concentrations were significantly increased (p < 0.001) with univariate ORs of 1.30. For SO2, the ORs were 1.32, 1.39, and 1.46, for the top three quintiles. There was also a strong relationship between the underlying respiratory function; with forced expiratory volume (FEV1) in 1 second (FEV1) ≥ 2.0L at the lowest PM10 quintile, mortality was 6.5% (95% CI: 6.1, 6.9) increasing to 9.5% (95% CI: 9.0, 10.0) at the highest PM10 quintile. For patients with FEV1 < 2.0L, the mortality at the lowest PM10 quintile was 9.9% (95% CI: 8.8, 10.9) increasing to 14.2% (95% CI: 12.8, 15.6) at the highest quintile. Conclusion: Despite air quality improvement, there was a clear relationship between pollutant concentration and outcomes for respiratory emergency admissions; additionally, the underlying level of pulmonary function was predictive of in-hospital mortality. Full article
Figures

Figure 1

Open AccessCommentary
Toxicovigilance Systems and Practices in Africa
Toxics 2016, 4(3), 13; doi:10.3390/toxics4030013 -
Abstract
African consumers and citizens are growingly aware of the wide range of toxic poisoning scenarios from different products and hazards. Recurrent episodes on poisoning that have been reported in Africa include toxic hazards in consumers’ products ranging from food to herbal medicine, drugs,
[...] Read more.
African consumers and citizens are growingly aware of the wide range of toxic poisoning scenarios from different products and hazards. Recurrent episodes on poisoning that have been reported in Africa include toxic hazards in consumers’ products ranging from food to herbal medicine, drugs, and cosmetics. Chemical poisoning remains an issue that is overlooked by public health stakeholders in Africa. Available information on toxicovigilance systems and practices in African countries is reviewed in terms of increasing development, organization and articulation levels. Less than nine out of 54 African countries have a legally recognized toxicovigilance system. Of these, the majority have created toxicovigilance systems recently, and are facing many challenges in developing them, at regional and country levels. Basic structures for a good toxicovigilance system include a phone line service (available 24/7), and hospital facilities. Pesticides emerge as the hazard recognized by all of the toxicovigilance systems, and may represent a prototypic toxicant towards a toxicovigilance system that is inclusive of a wider spectrum of toxicological hazards for the protection of community health. Toxicovigilance today is more reactive than preventive in Africa, but some milestones are present that constitute some promising seminal efforts. Full article
Figures

Figure 1

Open AccessEditorial
Toxicities of Therapeutic Agents Used in Medicine
Toxics 2016, 4(3), 14; doi:10.3390/toxics4030014 -
Abstract This Special Issue on “Toxicities of Therapeutic Agents Used in Medicine” reports on some peculiar cases of toxicities related to widely and commonly employed drugs.[...] Full article
Open AccessArticle
Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums
Toxics 2016, 4(3), 12; doi:10.3390/toxics4030012 -
Abstract
With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of
[...] Read more.
With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5) level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7%) as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani), and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani). Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1) were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles. Full article
Figures

Figure 1

Open AccessArticle
UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario
Toxics 2016, 4(2), 11; doi:10.3390/toxics4020011 -
Abstract
UNMIX, a sensor modeling routine from the U.S. Environmental Protection Agency (EPA), was used to model volatile organic compound (VOC) receptors in four urban sites in Toronto, Ontario. VOC ambient concentration data acquired in 2000–2009 for 175 VOC species in four air quality
[...] Read more.
UNMIX, a sensor modeling routine from the U.S. Environmental Protection Agency (EPA), was used to model volatile organic compound (VOC) receptors in four urban sites in Toronto, Ontario. VOC ambient concentration data acquired in 2000–2009 for 175 VOC species in four air quality monitoring stations were analyzed. UNMIX, by performing multiple modeling attempts upon varying VOC menus—while rejecting the results that were not reliable—allowed for discriminating sources by their most consistent chemical characteristics. The method assessed occurrences of VOCs in sources typical of the urban environment (traffic, evaporative emissions of fuels, banks of fugitive inert gases), industrial point sources (plastic-, polymer-, and metalworking manufactures), and in secondary sources (releases from water, sediments, and contaminated urban soil). The remote sensing and robust modeling used here produces chemical profiles of putative VOC sources that, if combined with known environmental fates of VOCs, can be used to assign physical sources’ shares of VOCs emissions into the atmosphere. This in turn provides a means of assessing the impact of environmental policies on one hand, and industrial activities on the other hand, on VOC air pollution. Full article
Figures

Open AccessArticle
Development of a Biomarker for Penconazole: A Human Oral Dosing Study and a Survey of UK Residents’ Exposure
Toxics 2016, 4(2), 10; doi:10.3390/toxics4020010 -
Abstract
Penconazole is a widely used fungicide in the UK; however, to date, there have been no peer-reviewed publications reporting human metabolism, excretion or biological monitoring data. The objectives of this study were to i) develop a robust analytical method, ii) determine biomarker levels
[...] Read more.
Penconazole is a widely used fungicide in the UK; however, to date, there have been no peer-reviewed publications reporting human metabolism, excretion or biological monitoring data. The objectives of this study were to i) develop a robust analytical method, ii) determine biomarker levels in volunteers exposed to penconazole, and, finally, to iii) measure the metabolites in samples collected as part of a large investigation of rural residents’ exposure. An LC-MS/MS method was developed for penconazole and two oxidative metabolites. Three volunteers received a single oral dose of 0.03 mg/kg body weight and timed urine samples were collected and analysed. The volunteer study demonstrated that both penconazole-OH and penconazole-COOH are excreted in humans following an oral dose and are viable biomarkers. Excretion is rapid with a half-life of less than four hours. Mean recovery of the administered dose was 47% (range 33%–54%) in urine treated with glucuronidase to hydrolyse any conjugates. The results from the residents’ study showed that levels of penconazole-COOH in this population were low with >80% below the limit of detection. Future sampling strategies that include both end of exposure and next day urine samples, as well as contextual data about the route and time of exposure, are recommended. Full article
Open AccessArticle
Assessing Potential Vulnerability and Response of Fish to Simulated Avian Predation after Exposure to Psychotropic Pharmaceuticals
Toxics 2016, 4(2), 9; doi:10.3390/toxics4020009 -
Abstract
Psychotropic pharmaceuticals present in the environment may impact organisms both directly and via interaction strengths with other organisms, including predators; therefore, this study examined the potential effects of pharmaceuticals on behavioral responses of fish to avian predators. Wild-caught juvenile perch (Perca fluviatilis
[...] Read more.
Psychotropic pharmaceuticals present in the environment may impact organisms both directly and via interaction strengths with other organisms, including predators; therefore, this study examined the potential effects of pharmaceuticals on behavioral responses of fish to avian predators. Wild-caught juvenile perch (Perca fluviatilis) were assayed using a striking bird model after a seven-day exposure to psychotropic pharmaceuticals (the antidepressants fluoxetine or sertraline, or the β-blocker propranolol) under the hypotheses that exposure would increase vulnerability to avian predation via increasing the probability of predator encounter as well as degrading evasive behaviors upon encounter. None of the substances significantly affected swimming activity of the fish, nor did they increase vulnerability by affecting encounter probability or evasive endpoints compared to control treatments. Counter to our expectations, fish exposed to 100 μg/L fluoxetine (but no other concentrations or pharmaceuticals) were less likely to enter the open area of the arena, i.e., less likely to engage in risky behavior that could lead to predator encounters. Additionally, all fish exposed to environmentally relevant, low concentrations of sertraline (0.12 μg/L) and propranolol (0.1 μg/L) sought refuge after the simulated attack. Our unexpected results warrant further research as they have interesting implications on how these psychotropic pharmaceuticals may affect predator-prey interactions spanning the terrestrial-aquatic interface. Full article
Figures