Open AccessArticle
Measurement of Assistive Technology Outcomes Associated with Computer-Based Writing Interventions for Children and Youth with Disabilities
Technologies 2017, 5(2), 19; doi:10.3390/technologies5020019 (registering DOI) -
Abstract
Young people who have chronic disabilities use computer technologies and receive rehabilitation services to overcome functional limitations associated with writing activities. However, the functional impact of these specialized assistive technologies on the everyday lives of children is not clearly understood; in part due
[...] Read more.
Young people who have chronic disabilities use computer technologies and receive rehabilitation services to overcome functional limitations associated with writing activities. However, the functional impact of these specialized assistive technologies on the everyday lives of children is not clearly understood; in part due to the lack of targeted outcome measures. This article describes the development and evaluation of the Family Impact of Assistive Technology Scale for Writing Interventions (FIATS-WI). The FIATS-WI is a multi-dimensional, parent-report questionnaire designed to measure child functioning and outcomes associated with computer-based writing interventions for children and youth aged 5–18 years. Participants included parents of children with writing-related disabilities who completed the questionnaire at home during one of two study phases. In the first phase, 121 eligible parents, out of 364 invited, completed a single administration of the questionnaire. In the second phase, 28 out of 33 eligible parents completed the FIATS-WI twice to assess its stability. Item and subscale correlations informed an item reduction plan, and Cronbach’s alpha and intraclass correlation coefficients provided acceptable estimates for internal consistency and test–retest reliability, respectively. Correlations between FIATS-WI scores and scores from a standardized home participation measure tested its convergent validity. The study provides emerging evidence for the FIATS-WI as a sound measure of computer-based writing technology outcomes for children and youth with disabilities. Full article
Open AccessArticle
A Transportable Photovoltaic Power Generation System Utilizing a SiC Inverter and Spherical Si Solar Cells
Technologies 2017, 5(2), 18; doi:10.3390/technologies5020018 -
Abstract
This paper reports a 100-W class transportable photovoltaic (PV) power generation system built with SiC power devices. Conventionally, studies on SiC power converters have mostly focused on multi-kW applications. In this paper, we have verified the feasibility of the SiC power devices for
[...] Read more.
This paper reports a 100-W class transportable photovoltaic (PV) power generation system built with SiC power devices. Conventionally, studies on SiC power converters have mostly focused on multi-kW applications. In this paper, we have verified the feasibility of the SiC power devices for sub-kW PV power generation systems. The developed PV power generation system consisted of a spherical Si solar cell module, a 150-W SiC PV-inverter unit with maximum power point tracking (MPPT) function, and a 12-V Li-ion battery. The total weight of the system was just 4.3 kg. Conversion efficiencies of the MPPT charge controller and the direct current-alternating current converter reached 98.0% and 88.4%, respectively. The developed system exhibited stable output power characteristics, even when the weather conditions were fluctuated. These compactness, high efficiencies, and excellent stability clearly indicated the feasibility of SiC power devices even for sub-kW class PV power generation systems. This kind of system would be available for the applications where compactness and transportability are of tremendous importance. Full article
Open AccessArticle
Accelerated Detector Response Function in Squeezed Vacuum
Technologies 2017, 5(2), 17; doi:10.3390/technologies5020017 -
Abstract
Casimir/squeezed vacuum breaks Lorentz symmetry, by allowing light to propagate faster than c. We looked at the possible transformation symmetry group such vacuum could obey. By solving the semi-classical Einstein field equation in squeezed vacuum, we have found that the background geometry
[...] Read more.
Casimir/squeezed vacuum breaks Lorentz symmetry, by allowing light to propagate faster than c. We looked at the possible transformation symmetry group such vacuum could obey. By solving the semi-classical Einstein field equation in squeezed vacuum, we have found that the background geometry describes an Anti-deSitter (AdS) geometry. Therefore, the proper transformation symmetry group is the (A)dS group. One can describe quantum field theory in a finite volume as a quantum field theory (QFT) on AdS background, or vice versa. In particular, one might think of QFT vacuum on AdS as a QFT that posses a squeezed vacuum with boundary conditions proportional to RAdS2. Applying this correspondence to an accelerating detector-scalar field system, we notice at low acceleration the system is at equilibrium at ground state, however if the detector’s acceleration (a) is greater than a critical acceleration, the system experience a phase transition similar to Hawking-Page Phase transition at the detector gets excited, with equivalent temperature Θ=a2-RAdS22π. Full article
Figures

Figure 1

Open AccessReview
Review of Computational Methods on Brain Symmetric and Asymmetric Analysis from Neuroimaging Techniques
Technologies 2017, 5(2), 16; doi:10.3390/technologies5020016 -
Abstract
The brain is the most complex organ in the human body and it is divided into two hemispheres—left and right. The left hemisphere is responsible for control of the right side of our body, whereas the right hemisphere is responsible for control of
[...] Read more.
The brain is the most complex organ in the human body and it is divided into two hemispheres—left and right. The left hemisphere is responsible for control of the right side of our body, whereas the right hemisphere is responsible for control of the left side of our body. Brain image segmentation from different neuroimaging modalities is one of the important parts of clinical diagnostic tools. Neuroimaging based digital imagery generally contain noise, inhomogeneity, aliasing artifacts, and orientational deviations. Therefore, accurate segmentation of brain images is a very difficult task. However, the development of accurate segmentation of brain images is very important and crucial for a correct diagnosis of any brain related diseases. One of the fundamental segmentation tasks is to identify and segment inter-hemispheric fissure/mid-sagittal planes, which separate the two hemispheres of the brain. Moreover, the symmetric/asymmetric analyses of left and right hemispheres of brain structures are important for radiologists to analyze diseases such as Alzheimer’s, autism, schizophrenia, lesions and epilepsy. Therefore, in this paper, we have analyzed the existing computational techniques used to find brain symmetric/asymmetric analysis in different neuroimaging techniques such as the magnetic resonance (MR), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), which are utilized for detecting various brain related disorders. Full article
Figures

Figure 1

Open AccessReview
Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need
Technologies 2017, 5(2), 15; doi:10.3390/technologies5020015 -
Abstract
A useful and increasingly common additive manufacturing (AM) process is the selective laser melting (SLM) or direct metal laser sintering (DMLS) process. SLM/DMLS can produce full-density metal parts from difficult materials, but it tends to suffer from severe residual stresses introduced during processing.
[...] Read more.
A useful and increasingly common additive manufacturing (AM) process is the selective laser melting (SLM) or direct metal laser sintering (DMLS) process. SLM/DMLS can produce full-density metal parts from difficult materials, but it tends to suffer from severe residual stresses introduced during processing. This limits the usefulness and applicability of the process, particularly in the fabrication of parts with delicate overhanging and protruding features. The purpose of this study was to examine the current insight and progress made toward understanding and eliminating the problem in overhanging and protruding structures. To accomplish this, a survey of the literature was undertaken, focusing on process modeling (general, heat transfer, stress and distortion and material models), direct process control (input and environmental control, hardware-in-the-loop monitoring, parameter optimization and post-processing), experiment development (methods for evaluation, optical and mechanical process monitoring, imaging and design-of-experiments), support structure optimization and overhang feature design; approximately 143 published works were examined. The major findings of this study were that a small minority of the literature on SLM/DMLS deals explicitly with the overhanging stress problem, but some fundamental work has been done on the problem. Implications, needs and potential future research directions are discussed in-depth in light of the present review. Full article
Figures

Figure 1

Open AccessArticle
Proximate Composition, Extraction, and Purification of Theobromine from Cacao Pod Husk (Theobroma Cacao L.)
Technologies 2017, 5(2), 14; doi:10.3390/technologies5020014 -
Abstract
The aims of this study were to determine the proximate composition of cacao pod husk as well as the optimal conditions for extraction and purification of theobromine from cacao pod husk. The results indicated that cacao pod husk had high contents of moisture
[...] Read more.
The aims of this study were to determine the proximate composition of cacao pod husk as well as the optimal conditions for extraction and purification of theobromine from cacao pod husk. The results indicated that cacao pod husk had high contents of moisture and carbohydrate (87.06% and 11.03% by fresh weight, respectively), but low contents of crude protein, crude lipid, and ash (0.31%, 0.12%, and 1.48% by fresh weight, respectively). The optimal conditions for extraction of theobromine from cacao pod husk were of 70% ethanol, with an extraction time of 90 min, and 1 as the number of extractions. A concentration of 10% by volume of 10% lead acetate solution was the best selection for purification of the crude extracts containing theobromine from cacao pod husk. Under these optimal conditions, theobromine content obtained from cacao pod husk was 6.79 mg/100 g dry weight. The finding from this study is a valuable contribution for obtaining theobromine from an abundant, inexpensive, renewable, and sustainable source for potential application in the nutraceutical, medical, and pharmaceutical industries. Full article
Figures

Open AccessArticle
Moveable Factories for Leapfrog Manufacturing in an Industrial Economy
Technologies 2017, 5(2), 13; doi:10.3390/technologies5020013 -
Abstract
Moveable factories can enable leapfrogging of fixed industrial factories, and so make immediate contributions to global goals of more resilient sustainable manufacturing. Moveable factories bring into use diverse technological advances that reduce the number, size, and weight of machines needed to carry out
[...] Read more.
Moveable factories can enable leapfrogging of fixed industrial factories, and so make immediate contributions to global goals of more resilient sustainable manufacturing. Moveable factories bring into use diverse technological advances that reduce the number, size, and weight of machines needed to carry out manufacturing operations at points of supply and/or demand. However, fixed industrial factories continue to be the principal focus for development and application of new manufacturing technologies. At the same time, fixed industrial factories continue to be seen by policy makers around the world as the default option for developing prosperity: rather than as an old fashioned production paradigm to be leapfrogged over. In this paper, findings are reported from a case study investigating potential for moveable factories to bring leapfrog manufacturing to an industrial economy. This case study comprised literature review, interviews, and theoretical analyses. Study findings indicate that organisations in an industrial economy will consider moveable factories if fixed factories are not feasible, practical, or viable. By contrast, potential for improved efficiency and flexibility may not be sufficient to motivate a shift away from fixed industrial factories. Full article
Figures

Figure 1

Open AccessArticle
Research and Application of a SCADA System for a Microgrid
Technologies 2017, 5(2), 12; doi:10.3390/technologies5020012 -
Abstract
An effective Supervisory Control and Data Acquisition (SCADA) system can improve the reliability, safety and economic benefits of a microgrid operation. In this research, the lower central controller and upper WEB (World Wide Web) monitoring system are connected by the SCADA system, which
[...] Read more.
An effective Supervisory Control and Data Acquisition (SCADA) system can improve the reliability, safety and economic benefits of a microgrid operation. In this research, the lower central controller and upper WEB (World Wide Web) monitoring system are connected by the SCADA system, which is the hub of a microgrid intelligent monitoring platform. This system contains a set of specific functions programmed by Java as a middleware and can provide communication and control functions between the central controller and the upper monitoring system. For the sake of security and stability of the microgrid, the SCADA system realizes business processing on real-time data acquisition and storage, load balancing and resource recovery, concurrent security processing, and control instruction parsing and transmission. All those functions were tested and verified in actual operation. Full article
Figures

Open AccessArticle
Railway Continuous Prestressed Concrete Bridge Design in Ballastless Track Turnout Zones
Technologies 2017, 5(2), 11; doi:10.3390/technologies5020011 -
Abstract
Laying ballastless track on railway bridges has the advantages of reducing the train noise problem, improving passenger comfort, and reducing track maintenance costs. Therefore, railway bridges with ballastless track have gradually turned into a major trend in railway systems all over the world.
[...] Read more.
Laying ballastless track on railway bridges has the advantages of reducing the train noise problem, improving passenger comfort, and reducing track maintenance costs. Therefore, railway bridges with ballastless track have gradually turned into a major trend in railway systems all over the world. In Taiwan, railway bridges with ballastless track have been in use for many years, with ballastless track turnouts also starting to be constructed in recent years. Where railway bridges with ballastless track turnouts are located in urban areas, special consideration must be given to the road crossings and the use of continuous bridges in the turnout zones. Accordingly, there arise a number of difficulties related to the bridge configurations or the continuous length of bridges being excessively long. Often, such situations necessitate the use of extremely large-sized bridge piers in the bridge design, or create the risk of serious damage to the pier structure should insufficient attention be given to any of the factors. This article will take a continuous prestressed concrete bridge as an example. The prestressed concrete bridge must be absolutely continuous, be able to include ballastless track turnout zones, and meet the needs of crossing roads. For this example, the length of the continuous prestressed concrete bridge is over 300 m. This article will also discuss the configuration of a continuous prestressed concrete bridge of railway, and—through the analysis of track–bridge interaction and temperature detection—provides suggestions on the optimal configuration model of the continuous prestressed concrete bridges, which should allow improper configuration and possible structural damage to be avoided. Full article
Figures

Figure 1

Open AccessArticle
Improved Decision Fusion Model for Wireless Sensor Networks over Rayleigh Fading Channels
Technologies 2017, 5(1), 10; doi:10.3390/technologies5010010 -
Abstract
This paper deals with decision fusion in wireless sensor networks (WSNs) over Rayleigh fading channels. The likelihood ratio test (LRT) is considered as the optimal fusion rule when applied at the fusion center (FC). However, applying the LRT at the FC requires both
[...] Read more.
This paper deals with decision fusion in wireless sensor networks (WSNs) over Rayleigh fading channels. The likelihood ratio test (LRT) is considered as the optimal fusion rule when applied at the fusion center (FC). However, applying the LRT at the FC requires both the channel state information (CSI) and the local sensors’ performance indices. Acquiring such information is considered as an overhead in energy and bandwidth constrained systems such as WSNs. To avoid these drawbacks, we propose a modification to the traditional three-layer system model of a WSN where the LRT is applied as a local decision making method at the sensors level. Applying the LRT at the sensors level does not require the CSI or the local sensors’ performance indices. It only requires the signal-to-noise ratio (SNR). Moreover, a new fusion rule based on selection combining (SC) is suggested. This fusion method has the lowest complexity when compared to other diversity combining based fusion rules such as the equal gain combiner (EGC) and the maximum ratio combiner (MRC). Simulation results show that the performance of the proposed model outperforms the traditional model. In addition, applying the EGC at the FC in the proposed model provides comparable performance to the traditional model that applies the LRT at the FC. Full article
Figures

Figure 1

Open AccessArticle
In-Built Customised Mechanical Failure of 316L Components Fabricated Using Selective Laser Melting
Technologies 2017, 5(1), 9; doi:10.3390/technologies5010009 -
Abstract
The layer-by-layer building methodology used within the powder bed process of Selective Laser Melting facilitates control over the degree of melting achieved at every layer. This control can be used to manipulate levels of porosity within each layer, effecting resultant mechanical properties. If
[...] Read more.
The layer-by-layer building methodology used within the powder bed process of Selective Laser Melting facilitates control over the degree of melting achieved at every layer. This control can be used to manipulate levels of porosity within each layer, effecting resultant mechanical properties. If specifically controlled, it has the potential to enable customisation of mechanical properties or design of in-built locations of mechanical fracture through strategic void placement across a component, enabling accurate location specific predictions of mechanical failure for fail-safe applications. This investigation examined the process parameter effects on porosity formation and mechanical properties of 316L samples whilst maintaining a constant laser energy density without manipulation of sample geometry. In order to understand the effects of customisation on mechanical properties, samples were manufactured with in-built porosity of up to 3% spanning across ~1.7% of a samples’ cross-section using a specially developed set of “hybrid” processing parameters. Through strategic placement of porous sections within samples, exact fracture location could be predicted. When mechanically loaded, these customised samples exhibited only ~2% reduction in yield strength compared to samples processed using single set parameters. As expected, microscopic analysis revealed that mechanical performance was closely tied to porosity variations in samples, with little or no variation in microstructure observed through parameter variation. The results indicate that there is potential to use SLM for customising mechanical performance over the cross-section of a component. Full article
Figures

Figure 1

Open AccessArticle
Additive Manufacturing: Reproducibility of Metallic Parts
Technologies 2017, 5(1), 8; doi:10.3390/technologies5010008 -
Abstract
The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti)—hexagonal closed packed structure) fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency
[...] Read more.
The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti)—hexagonal closed packed structure) fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible results were observed for sliding wear and corrosion experiments. The other metal/alloy systems also show repeatable tensile properties, with the tensile curves overlapping until the yield point. The curves may then follow the same path or show a marginal deviation (~10 MPa) until they reach the ultimate tensile strength and a negligible difference in ductility levels (of ~0.3%) is observed between the samples. The results show that selective laser melting is a reliable fabrication method to produce metallic materials with consistent and reproducible properties. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers
Technologies 2017, 5(1), 7; doi:10.3390/technologies5010007 -
Abstract
Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing
[...] Read more.
Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in thermoplastic and a cost analysis was performed through comparison to comparable, commercially available products at a low and high price range. When compared to the low-cost items, investment in a 3-D printer represented a return of investment of over 100% in five years. The simple payback time for the high-cost comparison was less than 6 months, and produced a 986% return. Thus, fully-assembled commercial open source 3-D printers can be highly profitable investments for American consumers. Finally, as a preliminary gauge of the effect that widespread prosumer use of 3-D printing might have on the economy, savings were calculated based on the items’ download rates from open repositories. Results indicate that printing these selected items have already saved prosumers over $4 million by substituting for purchases. Full article
Figures

Open AccessArticle
Wireless Accelerometer for Neonatal MRI Motion Artifact Correction
Technologies 2017, 5(1), 6; doi:10.3390/technologies5010006 -
Abstract
A wireless accelerometer has been used in conjunction with a dedicated 3T neonatal MRI system installed on a Neonatal Intensive Care Unit to measure in-plane rotation which is a common problem with neonatal MRI. Rotational data has been acquired in real-time from phantoms
[...] Read more.
A wireless accelerometer has been used in conjunction with a dedicated 3T neonatal MRI system installed on a Neonatal Intensive Care Unit to measure in-plane rotation which is a common problem with neonatal MRI. Rotational data has been acquired in real-time from phantoms simultaneously with MR images which shows that the wireless accelerometer can be used in close proximity to the MR system. No artifacts were observed on the MR images from the accelerometer or from the MR system on the accelerometer output. Initial attempts to correct the raw data using the measured rotational angles have been performed, but further work will be required to make a robust correction algorithm. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Technologies in 2016
Technologies 2017, 5(1), 5; doi:10.3390/technologies5010005 -
Abstract The editors of Technologies would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
Tribological Behavior of Spark Plasma Sintered Aluminum-Graphene Composites at Room and Elevated Temperatures
Technologies 2017, 5(1), 4; doi:10.3390/technologies5010004 -
Abstract
This study examines the role of Graphene nanoplatelets (GNPs) as a solid lubricant additive to aluminum. Pure Al and Al-2 vol % GNP pellets are sintered by Spark Plasma Sintering (SPS). Their tribological properties are evaluated by a ball-on-disk tribometer at room temperature
[...] Read more.
This study examines the role of Graphene nanoplatelets (GNPs) as a solid lubricant additive to aluminum. Pure Al and Al-2 vol % GNP pellets are sintered by Spark Plasma Sintering (SPS). Their tribological properties are evaluated by a ball-on-disk tribometer at room temperature (RT) and high temperature (200 °C). Al-2 vol % GNP composite displayed poor densification (91%) and low hardness, resulting in poor wear resistance as compared to pure Al. However GNP addition resulted in a lower coefficient of friction (COF) as compared to pure aluminum at both temperatures. The results demonstrated that GNPs contribute to reducing COF by forming a protective tribolayer. GNPs also play a unique role in reducing oxygen ingress at 200 °C. It is concluded that the packing density of a starting powder blend of Al-GNP needs to be improved by using irregular shaped aluminum powder mixed with both larger and smaller GNPs. This would result in greater densification and improve wear rate while maintaining low COF. Full article
Figures

Figure 1

Open AccessReview
Tool Wear and Life Span Variations in Cold Forming Operations and Their Implications in Microforming
Technologies 2017, 5(1), 3; doi:10.3390/technologies5010003 -
Abstract
The current paper aims to review tooling life span, failure modes and models in cold microforming processes. As there is nearly no information available on tool-life for microforming the starting point was conventional cold forming. In cold forming common failures are (1) over
[...] Read more.
The current paper aims to review tooling life span, failure modes and models in cold microforming processes. As there is nearly no information available on tool-life for microforming the starting point was conventional cold forming. In cold forming common failures are (1) over stressing of the tool; (2) abrasive wear; (3) galling or adhesive wear, and (4) fatigue failure. The large variation in tool life observed in production and how to predict this was reviewed as this is important to the viability of microforming based on that the tooling cost takes a higher portion of the part cost. Anisotropic properties of the tool materials affect tool life span and depend on both the as-received and in-service conditions. It was concluded that preconditioning of the tool surface, and coating are important to control wear and fatigue. Properly managed, the detrimental effects from surface particles can be reduced. Under high stress low-cycle fatigue conditions, fatigue failure form internal microstructures and inclusions are common. To improve abrasive wear resistance larger carbides are commonly the solution which will have a negative impact on tooling life as these tend to be the root cause of fatigue failures. This has significant impact on cold microforming. Full article
Figures

Figure 1

Open AccessArticle
Agustin de Betancourt’s Wind Machine for Draining Marshy Ground: Approach to Its Geometric Modeling with Autodesk Inventor Professional
Technologies 2017, 5(1), 2; doi:10.3390/technologies5010002 -
Abstract
The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for
[...] Read more.
The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for draining marshy ground, designed in 1789. The present research relies on the computer-aided design (CAD) techniques using Autodesk Inventor Professional software, based on the scant information provided by the only two drawings of the machine, making it necessary to propose a number of dimensional and geometric hypotheses as well as a series of movement restrictions (degrees of freedom), to arrive at a consistent design. The results offer a functional design for this historic invention. Full article
Figures

Figure 1

Open AccessReview
Quantum Sensing of Noisy and Complex Systems under Dynamical Control
Technologies 2017, 5(1), 1; doi:10.3390/technologies5010001 -
Abstract
We review our unified optimized approach to the dynamical control of quantum-probe interactions with noisy and complex systems viewed as thermal baths. We show that this control, in conjunction with tools of quantum estimation theory, may be used for inferring the spectral and
[...] Read more.
We review our unified optimized approach to the dynamical control of quantum-probe interactions with noisy and complex systems viewed as thermal baths. We show that this control, in conjunction with tools of quantum estimation theory, may be used for inferring the spectral and spatial characteristics of such baths with high precision. This approach constitutes a new avenue in quantum sensing, dubbed quantum noise spectroscopy. Full article
Figures

Figure 1

Open AccessTechnical Note
Deriving an Indoor Environmental Index for Portuguese Office Buildings
Technologies 2016, 4(4), 40; doi:10.3390/technologies4040040 -
Abstract
In 2002, the European Commission (EU) issued a Directive aiming to reduce the energy consumption of buildings, which was adopted by the EU member states and came into force in 2006. Portugal adopted it by issuing law decrees in 2006 which considered not
[...] Read more.
In 2002, the European Commission (EU) issued a Directive aiming to reduce the energy consumption of buildings, which was adopted by the EU member states and came into force in 2006. Portugal adopted it by issuing law decrees in 2006 which considered not only the energy saving aspects but also additional specific measures aiming to protect indoor air quality (IAQ). This new legislation is now being enforced, and it will be necessary to define compliance acceptance levels for the prescribed indoor air limits. The use of comfort or environmental indexes could be of considerable help to ameliorate the evaluation of IAQ. This paper presents a proposal of an index regarding IAQ which considers both the aspects of thermal comfort and non-toxicity. The proposed index was calculated for offices of several European countries, available from previous studies and for Portugal as well. Bearing in mind there is few existing data, this study is consistent with the proposed index, as the obtained values are similar to Greece, which has several similarities with the Portuguese situation. Full article