Open AccessArticle
Analyzing Spatial Behavior of Backcountry Skiers in Mountain Protected Areas Combining GPS Tracking and Graph Theory
Symmetry 2017, 9(12), 317; doi:10.3390/sym9120317 -
Abstract
Mountain protected areas (PAs) aim to preserve vulnerable environments and at the same time encourage numerous outdoor leisure activities. Understanding the way people use natural environments is crucial to balance the needs of visitors and site capacities. This study aims to develop an
[...] Read more.
Mountain protected areas (PAs) aim to preserve vulnerable environments and at the same time encourage numerous outdoor leisure activities. Understanding the way people use natural environments is crucial to balance the needs of visitors and site capacities. This study aims to develop an approach to evaluate the structure and use of designated skiing zones in PAs combining Global Positioning System (GPS) tracking and analytical methods based on graph theory. The study is based on empirical data (n = 609 GPS tracks of backcountry skiers) collected in Tatra National Park (TNP), Poland. The physical structure of the entire skiing zones system has been simplified into a graph structure (structural network; undirected graph). In a second step, the actual use of the area by skiers (functional network; directed graph) was analyzed using a graph-theoretic approach. Network coherence (connectivity indices: β, γ, α), movement directions at path segments, and relative importance of network nodes (node centrality measures: degree, betweenness, closeness, and proximity prestige) were calculated. The system of designated backcountry skiing zones was not evenly used by the visitors. Therefore, the calculated parameters differ significantly between the structural and the functional network. In particular, measures related to the actually used trails are of high importance from the management point of view. Information about the most important node locations can be used for planning sign-posts, on-site maps, interpretative boards, or other tourist infrastructure. Full article
Figures

Figure 1

Open AccessArticle
Tangible Visualization Table for Intuitive Data Display
Symmetry 2017, 9(12), 316; doi:10.3390/sym9120316 -
Abstract
We propose a new tangible visualization table for intuitive and effective visualization of terrain data transferred from a remote server in real time. The shape display approximating the height field of remote terrain data is generated by linear actuators, and the corresponding texture
[...] Read more.
We propose a new tangible visualization table for intuitive and effective visualization of terrain data transferred from a remote server in real time. The shape display approximating the height field of remote terrain data is generated by linear actuators, and the corresponding texture image is projected onto the shape display. To minimize projection distortions, we present a sophisticated technique for projection mapping. Gesture-based user interfaces facilitate intuitive manipulations of visualization results. We demonstrate the effectiveness of our system by displaying and manipulating various terrain data using gesture-based interfaces. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Knotoids, Braidoids and Applications
Symmetry 2017, 9(12), 315; doi:10.3390/sym9120315 -
Abstract
This paper is an introduction to the theory of braidoids. Braidoids are geometric objects analogous to classical braids, forming a counterpart theory to the theory of knotoids. We introduce these objects and their topological equivalences, and we conclude with a potential application to
[...] Read more.
This paper is an introduction to the theory of braidoids. Braidoids are geometric objects analogous to classical braids, forming a counterpart theory to the theory of knotoids. We introduce these objects and their topological equivalences, and we conclude with a potential application to the study of proteins. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
The Exact Evaluation of Some New Lattice Sums
Symmetry 2017, 9(12), 314; doi:10.3390/sym9120314 -
Abstract
New q-series in the spirit of Jacobi have been found in a publication first published in 1884 written in Russian and translated into English in 1928. This work was found by chance and appears to be almost totally unknown. From these entirely
[...] Read more.
New q-series in the spirit of Jacobi have been found in a publication first published in 1884 written in Russian and translated into English in 1928. This work was found by chance and appears to be almost totally unknown. From these entirely new q-series, fresh lattice sums have been discovered and are presented here. Full article
Open AccessArticle
Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme
Symmetry 2017, 9(12), 312; doi:10.3390/sym9120312 -
Abstract
Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led
[...] Read more.
Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP) to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption. Full article
Figures

Figure 1

Open AccessArticle
Detection of Double-Compressed H.264/AVC Video Incorporating the Features of the String of Data Bits and Skip Macroblocks
Symmetry 2017, 9(12), 313; doi:10.3390/sym9120313 -
Abstract
Today’s H.264/AVC coded videos have a high quality, high data-compression ratio. They also have a strong fault tolerance, better network adaptability, and have been widely applied on the Internet. With the popularity of powerful and easy-to-use video editing software, digital videos can be
[...] Read more.
Today’s H.264/AVC coded videos have a high quality, high data-compression ratio. They also have a strong fault tolerance, better network adaptability, and have been widely applied on the Internet. With the popularity of powerful and easy-to-use video editing software, digital videos can be tampered with in various ways. Therefore, the double compression in the H.264/AVC video can be used as a first step in the study of video-tampering forensics. This paper proposes a simple, but effective, double-compression detection method that analyzes the periodic features of the string of data bits (SODBs) and the skip macroblocks (S-MBs) for all I-frames and P-frames in a double-compressed H.264/AVC video. For a given suspicious video, the SODBs and S-MBs are extracted for each frame. Both features are then incorporated to generate one enhanced feature to represent the periodic artifact of the double-compressed video. Finally, a time-domain analysis is conducted to detect the periodicity of the features. The primary Group of Pictures (GOP) size is estimated based on an exhaustive strategy. The experimental results demonstrate the efficacy of the proposed method. Full article
Figures

Figure 1

Open AccessArticle
Task-Management Method Using R-Tree Spatial Cloaking for Large-Scale Crowdsourcing
Symmetry 2017, 9(12), 311; doi:10.3390/sym9120311 -
Abstract
With the development of sensor technology and the popularization of the data-driven service paradigm, spatial crowdsourcing systems have become an important way of collecting map-based location data. However, large-scale task management and location privacy are important factors for participants in spatial crowdsourcing. In
[...] Read more.
With the development of sensor technology and the popularization of the data-driven service paradigm, spatial crowdsourcing systems have become an important way of collecting map-based location data. However, large-scale task management and location privacy are important factors for participants in spatial crowdsourcing. In this paper, we propose the use of an R-tree spatial cloaking-based task-assignment method for large-scale spatial crowdsourcing. We use an estimated R-tree based on the requested crowdsourcing tasks to reduce the crowdsourcing server-side inserting cost and enable the scalability. By using Minimum Bounding Rectangle (MBR)-based spatial anonymous data without exact position data, this method preserves the location privacy of participants in a simple way. In our experiment, we showed that our proposed method is faster than the current method, and is very efficient when the scale is increased. Full article
Figures

Figure 1

Open AccessArticle
Graphical Classification in Multi-Centrality-Index Diagrams for Complex Chemical Networks
Symmetry 2017, 9(12), 309; doi:10.3390/sym9120309 -
Abstract
Various sizes of chemical reaction network exist, from small graphs of linear networks with several inorganic species to huge complex networks composed of protein reactions or metabolic systems. Huge complex networks of organic substrates have been well studied using statistical properties such as
[...] Read more.
Various sizes of chemical reaction network exist, from small graphs of linear networks with several inorganic species to huge complex networks composed of protein reactions or metabolic systems. Huge complex networks of organic substrates have been well studied using statistical properties such as degree distributions. However, when the size is relatively small, statistical data suffers from significant errors coming from irregular effects by species, and a macroscopic analysis is frequently unsuccessful. In this study, we demonstrate a graphical classification method for chemical networks that contain tens of species. Betweenness and closeness centrality indices of a graph can create a two-dimensional diagram with information of node distribution for a complex chemical network. This diagram successfully reveals systematic sharing of roles among species as a semi-statistical property in chemical reactions, and distinguishes it from the ones in random networks, which has no functional node distributions. This analytical approach is applicable for rapid and approximate understanding of complex chemical network systems such as plasma-enhanced reactions as well as visualization and classification of other graphs. Full article
Figures

Figure 1

Open AccessArticle
Reconstructing Damaged Complex Networks Based on Neural Networks
Symmetry 2017, 9(12), 310; doi:10.3390/sym9120310 -
Abstract
Despite recent progress in the study of complex systems, reconstruction of damaged networks due to random and targeted attack has not been addressed before. In this paper, we formulate the network reconstruction problem as an identification of network structure based on much reduced
[...] Read more.
Despite recent progress in the study of complex systems, reconstruction of damaged networks due to random and targeted attack has not been addressed before. In this paper, we formulate the network reconstruction problem as an identification of network structure based on much reduced link information. Furthermore, a novel method based on multilayer perceptron neural network is proposed as a solution to the problem of network reconstruction. Based on simulation results, it was demonstrated that the proposed scheme achieves very high reconstruction accuracy in small-world network model and a robust performance in scale-free network model. Full article
Figures

Figure 1

Open AccessArticle
A Secure Mobility Network Authentication Scheme Ensuring User Anonymity
Symmetry 2017, 9(12), 307; doi:10.3390/sym9120307 -
Abstract
With the rapid growth of network technologies, users are used to accessing various services with their mobile devices. To ensure security and privacy in mobility networks, proper mechanisms to authenticate the mobile user are essential. In this paper, a mobility network authentication scheme
[...] Read more.
With the rapid growth of network technologies, users are used to accessing various services with their mobile devices. To ensure security and privacy in mobility networks, proper mechanisms to authenticate the mobile user are essential. In this paper, a mobility network authentication scheme based on elliptic curve cryptography is proposed. In the proposed scheme, a mobile user can be authenticated without revealing who he is for user anonymity, and a session key is also negotiated to protect the following communications. The proposed mobility network authentication scheme is analyzed to show that it can ensure security, user anonymity, and convenience. Moreover, Burrows-Abadi-Needham logic (BAN logic) is used to deduce the completeness of the proposed authentication scheme. Full article
Figures

Figure 1

Open AccessArticle
A Block-Based Division Reversible Data Hiding Method in Encrypted Images
Symmetry 2017, 9(12), 308; doi:10.3390/sym9120308 -
Abstract
Due to the increased digital media on the Internet, data security and privacy protection issue have attracted the attention of data communication. Data hiding has become a topic of considerable importance. Nowadays, a new challenge consists of reversible data hiding in the encrypted
[...] Read more.
Due to the increased digital media on the Internet, data security and privacy protection issue have attracted the attention of data communication. Data hiding has become a topic of considerable importance. Nowadays, a new challenge consists of reversible data hiding in the encrypted image because of the correlations of local pixels that are destroyed in an encrypted image; it is difficult to embed secret messages in encrypted images using the difference of neighboring pixels. In this paper, the proposed method uses a block-based division mask and a new encrypted method based on the logistic map and an additive homomorphism to embed data in an encrypted image by histogram shifting technique. Our experimental results show that the proposed method achieves a higher payload than other works and is more immune to attack upon the cryptosystem. Full article
Figures

Figure 1

Open AccessArticle
Face Liveness Detection Based on Skin Blood Flow Analysis
Symmetry 2017, 9(12), 305; doi:10.3390/sym9120305 -
Abstract
Face recognition systems have been widely adopted for user authentication in security systems due to their simplicity and effectiveness. However, spoofing attacks, including printed photos, displayed photos, and replayed video attacks, are critical challenges to authentication, and these spoofing attacks allow malicious invaders
[...] Read more.
Face recognition systems have been widely adopted for user authentication in security systems due to their simplicity and effectiveness. However, spoofing attacks, including printed photos, displayed photos, and replayed video attacks, are critical challenges to authentication, and these spoofing attacks allow malicious invaders to gain access to the system. This paper proposes two novel features for face liveness detection systems to protect against printed photo attacks and replayed attacks for biometric authentication systems. The first feature obtains the texture difference between red and green channels of face images inspired by the observation that skin blood flow in the face has properties that enable distinction between live and spoofing face images. The second feature estimates the color distribution in the local regions of face images, instead of whole images, because image quality might be more discriminative in small areas of face images. These two features are concatenated together, along with a multi-scale local binary pattern feature, and a support vector machine classifier is trained to discriminate between live and spoofing face images. The experimental results show that the performance of the proposed method for face spoof detection is promising when compared with that of previously published methods. Furthermore, the proposed system can be implemented in real time, which is valuable for mobile applications. Full article
Figures

Figure 1

Open AccessArticle
Complexity Phenomena Induced by Novel Symmetry and Symmetry-Breakings with Antiscreening at Cosmological Scales—A Tutorial
Symmetry 2017, 9(12), 306; doi:10.3390/sym9120306 -
Abstract
Complexity phenomena in cosmological evolution due to the scale-running of the propagator coupling constant can yield new insights related to virtual particles and antiscreening effects with dark matter consequences. This idea was developed in accordance with the differential-integral functional formulation of the Wilsonian
[...] Read more.
Complexity phenomena in cosmological evolution due to the scale-running of the propagator coupling constant can yield new insights related to virtual particles and antiscreening effects with dark matter consequences. This idea was developed in accordance with the differential-integral functional formulation of the Wilsonian renormalization group based on the one-particle irreducible scale-dependent effective action for gravitational evolution. In this tutorial communication, we briefly describe the essence of the result with minimal mathematical details and then consider a few simple examples to provide a basic understanding of such an interesting and intriguing complexity process in terms of fractional calculus. Full article
Open AccessArticle
Determinant Formulae of Matrices with Certain Symmetry and Its Applications
Symmetry 2017, 9(12), 303; doi:10.3390/sym9120303 -
Abstract
In this paper, we introduce formulae for the determinants of matrices with certain symmetry. As applications, we will study the Alexander polynomial and the determinant of a periodic link which is presented as the closure of an oriented 4-tangle. Full article
Figures

Figure 1

Open AccessArticle
Performance Analysis of MIMO System with Single RF Link Based on Switched Parasitic Antenna
Symmetry 2017, 9(12), 304; doi:10.3390/sym9120304 -
Abstract
This paper introduces the principle and key technology of single radio frequency (RF) link Multiple-Input Multiple-Output (MIMO) system based on a switched parasitic antenna (SPA). The software SystemVue is adopted for signal processing and system-level simulation with merit of strong operability and high
[...] Read more.
This paper introduces the principle and key technology of single radio frequency (RF) link Multiple-Input Multiple-Output (MIMO) system based on a switched parasitic antenna (SPA). The software SystemVue is adopted for signal processing and system-level simulation with merit of strong operability and high efficiency, which provides tools for the single RF link MIMO system research. A single RF link of a 2 × 2 MIMO system based on the switch parasitic antenna is proposed in this paper. The binary codes are modulated to the baseband Binary Phase Shift Keying (BPSK) signals and transmitted with a 2.4 GHz carrier frequency. The receiver based on the super-heterodyne prototype adopts the channel equalization algorithm for restoring symbols, and it can effectively reduce the system error rate. The simulation results show that the MIMO system built on the platform can achieve equivalent performance with traditional MIMO system, which validates the effectiveness of the proposed scheme. The switched parasitic antenna and equalization algorithm provide new research ideas for single RF link MIMO system and have theoretical significance for further research. Full article
Figures

Figure 1

Open AccessArticle
Internet of Things: A Scientometric Review
Symmetry 2017, 9(12), 301; doi:10.3390/sym9120301 -
Abstract
Internet of Things (IoT) is connecting billions of devices to the Internet. These IoT devices chain sensing, computation, and communication techniques, which facilitates remote data collection and analysis. wireless sensor networks (WSN) connect sensing devices together on a local network, thereby eliminating wires,
[...] Read more.
Internet of Things (IoT) is connecting billions of devices to the Internet. These IoT devices chain sensing, computation, and communication techniques, which facilitates remote data collection and analysis. wireless sensor networks (WSN) connect sensing devices together on a local network, thereby eliminating wires, which generate a large number of samples, creating a big data challenge. This IoT paradigm has gained traction in recent years, yielding extensive research from an increasing variety of perspectives, including scientific reviews. These reviews cover surveys related to IoT vision, enabling technologies, applications, key features, co-word and cluster analysis, and future directions. Nevertheless, we lack an IoT scientometrics review that uses scientific databases to perform a quantitative analysis. This paper develops a scientometric review about IoT over a data set of 19,035 documents published over a period of 15 years (2002–2016) in two main scientific databases (Clarivate Web of Science and Scopus). A Python script called ScientoPy was developed to perform quantitative analysis of this data set. This provides insight into research trends by investigating a lead author’s country affiliation, most published authors, top research applications, communication protocols, software processing, hardware, operating systems, and trending topics. Furthermore, we evaluate the top trending IoT topics and the popular hardware and software platforms that are used to research these trends. Full article
Figures

Open AccessArticle
A Study for Parametric Morphogeometric Operators to Assist the Detection of Keratoconus
Symmetry 2017, 9(12), 302; doi:10.3390/sym9120302 -
Abstract
The aim of this study is to describe a new keratoconus detection method based on the analysis of certain parametric morphogeometric operators extracted from a custom patient-specific three-dimensional (3D) model of the human cornea. A corneal geometric reconstruction is firstly performed using zonal
[...] Read more.
The aim of this study is to describe a new keratoconus detection method based on the analysis of certain parametric morphogeometric operators extracted from a custom patient-specific three-dimensional (3D) model of the human cornea. A corneal geometric reconstruction is firstly performed using zonal functions and retrospective Scheimpflug tomography data from 107 eyes of 107 patients. The posterior corneal surface is later analysed using an optimised computational geometry technique and the morphology of healthy and keratoconic corneas is characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker is assessed through a receiver operating characteristic (ROC) curve analysis and their correlations are analysed through Pearson or Spearman coefficients. The posterior apex deviation variable shows the best keratoconus diagnosis capability. However, the strongest correlations in both healthy and pathological corneas are provided by the metrics directly related to the thickness as the sagittal plane area at the apex and the sagittal plane area at the minimum thickness point. A comparison of the screening of keratoconus provided by the Sirius topographer and the detection of corneal ectasia using the posterior apex deviation parameter is also performed, demonstrating the accuracy of this characterization as an effective marker of the diagnosis and ectatic disease progression. Full article
Figures

Figure 1

Open AccessArticle
Cohomology Characterizations of Diagonal Non-Abelian Extensions of Regular Hom-Lie Algebras
Symmetry 2017, 9(12), 297; doi:10.3390/sym9120297 -
Abstract
In this paper, first we show that under the assumption of the center of h being zero, diagonal non-abelian extensions of a regular Hom-Lie algebra g by a regular Hom-Lie algebra h are in one-to-one correspondence with Hom-Lie algebra morphisms from g to
[...] Read more.
In this paper, first we show that under the assumption of the center of h being zero, diagonal non-abelian extensions of a regular Hom-Lie algebra g by a regular Hom-Lie algebra h are in one-to-one correspondence with Hom-Lie algebra morphisms from g to Out(h). Then for a general Hom-Lie algebra morphism from g to Out(h), we construct a cohomology class as the obstruction of existence of a non-abelian extension that induces the given Hom-Lie algebra morphism. Full article
Open AccessArticle
Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network
Symmetry 2017, 9(12), 300; doi:10.3390/sym9120300 -
Abstract
This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV), one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This
[...] Read more.
This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV), one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks
Symmetry 2017, 9(12), 298; doi:10.3390/sym9120298 -
Abstract
Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1) artificial intelligence, (2) statistical methods, and (3) analytical methods. In this paper,
[...] Read more.
Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1) artificial intelligence, (2) statistical methods, and (3) analytical methods. In this paper, the multivariate regression (MVR) method, which is one of the most popular linear models, and the artificial neural network (ANN) method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy. Full article
Figures

Figure 1