**Abstract: **Let \(\mathbf{H}\) be the quaternion algebra. Let \(\mathfrak{g}\) be a complex Lie algebra and let \(U(\mathfrak{g})\) be the enveloping algebra of \(\mathfrak{g}\). The quaternification \(\mathfrak{g}^{\mathbf{H}}=\,(\,\mathbf{H}\otimes U(\mathfrak{g}),\,[\quad,\quad]_{\mathfrak{g}^{\mathbf{H}}}\,)\) of \(\mathfrak{g}\) is defined by the bracket \( \big[\,\mathbf{z}\otimes X\,,\,\mathbf{w}\otimes Y\,\big]_{\mathfrak{g}^{\mathbf{H}}}\,=\,(\mathbf{z}\cdot \mathbf{w})\otimes\,(XY)\,-\, (\mathbf{w}\cdot\mathbf{z})\otimes (YX)\,,\nonumber \) for \(\mathbf{z},\,\mathbf{w}\in \mathbf{H}\) and {the basis vectors \(X\) and \(Y\) of \(U(\mathfrak{g})\).} Let \(S^3\mathbf{H}\) be the ( non-commutative) algebra of \(\mathbf{H}\)-valued smooth mappings over \(S^3\) and let \(S^3\mathfrak{g}^{\mathbf{H}}=S^3\mathbf{H}\otimes U(\mathfrak{g})\). The Lie algebra structure on \(S^3\mathfrak{g}^{\mathbf{H}}\) is induced naturally from that of \(\mathfrak{g}^{\mathbf{H}}\). We introduce a 2-cocycle on \(S^3\mathfrak{g}^{\mathbf{H}}\) by the aid of a tangential vector field on \(S^3\subset \mathbf{C}^2\) and have the corresponding central extension \(S^3\mathfrak{g}^{\mathbf{H}} \oplus(\mathbf{C}a)\). As a subalgebra of \(S^3\mathbf{H}\) we have the algebra of Laurent polynomial spinors \(\mathbf{C}[\phi^{\pm}]\) spanned by a complete orthogonal system of eigen spinors \(\{\phi^{\pm(m,l,k)}\}_{m,l,k}\) of the tangential Dirac operator on \(S^3\). Then \(\mathbf{C}[\phi^{\pm}]\otimes U(\mathfrak{g})\) is a Lie subalgebra of \(S^3\mathfrak{g}^{\mathbf{H}}\). We have the central extension \(\widehat{\mathfrak{g}}(a)= (\,\mathbf{C}[\phi^{\pm}] \otimes U(\mathfrak{g}) \,) \oplus(\mathbf{C}a)\) as a Lie-subalgebra of \(S^3\mathfrak{g}^{\mathbf{H}} \oplus(\mathbf{C}a)\). Finally we have a Lie algebra \(\widehat{\mathfrak{g}}\) which is obtained by adding to \(\widehat{\mathfrak{g}}(a)\) a derivation \(d\) which acts on \(\widehat{\mathfrak{g}}(a)\) by the Euler vector field \(d_0\). That is the \(\mathbf{C}\)-vector space \(\widehat{\mathfrak{g}}=\left(\mathbf{C}[\phi^{\pm}]\otimes U(\mathfrak{g})\right)\oplus(\mathbf{C}a)\oplus (\mathbf{C}d)\) endowed with the bracket \( \bigl[\,\phi_1\otimes X_1+ \lambda_1 a + \mu_1d\,,\phi_2\otimes X_2 + \lambda_2 a + \mu_2d\,\,\bigr]_{\widehat{\mathfrak{g}}} \, =\)\( (\phi_1\phi_2)\otimes (X_1\,X_2) \, -\,(\phi_2\phi_1)\otimes (X_2X_1) +\mu_1d_0\phi_2\otimes X_2-\mu_2d_0\phi_1\otimes X_1 + (X_1\vert X_2)c(\phi_1,\phi_2)a\,. \) When \(\mathfrak{g}\) is a simple Lie algebra with its Cartan subalgebra \(\mathfrak{h}\) we shall investigate the weight space decomposition of \(\widehat{\mathfrak{g}}\) with respect to the subalgebra \(\widehat{\mathfrak{h}}= (\phi^{+(0,0,1)}\otimes \mathfrak{h} )\oplus(\mathbf{C}a) \oplus(\mathbf{C}d)\).

**Abstract: **We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed.

**Abstract: **Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

**Abstract: **Animal development relies on repeated symmetry breaking, e.g., during axial specification, gastrulation, nervous system lateralization, lumen formation, or organ coiling. It is crucial that asymmetry increases during these processes, since this will generate higher morphological and functional specialization. On one hand, cue-dependent symmetry breaking is used during these processes which is the consequence of developmental signaling. On the other hand, cells isolated from developing animals also undergo symmetry breaking in the absence of signaling cues. These spontaneously arising asymmetries are not well understood. However, an ever growing body of evidence suggests that these asymmetries can originate from spontaneous symmetry breaking and self-organization of molecular assemblies into polarized entities on mesoscopic scales. Recent discoveries will be highlighted and it will be discussed how actomyosin and microtubule networks serve as common biomechanical systems with inherent abilities to drive spontaneous symmetry breaking.

**Abstract: **Fullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two important fullerene parameters can be deduced for all fullerenes in a similarity class by computing the values of these parameters for just the three smallest representatives of that class. In addition, it turns out that there is a natural duality theory for similarity classes of fullerenes based on one of the most important fullerene construction techniques: leapfrog construction. The literature on fullerenes is very extensive, and since this is a general interest journal, we will summarize and illustrate the fundamental results that we will need to develop similarity and this duality.

**Abstract: **The Misner–Sharp–Hernandez mass defined in general relativity and in spherical symmetry has been recognized as having a Newtonian character in previous literature. In order to better understand this feature we relax spherical symmetry and we study the generalization of the Misner–Sharp–Hernandez mass to general spacetimes, i.e., the Hawking quasilocal mass. The latter is decomposed into a matter contribution and a contribution coming solely from the Weyl tensor. The Weyl tensor is then decomposed into an electric part (which has a Newtonian counterpart) and a magnetic one (which does not), which further splits the quasilocal mass into “Newtonian” and “non-Newtonian” parts. Only the electric (Newtonian) part contributes to the quasilocal mass.