Open AccessArticle
Risk Evaluation in Failure Mode and Effects Analysis Using Fuzzy Measure and Fuzzy Integral
Symmetry 2017, 9(8), 162; doi:10.3390/sym9080162 (registering DOI) -
Abstract
Failure mode and effects analysis (FMEA) is a popular and useful approach applied to examine potential failures in different products, designs, processes, and services. As a vital index, the risk priority number (RPN) can determine the risk priorities of failure modes by some
[...] Read more.
Failure mode and effects analysis (FMEA) is a popular and useful approach applied to examine potential failures in different products, designs, processes, and services. As a vital index, the risk priority number (RPN) can determine the risk priorities of failure modes by some risk factors such as occurrence (O), severity (S), and detection (D). However, in FMEA, the traditional risk priority number approach has some shortcomings, especially in setting the weight of risk factors. This paper presents an improved risk priority number approach based on a fuzzy measure and fuzzy integral. A fuzzy measure is used to reflect the importance of the individual indicators and the indicator set and a fuzzy integral is a nonlinear function defined on the basis of fuzzy measure. The weights of risk factors given by domain experts are seen as fuzzy densities to generate a λ-fuzzy measure which can reflect the weights’ difference and relevance about risk factors. Then, the Choquet integral is used to fuse every value of risk factors about failure modes so as to obtain the comprehensive evaluation result. The result can reflect the comprehensive risk level, so it has a definite physical significance. Finally, an illustrative example and a comparison with another approach are given to show the effectiveness of the proposed approach in the paper. Full article
Open AccessArticle
Using Knowledge Transfer and Rough Set to Predict the Severity of Android Test Reports via Text Mining
Symmetry 2017, 9(8), 161; doi:10.3390/sym9080161 (registering DOI) -
Abstract
Crowdsourcing is an appealing and economic solution to software application testing because of its ability to reach a large international audience. Meanwhile, crowdsourced testing could have brought a lot of bug reports. Thus, in crowdsourced software testing, the inspection of a large number
[...] Read more.
Crowdsourcing is an appealing and economic solution to software application testing because of its ability to reach a large international audience. Meanwhile, crowdsourced testing could have brought a lot of bug reports. Thus, in crowdsourced software testing, the inspection of a large number of test reports is an enormous but essential software maintenance task. Therefore, automatic prediction of the severity of crowdsourced test reports is important because of their high numbers and large proportion of noise. Most existing approaches to this problem utilize supervised machine learning techniques, which often require users to manually label a large number of training data. However, Android test reports are not labeled with their severity level, and manual labeling is time-consuming and labor-intensive. To address the above problems, we propose a Knowledge Transfer Classification (KTC) approach based on text mining and machine learning methods to predict the severity of test reports. Our approach obtains training data from bug repositories and uses knowledge transfer to predict the severity of Android test reports. In addition, our approach uses an Importance Degree Reduction (IDR) strategy based on rough set to extract characteristic keywords to obtain more accurate reduction results. The results of several experiments indicate that our approach is beneficial for predicting the severity of android test reports. Full article
Open AccessArticle
Multi-objective Fuzzy Bi-matrix Game Model: A Multicriteria Non-Linear Programming Approach
Symmetry 2017, 9(8), 159; doi:10.3390/sym9080159 -
Abstract
A multi-objective bi-matrix game model based on fuzzy goals is established in this paper. It is shown that the equilibrium solution of such a game model problem can be translated into the optimal solution of a multi-objective, non-linear programming problem. Finally, the results
[...] Read more.
A multi-objective bi-matrix game model based on fuzzy goals is established in this paper. It is shown that the equilibrium solution of such a game model problem can be translated into the optimal solution of a multi-objective, non-linear programming problem. Finally, the results of this paper are demonstrated through a numerical example. Full article
Open AccessArticle
Cloud Generalized Power Ordered Weighted Average Operator and Its Application to Linguistic Group Decision-Making
Symmetry 2017, 9(8), 156; doi:10.3390/sym9080156 -
Abstract
In this paper, we develop a new linguistic aggregation operator based on the cloud model for solving linguistic group decision-making problem. First, an improved generating cloud method is proposed so as to transform linguistic variables into clouds, which modifies the limitation of the
[...] Read more.
In this paper, we develop a new linguistic aggregation operator based on the cloud model for solving linguistic group decision-making problem. First, an improved generating cloud method is proposed so as to transform linguistic variables into clouds, which modifies the limitation of the classical generating cloud method. We then address some new cloud algorithms, such as cloud possibility degree and cloud support degree which can be respectively used to compare clouds and determine the weights. Combining the cloud support degree with power aggregation operator, we develop a new cloud aggregation operator dubbed the cloud generalized power ordered weighted average (CGPOWA) operator. We study the properties of the CGPOWA operator and investigate its family including a wide range of aggregation operators such as the CGPA operator, CPOWA operator, CPOWGA operator, CPWQA operator, CWAA and CWGA operator. Furthermore, a new approach for linguistic group decision-making is presented on the basis of the improved generating cloud method and CGPOWA operator. Finally, an illustrative example is provided to examine the effectiveness and validity of the proposed approach. Full article
Open AccessArticle
Coverage and Rate Analysis for Location-Aware Cross-Tier Cooperation in Two-Tier HetNets
Symmetry 2017, 9(8), 157; doi:10.3390/sym9080157 -
Abstract
Heterogeneous networks (HetNets) are regarded as a promising approach to handle the deluge of mobile data traffic. With the co-channel deployment of small cells, the coverage and capacity of the network will be improved. However, the conventional maximum-received-power (MRP) user association scheme and
[...] Read more.
Heterogeneous networks (HetNets) are regarded as a promising approach to handle the deluge of mobile data traffic. With the co-channel deployment of small cells, the coverage and capacity of the network will be improved. However, the conventional maximum-received-power (MRP) user association scheme and cross-tier interference issue significantly diminish the performance gain provided by small cells. In this paper, we propose a novel location-aware cross-tier cooperation (LA-CTC) scheme for jointly achieving load balancing and interference mitigation in two-tier HetNets. In detail, we define an inner region for each macro base station (MBS) where the femto base stations (FBSs) will be deactivated, and thereby the users within the inner region will only be served by the MBS. Subsequently, for the users located in the outer region, the proposed scheme only uses coordinated multipoint (CoMP) transmission by two tiers of BSs to eliminate the excessive cross-tier interference suffered by offloaded users, whereas users with good locations are served directly by either a MBS or a FBS. Using tools of stochastic geometry, we derived the analytical expressions for the coverage probability and average rate of a randomly chosen user. Meanwhile, the analytical results were validated through Monte Carlo simulations. The numerical results show that the proposed scheme can improve the performance of networks significantly. Moreover, we compare the performance of the proposed scheme with that of the conventional MRP scheme, the cell range expansion (CRE) scheme and the location-aware cross-tier CoMP transmission (LA-CTCT) scheme in the literature. Numerical comparisons revealed that the proposed LA-CTC scheme outperforms the other three schemes. Full article
Figures

Figure 1

Open AccessArticle
Intuitionistic-Fuzzy Goals in Zero-Sum Multi Criteria Matrix Games
Symmetry 2017, 9(8), 158; doi:10.3390/sym9080158 -
Abstract
The classical matrix theory is deficient to express the vagueness of the real life. The fuzzy set theory has been successfully applied to bridge this gap. Much work has already been done on a two-person zero sum matrix game with fuzzy goals. In
[...] Read more.
The classical matrix theory is deficient to express the vagueness of the real life. The fuzzy set theory has been successfully applied to bridge this gap. Much work has already been done on a two-person zero sum matrix game with fuzzy goals. In continuation, this paper is dedicated to define and study a multi-criteria two-person zero sum game with intuitionistic fuzzy goals. It is shown that solving such games is equivalent to solving two crisp multi object linear programming problems. Our work generalizes the previous study on a multi-criteria game with fuzzy goals by adopting the approach of linear programming with intuitionistic fuzzy sets. Finally, an illustrative numerical example is provided to elaborate the proposed approach. Full article
Figures

Figure 1

Open AccessReview
On Brane Solutions with Intersection Rules Related to Lie Algebras
Symmetry 2017, 9(8), 155; doi:10.3390/sym9080155 -
Abstract
The review is devoted to exact solutions with hidden symmetries arising in a multidimensional gravitational model containing scalar fields and antisymmetric forms. These solutions are defined on a manifold of the form M = M0 x M1 x . . .
[...] Read more.
The review is devoted to exact solutions with hidden symmetries arising in a multidimensional gravitational model containing scalar fields and antisymmetric forms. These solutions are defined on a manifold of the form M = M0 x M1 x . . . x Mn , where all Mi with i >= 1 are fixed Einstein (e.g., Ricci-flat) spaces. We consider a warped product metric on M. Here, M0 is a base manifold, and all scale factors (of the warped product), scalar fields and potentials for monomial forms are functions on M0 . The monomial forms (of the electric or magnetic type) appear in the so-called composite brane ansatz for fields of forms. Under certain restrictions on branes, the sigma-model approach for the solutions to field equations was derived in earlier publications with V.N.Melnikov. The sigma model is defined on the manifold M0 of dimension d0 ≠ 2 . By using the sigma-model approach, several classes of exact solutions, e.g., solutions with harmonic functions, S-brane, black brane and fluxbrane solutions, are obtained. For d0 = 1 , the solutions are governed by moduli functions that obey Toda-like equations. For certain brane intersections related to Lie algebras of finite rank—non-singular Kac–Moody (KM) algebras—the moduli functions are governed by Toda equations corresponding to these algebras. For finite-dimensional semi-simple Lie algebras, the Toda equations are integrable, and for black brane and fluxbrane configurations, they give rise to polynomial moduli functions. Some examples of solutions, e.g., corresponding to finite dimensional semi-simple Lie algebras, hyperbolic KM algebras:H2(q, q) , AE3, HA(1)2, E10 and Lorentzian KM algebraP10 , are presented.Full article
Figures

Figure 1

Open AccessArticle
Simplified Neutrosophic Exponential Similarity Measures for the Initial Evaluation/Diagnosis of Benign Prostatic Hyperplasia Symptoms
Symmetry 2017, 9(8), 154; doi:10.3390/sym9080154 -
Abstract
When a physician carries out the clinical survey of a patient with benign prostatic hyperplasia (BPH) symptoms to reach the initial evaluation/diagnosis of BPH, the existing initial evaluation method of BPH based on the international prostate symptom score (I-PSS) usually uses the objective
[...] Read more.
When a physician carries out the clinical survey of a patient with benign prostatic hyperplasia (BPH) symptoms to reach the initial evaluation/diagnosis of BPH, the existing initial evaluation method of BPH based on the international prostate symptom score (I-PSS) usually uses the objective evaluation/diagnosis method with crisp values without considering fuzzy information. However, this common evaluation/diagnosis method may lead to the loss of a great deal of useful incomplete, uncertain, and inconsistent information in the clinical survey and initial evaluation process of the BPH symptoms for a patient, resulting in an unreasonable evaluation and diagnosis distortion of the BPH symptoms. To overcome this drawback, this paper aims to propose new exponential similarity measures (ESMs) between simplified neutrosophic sets (SNSs), including single-valued neutrosophic ESMs and interval neutrosophic ESMs, and their initial evaluation/diagnosis method of the BPH symptoms with simplified neutrosophic information. Finally, two evaluation/diagnosis examples of the BPH symptoms are provided to demonstrate the effectiveness and rationality of the proposed method. Full article
Open AccessArticle
Vector Similarity Measures between Refined Simplified Neutrosophic Sets and Their Multiple Attribute Decision-Making Method
Symmetry 2017, 9(8), 153; doi:10.3390/sym9080153 -
Abstract
A refined single-valued/interval neutrosophic set is very suitable for the expression and application of decision-making problems with both attributes and sub-attributes since it is described by its refined truth, indeterminacy, and falsity degrees. However, existing refined single-valued/interval neutrosophic similarity measures and their decision-making
[...] Read more.
A refined single-valued/interval neutrosophic set is very suitable for the expression and application of decision-making problems with both attributes and sub-attributes since it is described by its refined truth, indeterminacy, and falsity degrees. However, existing refined single-valued/interval neutrosophic similarity measures and their decision-making methods are scarcely studied in existing literature and cannot deal with this decision-making problem with the weights of both attributes and sub-attributes in a refined interval and/or single-valued neutrosophic setting. To solve the issue, this paper firstly introduces a refined simplified neutrosophic set (RSNS), which contains the refined single-valued neutrosophic set (RSVNS) and refined interval neutrosophic set (RINS), and then proposes vector similarity measures of RSNSs based on the Jaccard, Dice, and cosine measures of simplified neutrosophic sets in vector space, and the weighted Jaccard, Dice, and cosine measures of RSNSs by considering weights of both basic elements and sub-elements in RSNS. Further, a decision-making method with the weights of both attributes and sub-attributes is developed based on the weighted Jaccard, Dice, and cosine measures of RSNSs under RSNS (RINS and/or RSVNS) environments. The ranking order of all the alternatives and the best one can be determined by one of weighted vector similarity measures between each alternative and the ideal solution (ideal alternative). Finally, an actual example on the selecting problem of construction projects illustrates the application and effectiveness of the proposed method. Full article
Open AccessArticle
Selecting Project Delivery Systems Based on Simplified Neutrosophic Linguistic Preference Relations
Symmetry 2017, 9(8), 151; doi:10.3390/sym9080151 -
Abstract
Project delivery system selection is an essential part of project management. In the process of choosing appropriate transaction model, many factors should be under consideration, such as the capability and experience of proprietors, project implementation risk, and so on. How to make their
[...] Read more.
Project delivery system selection is an essential part of project management. In the process of choosing appropriate transaction model, many factors should be under consideration, such as the capability and experience of proprietors, project implementation risk, and so on. How to make their comprehensive evaluations and select the optimal delivery system? This paper proposes a decision-making approach based on an extended linguistic preference structure: simplified neutrosophic linguistic preference relations (SNLPRs). The basic elements in SNLPRs are simplified neutrosophic linguistic numbers (SNLNs). First, several distance measures of SNLNs are introduced. A distance-based consistency index is provided to measure the consistency degree of a simplified neutrosophic linguistic preference relation (SNLPR). When the SNLPR is not acceptably consistent, a consistency-improving automatic iterative algorithm may be used. Afterwards, a decision-making method with SNLPRs is developed. The example of its application in project delivery systems’ selection is offered, and a comparison analysis is given in the end as well. Full article
Open AccessFeature PaperProject Report
A Study on Big Data Thinking of the Internet of Things-Based Smart-Connected Car in Conjunction with Controller Area Network Bus and 4G-Long Term Evolution
Symmetry 2017, 9(8), 152; doi:10.3390/sym9080152 -
Abstract
A smart connected car in conjunction with the Internet of Things (IoT) is an emerging topic. The fundamental concept of the smart connected car is connectivity, and such connectivity can be provided by three aspects, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything
[...] Read more.
A smart connected car in conjunction with the Internet of Things (IoT) is an emerging topic. The fundamental concept of the smart connected car is connectivity, and such connectivity can be provided by three aspects, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X). To meet the aspects of V2V and V2I connectivity, we developed modules in accordance with international standards with respect to On-Board Diagnostics II (OBDII) and 4G Long Term Evolution (4G-LTE) to obtain and transmit vehicle information. We also developed software to visually check information provided by our modules. Information related to a user’s driving, which is transmitted to a cloud-based Distributed File System (DFS), was then analyzed for the purpose of big data analysis to provide information on driving habits to users. Yet, since this work is an ongoing research project, we focus on proposing an idea of system architecture and design in terms of big data analysis. Therefore, our contributions through this work are as follows: (1) Develop modules based on Controller Area Network (CAN) bus, OBDII, and 4G-LTE; (2) Develop software to check vehicle information on a PC; (3) Implement a database related to vehicle diagnostic codes; (4) Propose system architecture and design for big data analysis. Full article
Figures

Figure 1

Open AccessArticle
Evaluating Investment Risks of Metallic Mines Using an Extended TOPSIS Method with Linguistic Neutrosophic Numbers
Symmetry 2017, 9(8), 149; doi:10.3390/sym9080149 -
Abstract
The investment in and development of mineral resources play an important role in the national economy. A good mining project investment can improve economic efficiency and increase social wealth. Faced with the complexity and uncertainty of a mine’s circumstances, there is great significance
[...] Read more.
The investment in and development of mineral resources play an important role in the national economy. A good mining project investment can improve economic efficiency and increase social wealth. Faced with the complexity and uncertainty of a mine’s circumstances, there is great significance in evaluating investment risk scientifically. In order to solve practical engineering problems, this paper presents an extended TOPSIS method combined with linguistic neutrosophic numbers (LNNs). Firstly, considering that there are several qualitative risk factors of mining investment projects, the paper describes evaluation information by means of LNNs. The advantage of LNNs is that major original information is reserved with linguistic truth, indeterminacy, and false membership degrees. After that, a number of distance measures are defined. Furthermore, a common status is that the decision makers can’t determine the importance degrees of every risk factor directly for a few reasons. With respect to this situation, the paper offers a weight model based on maximizing deviation to obtain the criteria weight vector objectively. Subsequently, a decision-making approach through improving classical TOPSIS with LNNs comes into being. Next, a case study of the proposed method applied in metallic mining projects investment is given. Some comparison analysis is also submitted. At last, the discussions and conclusions are finished. Full article
Open AccessLetter
Gate Antiphase of Potassium Channel
Symmetry 2017, 9(8), 150; doi:10.3390/sym9080150 -
Abstract
Potassium channels are integral membrane proteins that selectively transport K+ ions across cell membranes. They function through a pair of gates, which work in tandem to allow the passage of the ions through the channel pore in a coupled system, to which
[...] Read more.
Potassium channels are integral membrane proteins that selectively transport K+ ions across cell membranes. They function through a pair of gates, which work in tandem to allow the passage of the ions through the channel pore in a coupled system, to which I refer to here as the “gate linker”. The functional mutation effects, as described in the literature, suggest that the gate linker functions analogously to a triad of coiled springs arranged in series. Accordingly, I constructed a physical model of harmonic oscillators and analyzed it mechanically and mathematically. The operation of this model indeed corresponds to the phenomena observed in the mutations study. The harmonic oscillator model shows that the strength of the gate linker is crucial for gate coupling and may account for the velocity, direction, and efficiency of ion transfer through the channel. Such a physical perspective of the gating process suggests new lines of investigation regarding the coupling mode of potassium channels and may help to explain the importance of the gate linker to channel function. Full article
Figures

Figure 1

Open AccessArticle
Regular and Irregular Chiral Polyhedra from Coxeter Diagrams via Quaternions
Symmetry 2017, 9(8), 148; doi:10.3390/sym9080148 -
Abstract
Vertices and symmetries of regular and irregular chiral polyhedra are represented by quaternions with the use of Coxeter graphs. A new technique is introduced to construct the chiral Archimedean solids, the snub cube and snub dodecahedron together with their dual Catalan solids, pentagonal
[...] Read more.
Vertices and symmetries of regular and irregular chiral polyhedra are represented by quaternions with the use of Coxeter graphs. A new technique is introduced to construct the chiral Archimedean solids, the snub cube and snub dodecahedron together with their dual Catalan solids, pentagonal icositetrahedron and pentagonal hexecontahedron. Starting with the proper subgroups of the Coxeter groups W(A1A1A1),W(A3), W(B3) and W(H3), we derive the orbits representing the respective solids, the regular and irregular forms of a tetrahedron, icosahedron, snub cube, and snub dodecahedron. Since the families of tetrahedra, icosahedra and their dual solids can be transformed to their mirror images by the proper rotational octahedral group, they are not considered as chiral solids. Regular structures are obtained from irregular solids depending on the choice of two parameters. We point out that the regular and irregular solids whose vertices are at the edge mid-points of the irregular icosahedron, irregular snub cube and irregular snub dodecahedron can be constructed. Full article
Figures

Figure 1

Open AccessArticle
Research on Lower Limb Motion Recognition Based on Fusion of sEMG and Accelerometer Signals
Symmetry 2017, 9(8), 147; doi:10.3390/sym9080147 -
Abstract
Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting humans’ motion intention, they have been widely used for the motion recognition of upper limbs. However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs are easily
[...] Read more.
Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting humans’ motion intention, they have been widely used for the motion recognition of upper limbs. However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs are easily affected by body gravity and muscle jitter. In this paper, sEMG signals and accelerometer signals are acquired and fused to recognize the motion patterns of lower limbs. A curve fitting method based on median filtering is proposed to remove accelerometer noise. As for movement onset detection, an sEMG power spectral correlation coefficient method is used to detect the start and end points of active signals. Then, the time-domain features and wavelet coefficients of sEMG signals are extracted, and a dynamic time warping (DTW) distance is used for feature extraction of acceleration signals. At last, five lower limbs’ motions are classified and recognized by using Gaussian kernel-based linear discriminant analysis (LDA) and support vector machine (SVM) respectively. The results prove that the fused feature-based classification outperforms the classification with only sEMG signals or accelerometer signals, and the fused feature can achieve 95% or higher recognition accuracy, demonstrating the validity of the proposed method. Full article
Figures

Figure 1

Open AccessArticle
How Ecology Could Affect Cerebral Lateralization for Explorative Behaviour in Lizards
Symmetry 2017, 9(8), 144; doi:10.3390/sym9080144 -
Abstract
As recent studies have shown a left-eye preference during exploration in Podarcis muralis, which could be strictly related to its territoriality, we tested the same behaviour in a similar species, but one living in different habitats and showing a different ecology. In
[...] Read more.
As recent studies have shown a left-eye preference during exploration in Podarcis muralis, which could be strictly related to its territoriality, we tested the same behaviour in a similar species, but one living in different habitats and showing a different ecology. In particular, we assessed the preferential turning direction in adults of a non-territorial lizard, Zootoca vivipara, during the exploration of an unknown maze. At the population level, no significant preference emerged, possibly for the lack of the territorial habit and the characteristics of the natural environment. Nevertheless, females turned to the left more frequently than males did. We hypothesize this as a motor bias, possibly due to a necessity for females to be coordinated and fast in moving in the environment, because of their viviparous condition and the resultant reduction of physical performance during pregnant periods, which are likely to increase vulnerability to predators. Full article
Figures

Figure 1

Open AccessArticle
Effects of Emotional Valence on Hemispheric Asymmetries in Response Inhibition
Symmetry 2017, 9(8), 145; doi:10.3390/sym9080145 -
Abstract
Hemispheric asymmetries are a major organizational principle in human emotion processing, but their interaction with prefrontal control processes is not well understood. To this end, we determined whether hemispheric differences in response inhibition depend on the emotional valence of the stimulus being inhibited.
[...] Read more.
Hemispheric asymmetries are a major organizational principle in human emotion processing, but their interaction with prefrontal control processes is not well understood. To this end, we determined whether hemispheric differences in response inhibition depend on the emotional valence of the stimulus being inhibited. Participants completed a lateralised Go/Nogo task, in which Nogo stimuli were neutral or emotional (either positive or negative) images, while Go stimuli were scrambled versions of the same pictures. We recorded the N2 and P3 event-related potential (ERP) components, two common electrophysiological measures of response inhibition processes. Behaviourally, participants were more accurate in withholding responses to emotional than to neutral stimuli. Electrophysiologically, Nogo-P3 responses were greater for emotional than for neutral stimuli, an effect driven primarily by an enhanced response to positive images. Hemispheric asymmetries were also observed, with greater Nogo-P3 following left versus right visual field stimuli. However, the visual field effect did not interact with emotion. We therefore find no evidence that emotion-related asymmetries affect response inhibition processes. Full article
Open AccessArticle
Hybrid Second-Order Iterative Algorithm for Orthogonal Projection onto a Parametric Surface
Symmetry 2017, 9(8), 146; doi:10.3390/sym9080146 -
Abstract
To compute the minimum distance between a point and a parametric surface, three well-known first-order algorithms have been proposed by Hartmann (1999), Hoschek, et al. (1993) and Hu, et al. (2000) (hereafter, the First-Order method). In this paper, we prove the method’s first-order
[...] Read more.
To compute the minimum distance between a point and a parametric surface, three well-known first-order algorithms have been proposed by Hartmann (1999), Hoschek, et al. (1993) and Hu, et al. (2000) (hereafter, the First-Order method). In this paper, we prove the method’s first-order convergence and its independence of the initial value. We also give some numerical examples to illustrate its faster convergence than the existing methods. For some special cases where the First-Order method does not converge, we combine it with Newton’s second-order iterative method to present the hybrid second-order algorithm. Our method essentially exploits hybrid iteration, thus it performs very well with a second-order convergence, it is faster than the existing methods and it is independent of the initial value. Some numerical examples confirm our conclusion. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
A Novel Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set
Symmetry 2017, 9(8), 142; doi:10.3390/sym9080142 -
Abstract
Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low
[...] Read more.
Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low computational cost. However, the ELM might have problems in the classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM), in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the output weights of the ELM. We also investigate and compare NWELM with several weighted algorithms. The proposed method demonstrates advantages to compare with the previous studies on benchmarks. Full article
Figures

Figure 1

Open AccessArticle
An Efficient Secure Scheme Based on Hierarchical Topology in the Smart Home Environment
Symmetry 2017, 9(8), 143; doi:10.3390/sym9080143 -
Abstract
As the Internet of Things (IoT) has developed, the emerging sensor network (ESN) that integrates emerging technologies, such as autonomous driving, cyber-physical systems, mobile nodes, and existing sensor networks has been in the limelight. Smart homes have been researched and developed by various
[...] Read more.
As the Internet of Things (IoT) has developed, the emerging sensor network (ESN) that integrates emerging technologies, such as autonomous driving, cyber-physical systems, mobile nodes, and existing sensor networks has been in the limelight. Smart homes have been researched and developed by various companies and organizations. Emerging sensor networks have some issues of providing secure service according to a new environment, such as a smart home, and the problems of low power and low-computing capacity for the sensor that previous sensor networks were equipped with. This study classifies various sensors used in smart homes into three classes and contains the hierarchical topology for efficient communication. In addition, a scheme for establishing secure communication among sensors based on physical unclonable functions (PUFs) that cannot be physically cloned is suggested in regard to the sensor’s low performance. In addition, we analyzed this scheme by conducting security and performance evaluations proving to constitute secure channels while consuming fewer resources. We believe that our scheme can provide secure communication by using fewer resources in a smart home environment in the future. Full article
Figures

Figure 1