Open AccessArticle
Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT)
Sensors 2018, 18(6), 1709; https://doi.org/10.3390/s18061709 (registering DOI) -
Abstract
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile
[...] Read more.
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings. Full article
Figures

Figure 1

Open AccessArticle
Differentiation of Apple Varieties and Investigation of Organic Status Using Portable Visible Range Reflectance Spectroscopy
Sensors 2018, 18(6), 1708; https://doi.org/10.3390/s18061708 (registering DOI) -
Abstract
Food fraud, the sale of goods that have in some way been mislabelled or tampered with, is an increasing concern, with a number of high profile documented incidents in recent years. These recent incidents and their scope show that there are gaps in
[...] Read more.
Food fraud, the sale of goods that have in some way been mislabelled or tampered with, is an increasing concern, with a number of high profile documented incidents in recent years. These recent incidents and their scope show that there are gaps in the food chain where food authentication methods are not applied or otherwise not sufficient and more accessible detection methods would be beneficial. This paper investigates the utility of affordable and portable visible range spectroscopy hardware with partial least squares discriminant analysis (PLS-DA) when applied to the differentiation of apple types and organic status. This method has the advantage that it is accessible throughout the supply chain, including at the consumer level. Scans were acquired of 132 apples of three types, half of which are organic and the remaining non-organic. The scans were preprocessed with zero correction, normalisation and smoothing. Two tests were used to determine accuracy, the first using 10-fold cross-validation and the second using a test set collected in different ambient conditions. Overall, the system achieved an accuracy of 94% when predicting the type of apple and 66% when predicting the organic status. Additionally, the resulting models were analysed to find the regions of the spectrum that had the most significance. Then, the accuracy when using three-channel information (RGB) is presented and shows the improvement provided by spectroscopic data. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide
Sensors 2018, 18(6), 1707; https://doi.org/10.3390/s18061707 (registering DOI) -
Abstract
This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due
[...] Read more.
This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD) method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips) is accomplished by the 2D method of lines (MoL) with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors. Full article
Figures

Figure 1

Open AccessArticle
Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles
Sensors 2018, 18(6), 1706; https://doi.org/10.3390/s18061706 (registering DOI) -
Abstract
A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to
[...] Read more.
A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control. Full article
Figures

Figure 1

Open AccessArticle
Spectral Kurtosis Entropy and Weighted SaE-ELM for Bogie Fault Diagnosis under Variable Conditions
Sensors 2018, 18(6), 1705; https://doi.org/10.3390/s18061705 (registering DOI) -
Abstract
Bogies are crucial for the safe operation of rail transit systems and usually work under uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable conditions has barely been discussed until now. Thus, it is valuable to develop effective methods
[...] Read more.
Bogies are crucial for the safe operation of rail transit systems and usually work under uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable conditions has barely been discussed until now. Thus, it is valuable to develop effective methods to deal with variable conditions. Besides, considering that the normal data for training are much more than the faulty data in practice, there is another problem in that only a small amount of data is available that includes faults. Concerning these issues, this paper proposes two new algorithms: (1) A novel feature parameter named spectral kurtosis entropy (SKE) is proposed based on the protrugram. The SKE not only avoids the manual post-processing of the protrugram but also has strong robustness to the operating conditions and parameter configurations, which have been validated by a simulation experiment in this paper. In this paper, the SKE, in conjunction with variational mode decomposition (VMD), is employed for feature extraction under variable conditions. (2) A new learning algorithm named weighted self-adaptive evolutionary extreme learning machine (WSaE-ELM) is proposed. WSaE-ELM gives each sample an extra sample weight to rebalance the training data and optimizes these weights along with the parameters of hidden neurons by means of the self-adaptive differential evolution algorithm. Finally, the hybrid method based on VMD, SKE, and WSaE-ELM is verified by using the vibration signals gathered from real bogies with speed variations. It is demonstrated that the proposed method of bogie fault diagnosis outperforms the conventional methods by up to 4.42% and 6.22%, respectively, in percentages of accuracy under variable conditions. Full article
Figures

Figure 1

Open AccessArticle
Electrical Resistance Tomography for Visualization of Moving Objects Using a Spatiotemporal Total Variation Regularization Algorithm
Sensors 2018, 18(6), 1704; https://doi.org/10.3390/s18061704 (registering DOI) -
Abstract
Electrical resistance tomography (ERT) has been considered as a data collection and image reconstruction method in many multi-phase flow application areas due to its advantages of high speed, low cost and being non-invasive. In order to improve the quality of the reconstructed images,
[...] Read more.
Electrical resistance tomography (ERT) has been considered as a data collection and image reconstruction method in many multi-phase flow application areas due to its advantages of high speed, low cost and being non-invasive. In order to improve the quality of the reconstructed images, the Total Variation algorithm attracts abundant attention due to its ability to solve large piecewise and discontinuous conductivity distributions. In industrial processing tomography (IPT), techniques such as ERT have been used to extract important flow measurement information. For a moving object inside a pipe, a velocity profile can be calculated from the cross correlation between signals generated from ERT sensors. Many previous studies have used two sets of 2D ERT measurements based on pixel-pixel cross correlation, which requires two ERT systems. In this paper, a method for carrying out flow velocity measurement using a single ERT system is proposed. A novel spatiotemporal total variation regularization approach is utilised to exploit sparsity both in space and time in 4D, and a voxel-voxel cross correlation method is adopted for measurement of flow profile. Result shows that the velocity profile can be calculated with a single ERT system and that the volume fraction and movement can be monitored using the proposed method. Both semi-dynamic experimental and static simulation studies verify the suitability of the proposed method. For in plane velocity profile, a 3D image based on temporal 2D images produces velocity profile with accuracy of less than 1% error and a 4D image for 3D velocity profiling shows an error of 4%. Full article
Open AccessArticle
LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone
Sensors 2018, 18(6), 1703; https://doi.org/10.3390/s18061703 (registering DOI) -
Abstract
Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple
[...] Read more.
Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker’s location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time. Full article
Figures

Figure 1

Open AccessArticle
Outlier-Detection Methodology for Structural Identification Using Sparse Static Measurements
Sensors 2018, 18(6), 1702; https://doi.org/10.3390/s18061702 (registering DOI) -
Abstract
The aim of structural identification is to provide accurate knowledge of the behaviour of existing structures. In most situations, finite-element models are updated using behaviour measurements and field observations. Error-domain model falsification (EDMF) is a multi-model approach that compares finite-element model predictions with
[...] Read more.
The aim of structural identification is to provide accurate knowledge of the behaviour of existing structures. In most situations, finite-element models are updated using behaviour measurements and field observations. Error-domain model falsification (EDMF) is a multi-model approach that compares finite-element model predictions with sensor measurements while taking into account epistemic and stochastic uncertainties—including the systematic bias that is inherent in the assumptions behind structural models. Compared with alternative model-updating strategies such as residual minimization and traditional Bayesian methodologies, EDMF is easy-to-use for practising engineers and does not require precise knowledge of values for uncertainty correlations. However, wrong parameter identification and flawed extrapolation may result when undetected outliers occur in the dataset. Moreover, when datasets consist of a limited number of static measurements rather than continuous monitoring data, the existing signal-processing and statistics-based algorithms provide little support for outlier detection. This paper introduces a new model-population methodology for outlier detection that is based on the expected performance of the as-designed sensor network. Thus, suspicious measurements are identified even when few measurements, collected with a range of sensors, are available. The structural identification of a full-scale bridge in Exeter (UK) is used to demonstrate the applicability of the proposed methodology and to compare its performance with existing algorithms. The results show that outliers, capable of compromising EDMF accuracy, are detected. Moreover, a metric that separates the impact of powerful sensors from the effects of measurement outliers have been included in the framework. Finally, the impact of outlier occurrence on parameter identification and model extrapolation (for example, reserve capacity assessment) is evaluated. Full article
Figures

Figure 1

Open AccessArticle
Geometric Positioning Accuracy Improvement of ZY-3 Satellite Imagery Based on Statistical Learning Theory
Sensors 2018, 18(6), 1701; https://doi.org/10.3390/s18061701 (registering DOI) -
Abstract
With the increasing demand for high-resolution remote sensing images for mapping and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a significant role in the image preprocessing step. Based on the statistical learning theory, we propose a new method to improve the
[...] Read more.
With the increasing demand for high-resolution remote sensing images for mapping and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a significant role in the image preprocessing step. Based on the statistical learning theory, we propose a new method to improve the geometric positioning accuracy without ground control points (GCPs). Multi-temporal images from the ZY-3 satellite are tested and the bias-compensated rational function model (RFM) is applied as the block adjustment model in our experiment. An easy and stable weight strategy and the fast iterative shrinkage-thresholding (FIST) algorithm which is widely used in the field of compressive sensing are improved and utilized to define the normal equation matrix and solve it. Then, the residual errors after traditional block adjustment are acquired and tested with the newly proposed inherent error compensation model based on statistical learning theory. The final results indicate that the geometric positioning accuracy of ZY-3 satellite imagery can be improved greatly with our proposed method. Full article
Figures

Figure 1

Open AccessArticle
Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication
Sensors 2018, 18(6), 1700; https://doi.org/10.3390/s18061700 (registering DOI) -
Abstract
To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA
[...] Read more.
To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently. Full article
Figures

Figure 1

Open AccessArticle
Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack
Sensors 2018, 18(6), 1699; https://doi.org/10.3390/s18061699 (registering DOI) -
Abstract
Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that
[...] Read more.
Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( NI ) as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on NI of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of the smart grid. Finally, we use the IEEE 118-Bus System and the Italian High-Voltage Electrical Transmission Network to verify our model and obtain the same conclusions: (I) DCIS applied to the top-down coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or ACIS, (II) ACIS applied to a bottom-up coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or DCIS, and (III) the robustness of the smart grid can be improved by increasing the tolerance α . This paper provides some guidelines for slowing down the speed of the cascading failures in the design of architecture and optimization of interdependent networks, such as a top-down link with DCIS, a bottom-up link with ACIS, and an increased tolerance α . Full article
Figures

Figure 1

Open AccessArticle
Towards an Online Seizure Advisory System—An Adaptive Seizure Prediction Framework Using Active Learning Heuristics
Sensors 2018, 18(6), 1698; https://doi.org/10.3390/s18061698 (registering DOI) -
Abstract
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because
[...] Read more.
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20% of the labelled data and also improve the prediction accuracy even under the noisy condition. Full article
Figures

Figure 1

Open AccessArticle
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator
Sensors 2018, 18(6), 1697; https://doi.org/10.3390/s18061697 (registering DOI) -
Abstract
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly
[...] Read more.
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator’s frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement. Full article
Figures

Figure 1

Open AccessArticle
Accurate Traffic Flow Prediction in Heterogeneous Vehicular Networks in an Intelligent Transport System Using a Supervised Non-Parametric Classifier
Sensors 2018, 18(6), 1696; https://doi.org/10.3390/s18061696 (registering DOI) -
Abstract
Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore,
[...] Read more.
Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS) improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM) kernels with a radial basis function (RBF). The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy. Full article
Figures

Figure 1

Open AccessArticle
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
Sensors 2018, 18(6), 1695; https://doi.org/10.3390/s18061695 -
Abstract
Spectral-spatial classification has been widely applied for remote sensing applications, especially for hyperspectral imagery. Traditional methods mainly focus on local spatial similarity and neglect nonlocal spatial similarity. Recently, nonlocal self-similarity (NLSS) has gradually gained support since it can be used to support spatial
[...] Read more.
Spectral-spatial classification has been widely applied for remote sensing applications, especially for hyperspectral imagery. Traditional methods mainly focus on local spatial similarity and neglect nonlocal spatial similarity. Recently, nonlocal self-similarity (NLSS) has gradually gained support since it can be used to support spatial coherence tasks. However, these methods are biased towards the direct use of spatial information as a whole, while discriminative spectral information is not well exploited. In this paper, we propose a novel method to couple both nonlocal spatial and local spectral similarity together in a single framework. In particular, the proposed approach exploits nonlocal spatial similarities by searching non-overlapped patches, whereas spectral similarity is analyzed locally within the locally discovered patches. By fusion of nonlocal and local information, we then apply group sparse representation (GSR) for classification based on a group structured prior. Experimental results on three real hyperspectral data sets demonstrate the efficiency of the proposed approach, and the improvements are significant over the methods that consider either nonlocal or local similarity. Full article
Figures

Figure 1

Open AccessArticle
Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant
Sensors 2018, 18(6), 1694; https://doi.org/10.3390/s18061694 -
Abstract
The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance.
[...] Read more.
The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics. Full article
Figures

Figure 1

Open AccessArticle
Acquiring Respiration Rate from Photoplethysmographic Signal by Recursive Bayesian Tracking of Intrinsic Modes in Time-Frequency Spectra
Sensors 2018, 18(6), 1693; https://doi.org/10.3390/s18061693 -
Abstract
Respiration rate (RR) provides useful information for assessing the status of a patient. We propose RR estimation based on photoplethysmography (PPG) because the blood perfusion dynamics are known to carry information on breathing, as respiration-induced modulations in the PPG signal. We studied the
[...] Read more.
Respiration rate (RR) provides useful information for assessing the status of a patient. We propose RR estimation based on photoplethysmography (PPG) because the blood perfusion dynamics are known to carry information on breathing, as respiration-induced modulations in the PPG signal. We studied the use of amplitude variability of transmittance mode finger PPG signal in RR estimation by comparing four time-frequency (TF) representation methods of the signal cascaded with a particle filter. The TF methods compared were short-time Fourier transform (STFT) and three types of synchrosqueezing methods. The public VORTAL database was used in this study. The results indicate that the advanced frequency reallocation methods based on synchrosqueezing approach may present improvement over linear methods, such as STFT. The best results were achieved using wavelet synchrosqueezing transform, having a mean absolute error and median error of 2.33 and 1.15 breaths per minute, respectively. Synchrosqueezing methods were generally more accurate than STFT on most of the subjects when particle filtering was applied. While TF analysis combined with particle filtering is a promising alternative for real-time estimation of RR, artefacts and non-respiration-related frequency components remain problematic and impose requirements for further studies in the areas of signal processing algorithms an PPG instrumentation. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults
Sensors 2018, 18(6), 1692; https://doi.org/10.3390/s18061692 -
Abstract
Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric
[...] Read more.
Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric assessment followed by a longitudinal assessment of their fall history. The standing postural balance was measured for 98 participants with a Body Mass Index (BMI) ranging from 18 to 63 kg/m2, using a force plate and an inertial measurement unit affixed at the sternum. Participants’ fall history was recorded over 2 years and participants with at least one fall in the prior year were classified as fallers. The results suggest that body weight/BMI is an additional risk factor for falling in elderly persons and may be an important marker for fall risk. The linear variables of postural analysis suggest that the obese fallers have significantly higher sway area and sway ranges, along with higher root mean square and standard deviation of time series. Additionally, it was found that obese fallers have lower complexity of anterior-posterior center of pressure time series. Future studies should examine more closely the combined effect of aging and obesity on dynamic balance. Full article
Figures

Figure 1

Open AccessArticle
A Statistical Approach to Detect Jamming Attacks in Wireless Sensor Networks
Sensors 2018, 18(6), 1691; https://doi.org/10.3390/s18061691 -
Abstract
Wireless Sensor Networks (WSNs), in recent times, have become one of the most promising network solutions with a wide variety of applications in the areas of agriculture, environment, healthcare and the military. Notwithstanding these promising applications, sensor nodes in WSNs are vulnerable to
[...] Read more.
Wireless Sensor Networks (WSNs), in recent times, have become one of the most promising network solutions with a wide variety of applications in the areas of agriculture, environment, healthcare and the military. Notwithstanding these promising applications, sensor nodes in WSNs are vulnerable to different security attacks due to their deployment in hostile and unattended areas and their resource constraints. One of such attacks is the DoS jamming attack that interferes and disrupts the normal functions of sensor nodes in a WSN by emitting radio frequency signals to jam legitimate signals to cause a denial of service. In this work we propose a step-wise approach using a statistical process control technique to detect these attacks. We deploy an exponentially weighted moving average (EWMA) to detect anomalous changes in the intensity of a jamming attack event by using the packet inter-arrival feature of the received packets from the sensor nodes. Results obtained from a trace-driven simulation show that the proposed solution can efficiently and accurately detect jamming attacks in WSNs with little or no overhead. Full article
Figures

Figure 1

Open AccessArticle
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor
Sensors 2018, 18(6), 1690; https://doi.org/10.3390/s18061690 -
Abstract
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain
[...] Read more.
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance. Full article
Figures

Figure 1