Open AccessArticle
Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection
Sensors 2017, 17(8), 1917; doi:10.3390/s17081917 (registering DOI) -
Abstract
In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages:
[...] Read more.
In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages: data acquisition, data storage, data processing, and user interfacing. The designed eNose was tested with experiment for detection of volatile components in water pollution, as a dimethyl disulphide or dimethyl diselenide or sulphur. Therefore, the results provide evidence that odor information can be recognized with around 86% efficiency, detecting smells unwanted in the water and improving the quality control in bottled water factories. Full article
Figures

Figure 1

Open AccessReview
Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis
Sensors 2017, 17(8), 1919; doi:10.3390/s17081919 (registering DOI) -
Abstract
The early diagnosis of diseases, e.g., Parkinson’s and Alzheimer’s disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many
[...] Read more.
The early diagnosis of diseases, e.g., Parkinson’s and Alzheimer’s disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications. Full article
Figures

Figure 1

Open AccessArticle
Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks
Sensors 2017, 17(8), 1918; doi:10.3390/s17081918 (registering DOI) -
Abstract
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas
[...] Read more.
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. Full article
Figures

Figure 1

Open AccessArticle
Development and Testing of an LED-Based Near-Infrared Sensor for Human Kidney Tumor Diagnostics
Sensors 2017, 17(8), 1914; doi:10.3390/s17081914 (registering DOI) -
Abstract
Optical spectroscopy is increasingly used for cancer diagnostics. Tumor detection feasibility in human kidney samples using mid- and near-infrared (NIR) spectroscopy, fluorescence spectroscopy, and Raman spectroscopy has been reported (Artyushenko et al., Spectral fiber sensors for cancer diagnostics in vitro. In Proceedings of
[...] Read more.
Optical spectroscopy is increasingly used for cancer diagnostics. Tumor detection feasibility in human kidney samples using mid- and near-infrared (NIR) spectroscopy, fluorescence spectroscopy, and Raman spectroscopy has been reported (Artyushenko et al., Spectral fiber sensors for cancer diagnostics in vitro. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 21–25 June 2015). In the present work, a simplification of the NIR spectroscopic analysis for cancer diagnostics was studied. The conventional high-resolution NIR spectroscopic method of kidney tumor diagnostics was replaced by a compact optical sensing device constructively represented by a set of four light-emitting diodes (LEDs) at selected wavelengths and one detecting photodiode. Two sensor prototypes were tested using 14 in vitro clinical samples of 7 different patients. Statistical data evaluation using principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) confirmed the general applicability of the LED-based sensing approach to kidney tumor detection. An additional validation of the results was performed by means of sample permutation. Full article
Figures

Figure 1

Open AccessArticle
Performance Analysis of ToA-Based Positioning Algorithms for Static and Dynamic Targets with Low Ranging Measurements
Sensors 2017, 17(8), 1915; doi:10.3390/s17081915 (registering DOI) -
Abstract
Indoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available
[...] Read more.
Indoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available for the localization process, ultra-wide band (UWB) is a promising technology for such systems due to its robust signaling in harsh environments, through-wall propagation and high-resolution ranging. However, during emergency responders’ missions, the availability of UWB signals is generally low (the nodes have to be deployed as the emergency responders enter a building) and can be affected by the non-line-of-sight (NLOS) conditions. In this paper, the performance of four typical distance-based positioning algorithms (Analytical, Least Squares, Taylor Series, and Extended Kalman Filter methods) with only three ranging measurements is assessed based on a COTS UWB transceiver. These algorithms are compared based on accuracy, precision and root mean square error (RMSE). The algorithms were evaluated under two environments with different propagation conditions (an atrium and a lab), for static and mobile devices, and under the human body’s influence. A NLOS identification and error mitigation algorithm was also used to improve the ranging measurements. The results show that the Extended Kalman Filter outperforms the other algorithms in almost every scenario, but it is affected by the low measurement rate of the UWB system. Full article
Figures

Figure 1

Open AccessArticle
Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation
Sensors 2017, 17(8), 1913; doi:10.3390/s17081913 (registering DOI) -
Abstract
The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which
[...] Read more.
The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red–green–blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics. Full article
Figures

Figure 1

Open AccessArticle
Development and Evaluation of A Novel and Cost-Effective Approach for Low-Cost NO2 Sensor Drift Correction
Sensors 2017, 17(8), 1916; doi:10.3390/s17081916 (registering DOI) -
Abstract
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot
[...] Read more.
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO2) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO2 electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO2 as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO2 analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air. Full article
Figures

Figure 1

Open AccessArticle
Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna
Sensors 2017, 17(8), 1911; doi:10.3390/s17081911 (registering DOI) -
Abstract
A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate
[...] Read more.
A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities. The antenna exhibits a measured 3 dB ARBW of 44.2% (3.35–5.25 GHz), lying within a −10 dB reflection bandwidth of 82.7% (2.44–5.88 GHz). The measured peak gain within 3 dB ARBW is found to be 5.66 dBic at 4.8 GHz. The measured results are in good agreement with the simulated results. Full article
Figures

Figure 1

Open AccessArticle
A DFT Calculation of Fluoride-Doped TiO2 Nanotubes for Detecting SF6 Decomposition Components
Sensors 2017, 17(8), 1907; doi:10.3390/s17081907 (registering DOI) -
Abstract
Gas insulated switchgear (GIS) plays an important role in the transmission and distribution of electric energy. Detecting and analyzing the decomposed components of SF6 is one of the important methods to realize the on-line monitoring of GIS equipment. In this paper, considering
[...] Read more.
Gas insulated switchgear (GIS) plays an important role in the transmission and distribution of electric energy. Detecting and analyzing the decomposed components of SF6 is one of the important methods to realize the on-line monitoring of GIS equipment. In this paper, considering the performance limits of intrinsic TiO2 nanotube gas sensor, the adsorption process of H2S, SO2, SOF2 and SO2F2 on fluoride-doped TiO2 crystal plane was simulated by the first-principle method. The adsorption mechanism of these SF6 decomposition components on fluorine-doped TiO2 crystal plane was analyzed from a micro perspective. Calculation results indicate that the order of adsorption effect of four SF6 decomposition components on fluoride-doped TiO2 crystal plane is H2S > SO2 > SOF2 > SO2F2. Compared with the adsorption results of intrinsic anatase TiO2 (101) perfect crystal plane, fluorine doping can obviously enhance the adsorption ability of TiO2 (101) crystal plane. Fluorine-doped TiO2 can effectively distinguish and detect the SF6 decomposition components based on theoretical analysis. Full article
Figures

Figure 1

Open AccessArticle
A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva
Sensors 2017, 17(8), 1912; doi:10.3390/s17081912 (registering DOI) -
Abstract
Efficient direct electron transfer (DET) between a cellobiose dehydrogenase mutant from Corynascus thermophilus (CtCDH C291Y) and a novel glassy carbon (GC)-modified electrode, obtained by direct electrodeposition of gold nanoparticles (AuNPs) was realized. The electrode was further modified with a mixed self-assembled monolayer of
[...] Read more.
Efficient direct electron transfer (DET) between a cellobiose dehydrogenase mutant from Corynascus thermophilus (CtCDH C291Y) and a novel glassy carbon (GC)-modified electrode, obtained by direct electrodeposition of gold nanoparticles (AuNPs) was realized. The electrode was further modified with a mixed self-assembled monolayer of 4-aminothiophenol (4-APh) and 4-mercaptobenzoic acid (4-MBA), by using glutaraldehyde (GA) as cross-linking agent. The CtCDH C291Y/GA/4-APh,4-MBA/AuNPs/GC platform showed an apparent heterogeneous electron transfer rate constant (ks) of 19.4 ± 0.6 s−1, with an enhanced theoretical and real enzyme surface coverage (Γtheor and Γreal) of 5287 ± 152 pmol cm−2 and 27 ± 2 pmol cm−2, respectively. The modified electrode was successively used as glucose biosensor exhibiting a detection limit of 6.2 μM, an extended linear range from 0.02 to 30 mM, a sensitivity of 3.1 ± 0.1 μA mM−1 cm−2 (R2 = 0.995), excellent stability and good selectivity. These performances compared favourably with other glucose biosensors reported in the literature. Finally, the biosensor was tested to quantify the glucose content in human saliva samples with successful results in terms of both recovery and correlation with glucose blood levels, allowing further considerations on the development of non-invasive glucose monitoring devices. Full article
Figures

Figure 1

Open AccessArticle
LoRa Mobile-To-Base-Station Channel Characterization in the Antarctic
Sensors 2017, 17(8), 1903; doi:10.3390/s17081903 (registering DOI) -
Abstract
Antarctic conditions demand that wireless sensor nodes are operational all year round and that they provide a large communication range of several tens of kilometers. LoRa technology operating in sub-GHz frequency bands implements these wireless links with minimal power consumption. The employed chirp
[...] Read more.
Antarctic conditions demand that wireless sensor nodes are operational all year round and that they provide a large communication range of several tens of kilometers. LoRa technology operating in sub-GHz frequency bands implements these wireless links with minimal power consumption. The employed chirp spread spectrum modulation provides a large link budget, combined with the excellent radio-wave propagation characteristics in these bands. In this paper, an experimental wireless link from a mobile vehicle which transmits sensor data to a base station is measured and analyzed in terms of signal-to-noise ratio and packet loss. These measurements confirm the usefulness of LoRa technology for wireless sensor systems in polar regions. By deploying directional antennas at the base station, a range of up to 30 km is covered in case of Line-of-Sight radio propagation in both the 434 and 868 MHz bands. Varying terrain elevation is shown to be the dominating factor influencing the propagation, sometimes causing the Line-of-Sight path to be obstructed. Tropospheric radio propagation effects were not apparent in the measurements. Full article
Figures

Figure 1

Open AccessArticle
The Potentiodynamic Bottom-up Growth of the Tin Oxide Nanostructured Layer for Gas-Analytical Multisensor Array Chips
Sensors 2017, 17(8), 1908; doi:10.3390/s17081908 (registering DOI) -
Abstract
We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set to favor
[...] Read more.
We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set to favor the growth of the tin oxide/hydroxide phase, while the appearance of metallic Sn is suppressed by cycling. The as-synthesized tin oxide/hydroxide layer is characterized by mesoporous morphology with grains, 250–300 nm diameter, which are further crystallized into fine SnO2 poly-nanocrystals following heating to 300 °C for 24 h just on the chip. The fabricated layer exhibits chemiresistive properties under exposure to organic vapors, which allows the generation of a multisensor vector signal capable of selectively distinguishing various vapors. Full article
Figures

Open AccessArticle
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer
Sensors 2017, 17(8), 1906; doi:10.3390/s17081906 (registering DOI) -
Abstract
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not
[...] Read more.
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. Full article
Figures

Figure 1

Open AccessReview
Surface-Enhanced Raman Scattering in Molecular Junctions
Sensors 2017, 17(8), 1901; doi:10.3390/s17081901 (registering DOI) -
Abstract
Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top
[...] Read more.
Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics. Full article
Figures

Figure 1

Open AccessArticle
Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes
Sensors 2017, 17(8), 1902; doi:10.3390/s17081902 (registering DOI) -
Abstract
Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system
[...] Read more.
Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant’s activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments. Full article
Figures

Figure 1

Open AccessArticle
A Novel Partial Discharge Localization Method in Substation Based on a Wireless UHF Sensor Array
Sensors 2017, 17(8), 1909; doi:10.3390/s17081909 (registering DOI) -
Abstract
Effective Partial Discharge (PD) localization can detect the insulation problems of the power equipment in a substation and improve the reliability of power systems. Typical Ultra-High Frequency (UHF) PD localization methods are mainly based on time difference information, which need a high sampling
[...] Read more.
Effective Partial Discharge (PD) localization can detect the insulation problems of the power equipment in a substation and improve the reliability of power systems. Typical Ultra-High Frequency (UHF) PD localization methods are mainly based on time difference information, which need a high sampling rate system. This paper proposes a novel PD localization method based on a received signal strength indicator (RSSI) fingerprint to quickly locate the power equipment with potential insulation defects. The proposed method consists of two stages. In the offline stage, the RSSI fingerprint data of the detection area is measured by a wireless UHF sensor array and processed by a clustering algorithm to reduce the PD interference and abnormal RSSI values. In the online stage, when PD happens, the RSSI fingerprint of PD is measured via the input of pattern recognition for PD localization. To achieve an accurate localization, the pattern recognition process is divided into two steps: a preliminary localization is implemented by cluster recognition to reduce the localization region, and the compressed sensing algorithm is used for accurate PD localization. A field test in a substation indicates that the mean localization error of the proposed method is 1.25 m, and 89.6% localization errors are less than 3 m. Full article
Figures

Figure 1

Open AccessArticle
Towards Scalable Strain Gauge-Based Joint Torque Sensors
Sensors 2017, 17(8), 1905; doi:10.3390/s17081905 (registering DOI) -
Abstract
During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors
[...] Read more.
During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). Full article
Figures

Figure 1

Open AccessArticle
Dynamic Fuzzy-Logic Based Path Planning for Mobility-Assisted Localization in Wireless Sensor Networks
Sensors 2017, 17(8), 1904; doi:10.3390/s17081904 (registering DOI) -
Abstract
Mobile anchor path planning techniques have provided as an alternative option for node localization in wireless sensor networks (WSNs). In such context, path planning is a movement pattern where a mobile anchor node’s movement is designed in order to achieve a maximum localization
[...] Read more.
Mobile anchor path planning techniques have provided as an alternative option for node localization in wireless sensor networks (WSNs). In such context, path planning is a movement pattern where a mobile anchor node’s movement is designed in order to achieve a maximum localization ratio possible with a minimum error rate. Typically, the mobility path planning is designed in advance, which is applicable when the mobile anchor has sufficient sources of energy and time. However, when the mobility movement is restricted or limited, a dynamic path planning design is needed. This paper proposes a novel distributed range-free movement mechanism for mobility-assisted localization in WSNs when the mobile anchor’s movement is limited. The designed movement is formed in real-time pattern using a fuzzy-logic approach based on the information received from the network and the nodes’ deployment. Our proposed model, Fuzzy-Logic based Path Planning for mobile anchor-assisted Localization in WSNs (FLPPL), offers superior results in several metrics including both localization accuracy and localization ratio in comparison to other similar works. Full article
Figures

Figure 1

Open AccessReview
Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview
Sensors 2017, 17(8), 1910; doi:10.3390/s17081910 (registering DOI) -
Abstract
Abstract: Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable
[...] Read more.
Abstract: Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable for testing a large number of samples. Accordingly, great efforts to develop rapid, sensitive and specific methods, easy to use, and suitable for multi-sample analysis, have been made and continue. Biosensor-based technology has all the potentialities to meet these requirements. In this paper, we review the features of the electrochemical immunosensors, genosensors, aptasensors and phagosensors developed in the last five years for Salmonella detection, focusing on the critical aspects of their application in food analysis. Full article
Figures

Figure 1

Open AccessArticle
Detecting Traversable Area and Water Hazards for the Visually Impaired with a pRGB-D Sensor
Sensors 2017, 17(8), 1890; doi:10.3390/s17081890 (registering DOI) -
Abstract
The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has been widely reported as they offer portability, function-diversity and cost-effectiveness. However, polarization cues to assist traversability awareness without precautions against stepping into water areas are weak. In this paper, a
[...] Read more.
The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has been widely reported as they offer portability, function-diversity and cost-effectiveness. However, polarization cues to assist traversability awareness without precautions against stepping into water areas are weak. In this paper, a polarized RGB-Depth (pRGB-D) framework is proposed to detect traversable area and water hazards simultaneously with polarization-color-depth-attitude information to enhance safety during navigation. The approach has been tested on a pRGB-D dataset, which is built for tuning parameters and evaluating the performance. Moreover, the approach has been integrated into a wearable prototype which generates a stereo sound feedback to guide visually impaired people (VIP) follow the prioritized direction to avoid obstacles and water hazards. Furthermore, a preliminary study with ten blindfolded participants suggests its effectivity and reliability. Full article
Figures