Open AccessArticle
Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results
Resources 2016, 5(4), 29; doi:10.3390/resources5040029 -
Abstract
Episodic supply shortages of metals and unsettling predictions of potential supply constraints in the future have led to a series of recent criticality evaluations. This study applies a consistent criticality methodology to the United States, Australia, and to the global level for [...] Read more.
Episodic supply shortages of metals and unsettling predictions of potential supply constraints in the future have led to a series of recent criticality evaluations. This study applies a consistent criticality methodology to the United States, Australia, and to the global level for both 2008 and 2012. It is the first time that criticality assessments are presented for Australia, a country that contrasts with the United States in terms of its mineral deposits and metal use characteristics. We use the Yale criticality methodology, which measures Supply Risk (SR), Environmental Implications (EI), and Vulnerability to Supply Restriction (VSR) to derive criticality assessments for five major metals (Al, Fe, Ni, Cu, Zn) and for indium (In). We find only modest changes in SR between 2008 and 2012 at both country and global levels; these changes are due to revisions in resource estimates. At the country level, Australia’s VSR for Ni, Cu, and Zn is 23%–33% lower than that for the United States, largely because of Australia’s abundant domestic resources. At the global level, SR is much higher for In, Ni, Cu, and Zn than for Al and Fe as a consequence of SR’s longer time horizon and anticipated supply/demand constraints. The results emphasize the dynamic nature of criticality and its variance between countries and among metals. Full article
Figures

Figure 1

Open AccessArticle
Improving Decision Making about Natural Disaster Mitigation Funding in Australia—A Framework
Resources 2016, 5(3), 28; doi:10.3390/resources5030028 -
Abstract
Economic losses from natural disasters pose significant challenges to communities and to the insurance industry. Natural disaster mitigation aims to reduce the threat to people and assets from natural perils. Good decisions relating to hazard risk mitigation require judgments both about the [...] Read more.
Economic losses from natural disasters pose significant challenges to communities and to the insurance industry. Natural disaster mitigation aims to reduce the threat to people and assets from natural perils. Good decisions relating to hazard risk mitigation require judgments both about the scientific and financial issues involved, i.e., the efficacy of some intervention, and the ethical or value principles to adopt in allocating resources. A framework for selecting a set of mitigation options within a limited budget is developed. Project selection about natural disaster mitigation options needs to trade off benefits offered by alternative investments (e.g., fatalities and injuries avoided, potential property and infrastructure losses prevented, safety concerns of citizens, etc.) against the costs of investment. Such costs include capital and on-going operational costs, as well as intangible costs, such as the impact of the project on the visual landscape or the loss of societal cohesion in the event of the relocation of part of a community. Furthermore, dollar costs of any potential project will need to be defined within some prescribed budget and time frame. Taking all of these factors into account, this paper develops a framework for good natural hazard mitigation decision making and selection. Full article
Figures

Figure 1

Open AccessArticle
The Global Societal Steel Scrap Reserves and Amounts of Losses
Resources 2016, 5(3), 27; doi:10.3390/resources5030027 -
Abstract
In this study a newly developed method called the Progressing and Backcasting models were used to evaluate the annual resource utilizations of steel scrap in Sweden and globally. The model results show that it is possible to assess the amounts of steel [...] Read more.
In this study a newly developed method called the Progressing and Backcasting models were used to evaluate the annual resource utilizations of steel scrap in Sweden and globally. The model results show that it is possible to assess the amounts of steel scrap available for steelmaking at a given point in time, based on statistical dynamic material flow models. By a better mapping of the available amounts of steel scrap reserves on a country basis, it is possible to ease the trade of scrap across country boarders. This in turn can optimize the supply of recyclable metals as a raw material used in the industry. The results for Swedish steel consumption show that export bans used to secure the domestic market of steel scrap do damage the internal market due to increased amounts of losses. This suggests that export bans should be lifted to optimize recycling in countries. The model results also show that the global losses of steel are higher than for an industrialized country such as Sweden. Furthermore, the results show that the Backcasting and Progressing models can be used to calculate robust forecasts on the long term availability of steel scrap assets. This information could be used for future structural plans of scrap consuming steelmaking mills and waste management facilities. Hence, it is possible to contribute to a sustainable industrial development and a circular economy. Full article
Figures

Open AccessArticle
Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model
Resources 2016, 5(3), 26; doi:10.3390/resources5030026 -
Abstract
The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” [...] Read more.
The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” that will collect and store food waste from households and restaurants with incentives for user participation to spur food waste-to-energy production in a local community. Greenbox offers a low-cost collection point to divert food waste from landfills, reduce greenhouse gases from decomposition, and aid in generating cleaner energy. A functional prototype was successfully developed by a team of engineering students and a business model was created as part of a senior design capstone course. Each Greenbox unit has the potential to reduce 275 metric tons of food waste per year, remove 1320 kg of greenhouse gases, and create 470,000 liters of methane gas while providing a payback period of 4.2 years and a rate of return of 14.9%. Full article
Figures

Figure 1

Open AccessReview
Economic Efficiency or Gender Equality: Conceptualizing an Equitable “Social Framing” for Economic Evaluations to Support Gender Equality in Disaster Risk- and Environmental-Management Decision-Making
Resources 2016, 5(3), 25; doi:10.3390/resources5030025 -
Abstract
It is unlikely that cost–benefit approaches will be effective in identifying investments that support gender equality without a relevant “social framing”. Criteria for a “social framing” are lacking, yet cost–benefit approaches often guide investment decisions for disaster risk and environmental management. Mainstream [...] Read more.
It is unlikely that cost–benefit approaches will be effective in identifying investments that support gender equality without a relevant “social framing”. Criteria for a “social framing” are lacking, yet cost–benefit approaches often guide investment decisions for disaster risk and environmental management. Mainstream approaches typically do a poor job identifying and characterizing costs and benefits, and often fail to address distributive concerns (i.e., how costs and benefits may be distributed throughout society, to whom, etc.). Gender-blind investments may project responsibility for equality “problems” onto one sex, potentially augmenting gender inequalities and disaster risk. This article examines evidence from the gender, disaster, and development literature to identify distributive concerns and criteria for an equitable “social framing” for economic evaluations. Primary distributive concerns identified regard assumptions of women’s homogeneity, agency, “active” participation, and the influence of customary practice and displacement on disaster vulnerability. The need for a “gender-responsive” “social framing” that considers the needs of men and women in relation to one another is evident. Second, cost–benefit studies focused on gender equality concerns are reviewed and the “social framing” is critiqued. Results show most studies are not “gender-responsive”. Women’s health concerns, often exacerbated by disasters, are sidelined by assumptions regarding distributive concerns and reductive outcome measures. Full article
Open AccessArticle
Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands
Resources 2016, 5(3), 24; doi:10.3390/resources5030024 -
Abstract
The increasing rate of energy consumption, the depletion of conventional energy sources and the environmental degradation caused has led to thorough research on Renewable Energy Sources (RES), which have been seen as a sustainable solution to climatic change. However, RES installation has [...] Read more.
The increasing rate of energy consumption, the depletion of conventional energy sources and the environmental degradation caused has led to thorough research on Renewable Energy Sources (RES), which have been seen as a sustainable solution to climatic change. However, RES installation has a considerable environmental impact, which should be taken into consideration. The present study deals with the development of an integrated framework so as to evaluate land environmental suitability for RES installation, especially for Wind Farm (WF) siting. The proposed methodology consists of the Analytical Hierarchy Process, the Geographic Information System and Remote Sensing tools. In the first part, a set of constraints, which are based on Greek legislation and international research, identifies the potential sites for wind park installation. In the second part, a variety of criteria are employed to evaluate the area under consideration. To exemplify the utility of the methodology, an application of the proposed framework to the Dodecanese Islands is further illustrated. One of the first findings is that, despite the implemented restrictions, 1/4 of the land remains suitable for WF siting. The necessity of the method used is confirmed through the comparison of results with the already installed wind parks. Full article
Open AccessArticle
Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools
Resources 2016, 5(3), 23; doi:10.3390/resources5030023 -
Abstract
A thermodynamic approach based on exergy use has been suggested as a measure for the use of resources in Life Cycle Assessment and other sustainability assessment methods. It is a relevant approach since it can capture energy resources, as well as metal [...] Read more.
A thermodynamic approach based on exergy use has been suggested as a measure for the use of resources in Life Cycle Assessment and other sustainability assessment methods. It is a relevant approach since it can capture energy resources, as well as metal ores and other materials that have a chemical exergy expressed in the same units. The aim of this paper is to illustrate the use of the thermodynamic approach in case studies and to compare the results with other approaches, and thus contribute to the discussion of how to measure resource use. The two case studies are the recycling of ferrous waste and the production and use of a laptop. The results show that the different methods produce strikingly different results when applied to case studies, which indicates the need to further discuss methods for assessing resource use. The study also demonstrates the feasibility of the thermodynamic approach. It identifies the importance of both energy resources, as well as metals. We argue that the thermodynamic approach is developed from a solid scientific basis and produces results that are relevant for decision-making. The exergy approach captures most resources that are considered important by other methods. Furthermore, the composition of the ores is shown to have an influence on the results. The thermodynamic approach could also be further developed for assessing a broader range of biotic and abiotic resources, including land and water. Full article
Open AccessArticle
A Qualitative Hydro-Geomorphic Prediction of the Destiny of the Mojana Region (Magdalena-Cauca Basin, Colombia), to Inform Large Scale Decision Making
Resources 2016, 5(3), 22; doi:10.3390/resources5030022 -
Abstract
Colombia is undergoing a period of rapid development. In particular, the Magdalena-Cauca Rivers basin, and the Mojana region within it, is going to experience rapid expansion in infrastructure growth, entailing hydropower development, road and navigability works along hundreds of kilometers of channels, [...] Read more.
Colombia is undergoing a period of rapid development. In particular, the Magdalena-Cauca Rivers basin, and the Mojana region within it, is going to experience rapid expansion in infrastructure growth, entailing hydropower development, road and navigability works along hundreds of kilometers of channels, as well as standard flood control measures. This paper argues that unexpected and undesired outcomes are very likely to occur as a consequence of the hydraulic and geomorphological reaction of river systems to such development schemes; namely, we foresee heightened hydro-morphological risks, along with the loss of environmental services and strong increases in maintenance costs. River behavior has been the subject of extensive study by diverse disciplines. As a result, key principles of fluvial dynamics have been elucidated and specific quantitative prediction tools developed. In this paper we do rely on this wealth of knowledge. However, since specific local information and interpretative tools in Colombia are either lacking or unreliable, it is inevitable that, at the moment, any basin scale analysis has to remain qualitative and must incorporate several assumptions, leaving it open to questioning and further refinement. Nonetheless, we argue that advancing such type of speculative conjectures is the “right thing to do”. The undeniably desirable but hard to achieve alternative of waiting for sufficient datasets and tools would entail excessive delay in obtaining relevant answers while large-scale development would continue to occur with potentially damaging results. Therefore, our analysis is conceived along the precautionary principle. This paper is primarily aimed at technical advisors of policy makers as it offers scientifically-based arguments for informing the political debate, hopefully guiding decision makers towards better choices. Rather than advocating specific solutions, the focus is on pointing out the likely adverse consequences of the currently planned course of action. Full article
Open AccessArticle
The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island
Resources 2016, 5(2), 21; doi:10.3390/resources5020021 -
Abstract
In the Small Islands Developing State (SIDS) of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite [...] Read more.
In the Small Islands Developing State (SIDS) of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite this major threat, people continue to live close to the volcano and national development plans do not include risk reduction measures for volcanic hazards. This paper examines the development options in volcanic SIDS and presents a number of conundrums for disaster risk management on the island of St Vincent. Improvements in monitoring of volcanic hazards and ongoing programmes to enhance communications systems and encourage community preparedness planning have increased awareness of the risks associated with volcanic hazards, yet this has not translated into more risk-informed development planning decisions. The current physical development plan in fact promotes investment in infrastructure in settlements located within the zone designated very high-hazard. However, this is not an anomaly or an irrational decision: severe space constraints in SIDS, as well as other historical social and economic factors, limit growth and options for low-risk development. Greater attention needs to be placed on developing measures to reduce risk, particularly from low-intensity hazards like ash, limiting where possible exposure to volcanic hazards and building the resilience of communities living in high-risk areas. This requires planning for both short- and longer-term impacts from renewed activity. Volcanic SIDS face multiple hazards because of their geography and topography, so development plans should identify these interconnected risks and options for their reduction, alongside measures aimed at improving personal preparedness plans so communities can learn to live with risk. Full article
Open AccessArticle
Ensuring Resilience of Natural Resources under Exposure to Extreme Climate Events
Resources 2016, 5(2), 20; doi:10.3390/resources5020020 -
Abstract
Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence [...] Read more.
Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence of events may exceed the resilience of natural systems or the coping capacity of social systems. We report the findings of a series of participatory workshops with communities in eight discrete landscapes in South East New South Wales, Australia. The workshops focused on how natural resource management (NRM) is considered in the Prevent-Prepare-Respond-Recover emergency management cycle. We found that NRM is generally considered only in relation to the protection of life and property and not for the intrinsic value of ecosystem services that support communities. We make three recommendations to improve NRM under extreme climate events. Firstly, the support to communities offered by emergency management agencies could be bolstered by guidance material co-produced with government NR agencies. Secondly, financial assistance from government should specifically target the restoration and maintenance of green infrastructure to avoid loss of social-ecological resilience. Thirdly, action by natural resource dependent communities should be encouraged and supported to better protect ecosystem services in preparation for future extreme events. Full article
Open AccessArticle
Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources
Resources 2016, 5(2), 19; doi:10.3390/resources5020019 -
Abstract
The nexus of minerals and energy becomes ever more important as the economic growth and development of countries in the global South accelerates and the needs of new energy technologies expand, while at the same time various important minerals are declining in [...] Read more.
The nexus of minerals and energy becomes ever more important as the economic growth and development of countries in the global South accelerates and the needs of new energy technologies expand, while at the same time various important minerals are declining in grade and available reserves from conventional mining. Unconventional resources in the form of deep ocean deposits and urban ores are being widely examined, although exploitation is still limited. This paper examines some of the implications of the transition towards cleaner energy futures in parallel with the shifts through conventional ore decline and the uptake of unconventional mineral resources. Three energy scenarios, each with three levels of uptake of renewable energy, are assessed for the potential of critical minerals to restrict growth under 12 alternative mineral supply patterns. Under steady material intensities per unit of capacity, the study indicates that selenium, indium and tellurium could be barriers in the expansion of thin-film photovoltaics, while neodymium and dysprosium may delay the propagation of wind power. For fuel cells, no restrictions are observed. Full article
Open AccessReview
Forest Health Management and Detection of Invasive Forest Insects
Resources 2016, 5(2), 18; doi:10.3390/resources5020018 -
Abstract
The objectives of this review paper are to provide an overview of issues related to forest health and forest entomology, explain existing methods for forest insect pest detection, and provide background information on a case study of emerald ash borer. Early detection [...] Read more.
The objectives of this review paper are to provide an overview of issues related to forest health and forest entomology, explain existing methods for forest insect pest detection, and provide background information on a case study of emerald ash borer. Early detection of potentially invasive insect species is a key aspect of preventing these species from causing damage. Invasion management efforts are typically more feasible and efficient if they are applied as early as possible. Two proposed approaches for detection are highlighted and include dendroentomology and near infrared spectroscopy (NIR). Dendroentomology utilizes tree ring principles to identify the years of outbreak and the dynamics of past insect herbivory on trees. NIR has been successfully used for assessing various forest health concerns (primarily hyperspectral imaging) and decay in trees. Emerald ash borer (EAB) (Agrilus planipennis), is a non-native beetle responsible for widespread mortality of several North American ash species (Fraxinus sp.). Current non-destructive methods for early detection of EAB in specific trees are limited, which restricts the effectiveness of management efforts. Ongoing research efforts are focused on developing methods for early detection of emerald ash borer. Full article
Open AccessArticle
Paddy Farmers’ Sustainability Practices in Granary Areas in Malaysia
Resources 2016, 5(2), 17; doi:10.3390/resources5020017 -
Abstract
Food safety is a serious concern among the consumers of agricultural products. Toxicity risks are created by the acute presence of contaminating chemicals in foods. The usage of chemical inputs in paddy farms has not only caused health issues for farmers but [...] Read more.
Food safety is a serious concern among the consumers of agricultural products. Toxicity risks are created by the acute presence of contaminating chemicals in foods. The usage of chemical inputs in paddy farms has not only caused health issues for farmers but it has also adversely affected the environment, killed animals, and polluted air and water. This creates controversial issues that need immediate attention, since sustainable agriculture needs to meet both consumers’ and farmers’ welfare in terms of food and farmers’ safety, respectively. This study looks at paddy farming practices and the creation of the Farmer Sustainability Index as a measurement to gauge whether farmers are practicing sustainable agriculture by following the Rice Check guideline that has been stipulated by the Department of Agriculture, Malaysia. The questionnaire was constructed to capture the 16 farming practices based on the Rice Check guideline and a score was given to each practice to see whether the guideline is being followed. The data from the questionnaire were analyzed and the Farmer Sustainability Index was calculated. The range of index is from 0 to 100, where 0 is not sustainable at all and 100 is highly sustainable. Eighty (80) paddy farmers from Sungai Petani, Kedah participated in the study and the result shows that 80% of the farmers practice quite unsustainable paddy farming with an average score of less than 40.0 on a scale of 0–100. Full article
Open AccessArticle
ZVI (Fe0) Desalination: Stability of Product Water
Resources 2016, 5(1), 15; doi:10.3390/resources5010015 -
Abstract
A batch-operated ZVI (zero valent iron) desalination reactor will be able to partially desalinate water. This water can be stored in an impoundment, reservoir or tank, prior to use for irrigation. Commercial development of this technology requires assurance that the partially-desalinated product [...] Read more.
A batch-operated ZVI (zero valent iron) desalination reactor will be able to partially desalinate water. This water can be stored in an impoundment, reservoir or tank, prior to use for irrigation. Commercial development of this technology requires assurance that the partially-desalinated product water will not resalinate, while it is in storage. This study has used direct ion analyses to confirm that the product water from a gas-pressured ZVI desalination reactor maintains a stable salinity in storage over a period of 1–2.5 years. Two-point-three-litre samples of the feed water (2–10.68 g (Na+ + Cl)·L−1) and product water (0.1–5.02 g (Na+ + Cl)·L−1) from 21 trials were placed in storage at ambient (non-isothermal) temperatures (which fluctuated between −10 and 25 °C), for a period of 1–2.5 years. The ion concentrations (Na+ and Cl) of the stored feed water and product water were then reanalysed. The ion analyses of the stored water samples demonstrated: (i) that the product water salinity (Na+ and Cl) remains unchanged in storage; and (ii) the Na:Cl molar ratios can be lower in the product water than the feed water. The significance of the results is discussed in terms of the various potential desalination routes. These trial data are supplemented with the results from 122 trials to demonstrate that: (i) reactivity does not decline with successive batches; (ii) the process is catalytic; and (iii) the process involves a number of steps. Full article
Open AccessReview
The Abiotic Depletion Potential: Background, Updates, and Future
Resources 2016, 5(1), 16; doi:10.3390/resources5010016 -
Abstract
Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA). The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters [...] Read more.
Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA). The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs) for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter. Full article
Open AccessArticle
Evaluation of Abiotic Resource LCIA Methods
Resources 2016, 5(1), 13; doi:10.3390/resources5010013 -
Abstract
In a life cycle assessment (LCA), the impacts on resources are evaluated at the area of protection (AoP) with the same name, through life cycle impact assessment (LCIA) methods. There are different LCIA methods available in literature that assesses abiotic resources, and [...] Read more.
In a life cycle assessment (LCA), the impacts on resources are evaluated at the area of protection (AoP) with the same name, through life cycle impact assessment (LCIA) methods. There are different LCIA methods available in literature that assesses abiotic resources, and the goal of this study was to propose recommendations for that impact category. We evaluated 19 different LCIA methods, through two criteria (scientific robustness and scope), divided into three assessment levels, i.e., resource accounting methods (RAM), midpoint, and endpoint. In order to support the assessment, we applied some LCIA methods to a case study of ethylene production. For RAM, the most suitable LCIA method was CEENE (Cumulative Exergy Extraction from the Natural Environment) (but SED (Solar Energy Demand) and ICEC (Industrial Cumulative Exergy Consumption)/ECEC (Ecological Cumulative Exergy Consumption) may also be recommended), while the midpoint level was ADP (Abiotic Depletion Potential), and the endpoint level was both the Recipe Endpoint and EPS2000 (Environmental Priority Strategies). We could notice that the assessment for the AoP Resources is not yet well established in the LCA community, since new LCIA methods (with different approaches) and assessment frameworks are showing up, and this trend may continue in the future. Full article
Open AccessArticle
Mineral Resources: Reserves, Peak Production and the Future
Resources 2016, 5(1), 14; doi:10.3390/resources5010014 -
Abstract
The adequacy of mineral resources in light of population growth and rising standards of living has been a concern since the time of Malthus (1798), but many studies erroneously forecast impending peak production or exhaustion because they confuse reserves with “all there [...] Read more.
The adequacy of mineral resources in light of population growth and rising standards of living has been a concern since the time of Malthus (1798), but many studies erroneously forecast impending peak production or exhaustion because they confuse reserves with “all there is”. Reserves are formally defined as a subset of resources, and even current and potential resources are only a small subset of “all there is”. Peak production or exhaustion cannot be modeled accurately from reserves. Using copper as an example, identified resources are twice as large as the amount projected to be needed through 2050. Estimates of yet-to-be discovered copper resources are up to 40-times more than currently-identified resources, amounts that could last for many centuries. Thus, forecasts of imminent peak production due to resource exhaustion in the next 20–30 years are not valid. Short-term supply problems may arise, however, and supply-chain disruptions are possible at any time due to natural disasters (earthquakes, tsunamis, hurricanes) or political complications. Needed to resolve these problems are education and exploration technology development, access to prospective terrain, better recycling and better accounting of externalities associated with production (pollution, loss of ecosystem services and water and energy use). Full article
Open AccessCommunication
Abiotic Raw-Materials in Life Cycle Impact Assessments: An Emerging Consensus across Disciplines
Resources 2016, 5(1), 12; doi:10.3390/resources5010012 -
Abstract
This paper captures some of the emerging consensus points that came out of the workshop “Mineral Resources in Life Cycle Impact Assessment: Mapping the path forward”, held at the Natural History Museum London on 14 October 2015: that current practices rely in [...] Read more.
This paper captures some of the emerging consensus points that came out of the workshop “Mineral Resources in Life Cycle Impact Assessment: Mapping the path forward”, held at the Natural History Museum London on 14 October 2015: that current practices rely in many instances on obsolete data, often confuse resource depletion with impacts on resource availability, which can therefore provide inconsistent decision support and lead to misguided claims about environmental performance. Participants agreed it would be helpful to clarify which models estimate depletion and which estimate availability, so that results can be correctly reported in the most appropriate framework. Most participants suggested that resource availability will be more meaningfully addressed within a comprehensive Life Cycle Sustainability Assessment framework rather than limited to an environmental Life Cycle Assessment or Footprint. Presentations from each of the authors are available for download [1]. Full article
Open AccessArticle
Environmental Identity and Natural Resources: A Dialogical Learning Process
Resources 2016, 5(1), 11; doi:10.3390/resources5010011 -
Abstract
In this article, we elaborate on the role of dialogical learning in identity formation in the context of environmental education. First, we distinguish this kind of learning from conditioning and reproductive learning. We also show that identity learning is not self-evident and [...] Read more.
In this article, we elaborate on the role of dialogical learning in identity formation in the context of environmental education. First, we distinguish this kind of learning from conditioning and reproductive learning. We also show that identity learning is not self-evident and we point out the role of emotions. Using Dialogical Self Theory, we then suggest that individuals do not have an “identity hierarchy” but a dialogical self that attaches meaning to experiences in both conscious and unconscious ways. We describe the learning process that enables the dialogical self to develop itself, and we elaborate on the characteristics of a good dialogue. We conclude with some remarks expanding room for a dialogue that would foster identity learning. Full article
Open AccessEditorial
Groundwater Quantity and Quality
Resources 2016, 5(1), 10; doi:10.3390/resources5010010 -
Abstract
The world’s population is facing a water crisis, which is expected to worsen dramatically during the 21st century. Problems due to over exploitation of groundwater, as well as from natural and anthropogenic contamination are major challenges facing humanity. This Special Issue contributes [...] Read more.
The world’s population is facing a water crisis, which is expected to worsen dramatically during the 21st century. Problems due to over exploitation of groundwater, as well as from natural and anthropogenic contamination are major challenges facing humanity. This Special Issue contributes a selection of topics on groundwater quantity and quality issues that face different parts of the world. Full article