Open AccessArticle
Extended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data
Remote Sens. 2017, 9(6), 533; doi:10.3390/rs9060533 (registering DOI) -
Abstract
Leaf area index (LAI) is one of the key parameters in crop growth monitoring and global change studies. Multiple LAI products have been generated from satellite observations, many of which suffer from data discontinuities due to persistent cloud contamination and retrieval algorithm inaccuracies.
[...] Read more.
Leaf area index (LAI) is one of the key parameters in crop growth monitoring and global change studies. Multiple LAI products have been generated from satellite observations, many of which suffer from data discontinuities due to persistent cloud contamination and retrieval algorithm inaccuracies. This study proposes an extended data-based mechanistic method (EDBM) for estimating LAI time series from Moderate Resolution Imaging Spectroradiometer (MODIS) data. The data-based mechanistic model is universalized to supply the LAI background information, and then the vegetation canopy radiative-transfer model (PROSAIL) is coupled to calculate reflectances with the same observation geometry as MODIS reflectance data. The ensemble Kalman filter (ENKF) is introduced to improve LAI estimation based on the difference between simulated and observed reflectances. Field measurements from seven Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP) sites and reference maps from the Imagine-S project La Albufera, Spain site were used to validate the model. The results demonstrate that when compared with field measurements, the LAI time-series estimates obtained using this approach were superior to those obtained with the MODIS 500 m resolution LAI product. The root mean square errors (RMSE) of the MODIS LAI product and of the LAI estimated with the proposed method were 1.26 and 0.5, respectively. When compared with reference LAI maps, the results indicate that the estimated LAI is spatially and temporally consistent with LAI reference maps. The average differences between EDBM and the LAI reference map on the selected four days was 0.32. Full article
Figures

Open AccessArticle
Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass
Remote Sens. 2017, 9(6), 531; doi:10.3390/rs9060531 (registering DOI) -
Abstract
Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. Destructive AGB measurements, although accurate, are time consuming and are not easily undertaken on a repeat basis or over large areas. Structure-from-Motion (SfM) photogrammetry and Terrestrial Laser Scanning (TLS)
[...] Read more.
Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. Destructive AGB measurements, although accurate, are time consuming and are not easily undertaken on a repeat basis or over large areas. Structure-from-Motion (SfM) photogrammetry and Terrestrial Laser Scanning (TLS) are two technologies that have the potential to yield precise 3D structural measurements of vegetation quite rapidly. Recent advances have led to the successful application of TLS and SfM in woody biomass estimation, but application in natural grassland systems remains largely untested. The potential of these techniques for AGB estimation is examined considering 11 grass plots with a range of biomass in South Dakota, USA. Volume metrics extracted from the TLS and SfM 3D point clouds, and also conventional disc pasture meter settling heights, were compared to destructively harvested AGB total (grass and litter) and AGB grass plot measurements. Although the disc pasture meter was the most rapid method, it was less effective in AGB estimation (AGBgrass r2 = 0.42, AGBtotal r2 = 0.32) than the TLS (AGBgrass r2 = 0.46, AGBtotal r2 = 0.57) or SfM (AGBgrass r2 = 0.54, AGBtotal r2 = 0.72) which both demonstrated their utility for rapid AGB estimation of grass systems. Full article
Figures

Open AccessArticle
Global Analysis of Bioclimatic Controls on Ecosystem Productivity Using Satellite Observations of Solar-Induced Chlorophyll Fluorescence
Remote Sens. 2017, 9(6), 530; doi:10.3390/rs9060530 (registering DOI) -
Abstract
Ecosystem productivity models rely on regional climatic information to estimate temperature and moisture constraints influencing plant growth. However, the productivity response to these environmental factors is uncertain at the global scale and has largely been defined using limited observations from sparse monitoring sites,
[...] Read more.
Ecosystem productivity models rely on regional climatic information to estimate temperature and moisture constraints influencing plant growth. However, the productivity response to these environmental factors is uncertain at the global scale and has largely been defined using limited observations from sparse monitoring sites, including carbon flux towers. Recent studies have shown that satellite observations of Solar-Induced chlorophyll Fluorescence (SIF) are highly correlated with ecosystem Gross Primary Productivity (GPP). Here, we use a relatively long-term global SIF observational record from the Global Ozone Monitoring Experiment-2 (GOME-2) sensors to investigate the relationships between SIF, used as a proxy for GPP, and selected bio-climatic factors constraining plant growth at the global scale. We compared the satellite SIF retrievals with collocated GPP observations from a global network of tower carbon flux monitoring sites and surface meteorological data from model reanalysis, including soil moisture, Vapor Pressure Deficit (VPD), and minimum daily air temperature (Tmin). We found strong correspondence (R2 > 80%) between SIF and GPP monthly climatologies for tower sites characterized by mixed, deciduous broadleaf, evergreen needleleaf forests, and croplands. For other land cover types including savanna, shrubland, and evergreen broadleaf forest, SIF showed significant but higher variability in correlations between sites. In order to analyze temperature and moisture related effects on ecosystem productivity, we divided SIF by photosynthetically active radiation (SIFp) and examined partial correlations between SIFp and the climatic factors across a global range of flux tower sites, and over broader regional and global extents. We found that productivity in arid ecosystems is more strongly controlled by soil water content to an extent that soil moisture explains a higher proportion of the seasonal cycle in productivity than VPD. At the global scale, ecosystem productivity is affected by joint climatic constraint factors so that VPD, Tmin, and soil moisture were significant (p < 0.05) controls over 60, 59, and 35 percent of the global domain, respectively. Our study identifies and confirms dominant climate control factors influencing productivity at the global scale indicated from satellite SIF observations. The results are generally consistent with climate response characteristics indicated from sparse global tower observations, while providing more extensive coverage for verifying and refining global carbon and climate model assumptions and predictions. Full article
Figures

Open AccessArticle
Comparison of Three Theoretical Methods for Determining Dry and Wet Edges of the LST/FVC Space: Revisit of Method Physics
Remote Sens. 2017, 9(6), 528; doi:10.3390/rs9060528 (registering DOI) -
Abstract
Land surface temperature and fractional vegetation coverage (LST/FVC) space is a classical model for estimating evapotranspiration, soil moisture, and drought monitoring based on remote sensing. One of the key issues in its utilization is to determine its boundaries, i.e., the dry and wet
[...] Read more.
Land surface temperature and fractional vegetation coverage (LST/FVC) space is a classical model for estimating evapotranspiration, soil moisture, and drought monitoring based on remote sensing. One of the key issues in its utilization is to determine its boundaries, i.e., the dry and wet edges. In this study, we revisited and compared three methods that were presented by Moran et al. (1994), Long et al. (2012), and Sun (2016) for calculating the dry and wet edges theoretically. Results demonstrated that: (1) for the dry edge, the Sun method is equal to the Long method and they have greater vegetation temperature than that of the Moran method. (2) With respect to the wet edge, there are greater differences among the three methods. Generally, Long’s wet edge is a horizontal line equaling air temperature. Sun’s wet edge is an oblique line and is higher than that of the Long’s. Moran’s wet edge intersects them with a higher soil temperature and a lower vegetation temperature. (3) The Sun and Long methods are simpler in calculation and can circumvent some complex parameters as compared with the Moran method. Moreover, they outperformed the Moran method in a comparison of estimating latent heat flux (LE), where determination coefficients varied between 0.45 ~ 0.66 (Sun), 0.47 ~ 0.68 (Long), and 0.39 ~ 0.57 (Moran) among field stations. Full article
Figures

Open AccessArticle
Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery
Remote Sens. 2017, 9(6), 522; doi:10.3390/rs9060522 (registering DOI) -
Abstract
A new convolution neural network (CNN) architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN) design being structured into encoding and decoding stages. By taking advantage of recent advances in
[...] Read more.
A new convolution neural network (CNN) architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN) design being structured into encoding and decoding stages. By taking advantage of recent advances in CNN designs, we use the composed inception module to replace common convolutional layers, providing the network with multi-scale receptive areas with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip connections with residual units are also employed to feed forward encoding-stage information directly to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring when high resolution images are inferred from small-sized patches. Finally, we also propose a post-processing method based on weighted belief propagation to visually enhance the classification results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the proposed architectures outperform three reference state-of-the-art network designs both numerically and visually. Full article
Figures

Open AccessArticle
Exploring Relationships among Tree-Ring Growth, Climate Variability, and Seasonal Leaf Activity on Varying Timescales and Spatial Resolutions
Remote Sens. 2017, 9(6), 526; doi:10.3390/rs9060526 (registering DOI) -
Abstract
In the first section of this study, we explored the relationship between ring width index (RWI) and normalized difference vegetation index (NDVI) time series on varying timescales and spatial resolutions, hypothesizing positive associations between RWI and current and previous- year NDVI at 69
[...] Read more.
In the first section of this study, we explored the relationship between ring width index (RWI) and normalized difference vegetation index (NDVI) time series on varying timescales and spatial resolutions, hypothesizing positive associations between RWI and current and previous- year NDVI at 69 forest sites scattered in the Northern Hemisphere. We noted that the relationship between RWI and NDVI varies over space and between tree types (deciduous versus coniferous), bioclimatic zones, cumulative NDVI periods, and spatial resolutions. The high-spatial-resolution NDVI (MODIS) reflected stronger growth patterns than those with coarse-spatial-resolution NDVI (GIMMS3g). In the second section, we explore the link between RWI, climate and NDVI phenological metrics (in place of NDVI) for the same forest sites using random forest models to assess the complicated and nonlinear relationships among them. The results are as following (a) The model using high-spatial-resolution NDVI time series explained a higher proportion of the variance in RWI than that of the model using coarse-spatial-resolution NDVI time series. (b) Amongst all NDVI phenological metrics, summer NDVI sum could best explain RWI followed by the previous year’s summer NDVI sum and the previous year’s spring NDVI sum. (c) We demonstrated the potential of NDVI metrics derived from phenology to improve the existing RWI-climate relationships. However, further research is required to investigate the robustness of the relationship between NDVI and RWI, particularly when more tree-ring data and longer records of the high-spatial-resolution NDVI become available. Full article
Figures

Open AccessArticle
Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities across the Ordos Plateau, China
Remote Sens. 2017, 9(6), 525; doi:10.3390/rs9060525 (registering DOI) -
Abstract
The Ordos Plateau, a typical semi-arid area in northern China, has experienced severe wind erosion events that have stripped the agriculturally important finer fraction of the topsoil and caused dust events that often impact the air quality in northern China and the surrounding
[...] Read more.
The Ordos Plateau, a typical semi-arid area in northern China, has experienced severe wind erosion events that have stripped the agriculturally important finer fraction of the topsoil and caused dust events that often impact the air quality in northern China and the surrounding regions. Both climate change and human activities have been considered key factors in the desertification process. This study used multi-spectral Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) remote sensing data collected in 2000, 2006, 2010 and 2015 to generate a temporal series of the modified soil-adjusted vegetation index (MSAVI), bare soil index (BSI) and albedo products in the Ordos Plateau. Based on these satellite products and the decision tree method, we quantitatively assessed the desertification status over the past 15 years since 2000. Furthermore, a quantitative method was used to assess the roles of driving forces in desertification dynamics using net primary productivity (NPP) as a commensurable indicator. The results showed that the area of non-desertification land increased from 6647 km2 in 2000 to 15,961 km2 in 2015, while the area of severe desertification land decreased from 16,161 km2 in 2000 to 8,331 km2 in 2015. During the period 2006–2015, the effect of human activities, especially the ecological recovery projects implemented in northern China, was the main cause of desertification reversion in this region. Therefore, ecological recovery projects are still required to promote harmonious development between nature and human society in ecologically fragile regions like the Ordos Plateau. Full article
Figures

Open AccessArticle
A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land
Remote Sens. 2017, 9(6), 524; doi:10.3390/rs9060524 (registering DOI) -
Abstract
Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target
[...] Read more.
Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm. When retrieving AOD from satellite platforms, determining surface contributions is a major challenge. In the MODIS DT algorithm, surface signals in the visible wavelengths are estimated based on the relationships between visible channels and shortwave infrared (SWIR) near the 2.1 µm channel. However, the CAI only has a 1.6 µm band to cover the SWIR wavelengths. To resolve the difficulties in determining surface reflectance caused by the lack of 2.1 μm band data, we attempted to analyze the relationship between reflectance at 1.6 µm and at 2.1 µm. We did this using the MODIS surface reflectance product and then connecting the reflectances at 1.6 µm and the visible bands based on the empirical relationship between reflectances at 2.1 µm and the visible bands. We found that the reflectance relationship between 1.6 µm and 2.1 µm is typically dependent on the vegetation conditions, and that reflectances at 2.1 µm can be parameterized as a function of 1.6 µm reflectance and the Vegetation Index (VI). Based on our experimental results, an Aerosol Free Vegetation Index (AFRI2.1)-based regression function connecting the 1.6 µm and 2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), the 2.1 µm reflectance derived by our method has an extremely high correlation with the true 2.1 µm reflectance (r-value = 0.928). Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a CAI-applicable approach that uses AFRI2.1 and the scattering angle to account for the visible surface signals was proposed. It was then applied to the CAI sensor for AOD retrieval; the retrievals were validated by comparisons with ground-level measurements from Aerosol Robotic Network (AERONET) sites. Validations show that retrievals from the CAI have high agreement with the AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope of ± (0.1 + 15% AODAERONET). Full article
Figures

Open AccessArticle
Optical Cloud Pixel Recovery via Machine Learning
Remote Sens. 2017, 9(6), 527; doi:10.3390/rs9060527 (registering DOI) -
Abstract
Remote sensing derived Normalized Difference Vegetation Index (NDVI) is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS) and several commercial
[...] Read more.
Remote sensing derived Normalized Difference Vegetation Index (NDVI) is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS) and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR) method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF) trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis. Full article
Figures

Open AccessArticle
Evaluating Urban Land Carrying Capacity Based on the Ecological Sensitivity Analysis: A Case Study in Hangzhou, China
Remote Sens. 2017, 9(6), 529; doi:10.3390/rs9060529 (registering DOI) -
Abstract
Abstract: In this study, we present the evaluation of urban land carrying capacity (ULCC) based on an ecological sensitivity analysis. Remote sensing data and geographic information system (GIS) technology are employed to analyze topographic conditions, land-use types, the intensity of urban development, and
[...] Read more.
Abstract: In this study, we present the evaluation of urban land carrying capacity (ULCC) based on an ecological sensitivity analysis. Remote sensing data and geographic information system (GIS) technology are employed to analyze topographic conditions, land-use types, the intensity of urban development, and ecological environmental sensitivity to create reasonable evaluation indicators to analyze urban land carrying capacity based on ecological sensitivity in the rapidly developing megacity of Hangzhou, China. In the study, ecological sensitivity is grouped into four levels: non-sensitive, lightly sensitive, moderately sensitive, and highly sensitive. The results show that the ecological sensitivity increases progressively from the center to the periphery. The results also show that ULCC is determined by ecologically sensitive levels and that the ULCC is categorized into four levels. Even though it is limited by the four levels, the ULCC still has a large margin if compared with the current population numbers. The study suggests that the urban ecological environment will continue to sustain the current population size in the short-term future. However, it is necessary to focus on the protection of distinctive natural landscapes so that decision makers can adjust measures for ecological conditions to carry out the sustainable development of populations, natural resources, and the environment in megacities like Hangzhou, China. Full article
Figures

Figure 1

Open AccessArticle
Possibility of Estimating Seasonal Snow Depth Based Solely on Passive Microwave Remote Sensing on the Greenland Ice Sheet in Spring
Remote Sens. 2017, 9(6), 523; doi:10.3390/rs9060523 (registering DOI) -
Abstract
Sea level rise related to the melting and thinning of the Greenland Ice Sheet (GrIS), a subject of growing concern in recent years, will eventually affect the global climate. Although the melting of snow on the GrIS is actively monitored by passive microwave
[...] Read more.
Sea level rise related to the melting and thinning of the Greenland Ice Sheet (GrIS), a subject of growing concern in recent years, will eventually affect the global climate. Although the melting of snow on the GrIS is actively monitored by passive microwave remote sensing, very few studies have estimated the seasonal GrIS snow depth using this technique. In this study, to estimate seasonal snowpack on GrIS, we investigated the microwave property and optimum physical parameters. We used our microwave radiative transfer model to create a lookup table and a simple satellite retrieval algorithm to estimate seasonal snow depth on GrIS in spring, based on the microwave satellite brightness temperature from AMSR-E and AMSR2. Our research suggests there is potential for estimating snow depth based solely on GrIS passive microwave remote sensing data. We validated these estimates against in situ snow depths at several sites and compared them with the snow spatial distributions over the entire GrIS of several major products (ERA-interim, MAR ver. 5.3.1 and GLDAS-CLM) that evaluate snow depth. Full article
Figures

Figure 1

Open AccessArticle
Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica)
Remote Sens. 2017, 9(6), 520; doi:10.3390/rs9060520 -
Abstract
Glacier change studies in the Antarctic Peninsula region, despite their importance for global sea level rise, are commonly restricted to the investigation of frontal position changes. Here we present a long term (37 years; 1979–2016) study of ice elevation changes of the Ecology
[...] Read more.
Glacier change studies in the Antarctic Peninsula region, despite their importance for global sea level rise, are commonly restricted to the investigation of frontal position changes. Here we present a long term (37 years; 1979–2016) study of ice elevation changes of the Ecology Glacier, King George Island (6211S, 5829W). The glacier covers an area of 5.21 km2 and is located close to the H. Arctowski Polish Antarctic Station, and therefore has been an object of various multidisciplinary studies with subject ranging from glaciology, meteorology to glacial microbiology. Hence, it is of great interest to assess its current state and put it in a broader context of recent glacial change. In order to achieve that goal, we conducted an analysis of archival cartographic material and combined it with field measurements of proglacial lagoon hydrography and state-of-art geodetic surveying of the glacier surface with terrestrial laser scanning and satellite imagery. Overall mass loss was largest in the beginning of 2000s, and the rate of elevation change substantially decreased between 2012–2016, with little ice front retreat and no significant surface lowering. Ice elevation change rate for the common ablation area over all analyzed periods (1979–2001–2012–2016) has decreased from −1.7 ± 0.4 m/year in 1979–2001 and −1.5 ± 0.5 m/year in 2001–2012 to −0.5 ± 0.6 m/year in 2012–2016. This reduction of ice mass loss is likely related to decreasing summer temperatures in this region of the Antarctic Peninsula. Full article
Figures

Open AccessArticle
Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System
Remote Sens. 2017, 9(6), 516; doi:10.3390/rs9060516 -
Abstract
Remote estimation of chlorophyll-a in turbid and productive estuaries is difficult due to the optical complexity of Case 2 waters. Although recent advances have been obtained with the use of empirical approaches for estimating chlorophyll-a in these environments, the understanding of the relationship
[...] Read more.
Remote estimation of chlorophyll-a in turbid and productive estuaries is difficult due to the optical complexity of Case 2 waters. Although recent advances have been obtained with the use of empirical approaches for estimating chlorophyll-a in these environments, the understanding of the relationship between spectral reflectance and chlorophyll-a is based mainly on temperate and subtropical estuarine systems. The potential to apply standard NIR-Red models to productive tropical estuaries remains underexplored. Therefore, the purpose of this study is to evaluate the performance of several approaches based on multispectral data to estimate chlorophyll-a in a productive tropical estuarine-lagoon system, using in situ measurements of remote sensing reflectance, Rrs. The possibility of applying algorithms using simulated satellite bands of modern and recent launched sensors was also evaluated. More accurate retrievals of chlorophyll-a (r2 > 0.80) based on field datasets were found using NIR-Red three-band models. In addition, enhanced chlorophyll-a retrievals were found using the two-band algorithm based on bands of recently launched satellites such as Sentinel-2/MSI and Sentinel-3/OLCI, indicating a promising application of these sensors to remotely estimate chlorophyll-a for coming decades in turbid inland waters. Our findings suggest that empirical models based on optical properties involving water constituents have strong potential to estimate chlorophyll-a using multispectral data from satellite, airborne or handheld sensors in productive tropical estuaries. Full article
Figures

Figure 1

Open AccessArticle
Plume Segmentation from UV Camera Images for SO2 Emission Rate Quantification on Cloud Days
Remote Sens. 2017, 9(6), 517; doi:10.3390/rs9060517 -
Abstract
We performed measurements of SO2 emissions with a high UV sensitive dual-camera optical system. Generally, in order to retrieve the two-dimensional SO2 emission rates of a source, e.g., the slant column density of a plume emitted by a stack, one needs
[...] Read more.
We performed measurements of SO2 emissions with a high UV sensitive dual-camera optical system. Generally, in order to retrieve the two-dimensional SO2 emission rates of a source, e.g., the slant column density of a plume emitted by a stack, one needs to acquire four images with UV cameras: two images including the emitting stack at wavelengths with high and negligible absorption features (λon/off), and two additional images of the background intensity behind the plume, at the same wavelengths as before. However, the true background intensity behind a plume is impossible to obtain from a remote measurement site at rest, and thus, one needs to find a way to approximate the background intensity. Some authors have presented methods to estimate the background behind the plume from two emission images. However, those works are restricted to dealing with clear sky, or almost homogeneously illuminated days. The purpose of this work is to present a new approach using background images constructed from emission images by an automatic plume segmentation and interpolation procedure, in order to estimate the light intensity behind the plume. We compare the performance of the proposed approach with the four images method, which uses, as background, sky images acquired at a different viewing direction. The first step of the proposed approach involves the segmentation of the SO2 plume from the background. In clear sky days, we found similar results from both methods. However, when the illumination of the sky is non homogeneous, e.g., due to lateral sun illumination or clouds, there are appreciable differences between the results obtained by both methods. We present results obtained in a series of measurements of SO2 emissions performed on a cloudy day from a stack of an oil refinery in Montevideo City, Uruguay. The results obtained with the UV cameras were compared with scanning DOAS measurements, yielding a good agreement. Full article
Figures

Open AccessArticle
Ground-Level NO2 Concentrations over China Inferred from the Satellite OMI and CMAQ Model Simulations
Remote Sens. 2017, 9(6), 519; doi:10.3390/rs9060519 -
Abstract
In the past decades, continuous efforts have been made at a national level to reduce Nitrogen Dioxide (NO2) emissions in the atmosphere over China. However, public concern and related research mostly deal with tropospheric NO2 columns rather than ground-level NO
[...] Read more.
In the past decades, continuous efforts have been made at a national level to reduce Nitrogen Dioxide (NO2) emissions in the atmosphere over China. However, public concern and related research mostly deal with tropospheric NO2 columns rather than ground-level NO2 concentrations, but actually ground-level NO2 concentrations are more closely related to anthropogenic emissions, and directly affect human health. This paper presents one method to derive the ground-level NO2 concentrations using the total column of NO2 observed from the Ozone Monitoring Instrument (OMI) and the simulations from the Community Multi-scale Air Quality (CMAQ) model in China. One year’s worth of data from 2014 was processed and the results compared with ground-based NO2 measurements from a network of China’s National Environmental Monitoring Centre (CNEMC). The standard deviation between ground-level NO2 concentrations over China, the CMAQ simulated measurements and in-situ measurements by CNEMC for January was 21.79 μg/m3, which was improved to a standard deviation of 18.90 μg/m3 between our method and CNEMC data. Correlation coefficients between the CMAQ simulation and in-situ measurements were 0.75 for January and July, and they were improved to 0.80 and 0.78, respectively. Our results revealed that the method presented in this paper can be used to better measure ground-level NO2 concentrations over China. Full article
Figures

Open AccessArticle
Development of Geospatial and Temporal Characteristics for Hispaniola’s Lake Azuei and Enriquillo Using Landsat Imagery
Remote Sens. 2017, 9(6), 510; doi:10.3390/rs9060510 -
Abstract
In this paper, we used Landsat imagery for water body identification to create a novel 36-year surface area extent time series for lakes Azuei (Haiti) and Enriquillo (Dominican Republic) aimed at illuminating the dramatic temporal changes of these two lakes not just at
[...] Read more.
In this paper, we used Landsat imagery for water body identification to create a novel 36-year surface area extent time series for lakes Azuei (Haiti) and Enriquillo (Dominican Republic) aimed at illuminating the dramatic temporal changes of these two lakes not just at yearly but at monthly or even sub-monthly scales. We used the Normalized Difference Water Index (NDWI) to extract water features and we also used spatial differentiation and thresholding techniques to remove clouds and associated shadows from the scene that were then passed through gap filling algorithms to complete and extract the lake extent polygons. We also explored the challenges that arrive from trying to combine RS-based Digital Elevation Model data with locally collected bathymetric data to yield a seamless representation of the topographic features of the rift valley that contains the two lakes. This “bathtub” model was then meshed with the lake extent polygons to compute lake volumes, maximum depths, and geospatially referenced lake levels rating curves. We used this data to examine the lakes and their geospatial characteristics in the context of the lakes’ growth/shrinking patterns. While we did not carry out a full hydrologic analysis we attempted to illuminate how specific lake levels cause what type of flooding and especially answered the questions if (a) Lake Azuei would ever spill into Lake Enriquillo, and (b) what the maximum lake levels need to be before spilling into neighboring watersheds. Full article
Figures

Open AccessArticle
Satellite-Based Sea Ice Navigation for Prydz Bay, East Antarctica
Remote Sens. 2017, 9(6), 518; doi:10.3390/rs9060518 -
Abstract
Sea ice adversely impacts nautical, logistical and scientific missions in polar regions. Ship navigation benefits from up-to-date sea ice analyses at both regional and local scales. This study presents a satellite-based sea ice navigation system (SatSINS) that integrates observations and scientific output from
[...] Read more.
Sea ice adversely impacts nautical, logistical and scientific missions in polar regions. Ship navigation benefits from up-to-date sea ice analyses at both regional and local scales. This study presents a satellite-based sea ice navigation system (SatSINS) that integrates observations and scientific output from remote sensing and meteorological data to develop optimum marine navigational routes in sea ice-covered waters, especially in areas where operational ice information is usually scarce. The system and its applications are presented in the context of a decision-making process to optimize the routing of the RV Xuelong during her passage through Prydz Bay, East Antarctica during three trips in the austral spring of 2011–2013. The study assesses scientifically-generated remote sensing ice parameters for their operational use in marine navigation. Evaluation criteria involve identification of priority parameters, their spatio-temporal requirements in relation to navigational needs, and their level of accuracy in conjunction with the severity of ice conditions. Coarse-resolution ice concentration maps are sufficient to delineate ice edge and develop a safe route when ice concentration is less than 70%, provided that ice dynamics, estimated from examining the cyclonic pattern, is not severe. Otherwise, fine-resolution radar data should be used to identify and avoid deformed ice. Satellite data lagging one day behind the actual location of the ship was sufficient in most cases although the proposed route may have to be adjusted. To evaluate the utility of SatSINS, deviation of the actual route from the proposed route was calculated and found to range between 165 m to about 16.0 km with standard deviations of 2.8–6.1 km. Growth of land-fast ice has proven to be an essential component of the system as it was estimated using a thermodynamic model with input from a meteorological station. Full article
Figures

Open AccessArticle
Dynamic Monitoring of the Largest Freshwater Lake in China Using a New Water Index Derived from High Spatiotemporal Resolution Sentinel-1A Data
Remote Sens. 2017, 9(6), 521; doi:10.3390/rs9060521 -
Abstract
Poyang Lake is the largest freshwater lake in China and is well known for its ecological function and economic importance. However, due to the influence of clouds, it is difficult to dynamically monitor the changes in water surface areas using optical remote sensing.
[...] Read more.
Poyang Lake is the largest freshwater lake in China and is well known for its ecological function and economic importance. However, due to the influence of clouds, it is difficult to dynamically monitor the changes in water surface areas using optical remote sensing. To address this problem, we propose a novel method to monitor these changes using Sentinel-1A data. First, the Sentinel-1A water index (SWI) was built using a linear model and a stepwise multiple regression analysis method with Sentinel-1A and Landsat-8 imagery acquired on the same day. Second, water surface areas of Poyang Lake from 24 May 2015 to 14 November 2016 were extracted by the threshold method utilizing time-series SWI data with an interval of 12 days. The results showed that the SWI threshold classification method could be applied to different regions during different periods with high quantity accuracy (approximately 99%). The water surface areas ranged between 1726.73 km2 and 3729.19 km2 during the study periods, indicating an extreme variability in the short term. The maximum and average values of the changed areas were 875.57 km2 (with a change rate of 35%) and 197.58 km2 (with a change rate of 8.2%), respectively, after 12 days. The changes in the mid-western region of Poyang Lake were more dramatic. These results provide baseline data for high-frequency monitoring of the ecological environment and wetland management in Poyang Lake. Full article
Figures

Open AccessArticle
Integrated System for Auto-Registered Hyperspectral and 3D Structure Measurement at the Point Scale
Remote Sens. 2017, 9(6), 512; doi:10.3390/rs9060512 -
Abstract
Hyperspectral and 3D structure measurement are among the active research areas of remote sensing in recent years. The combination of these two kinds of information can provide improved outcomes distinctly, which is widely used in vegetation physiology, precision agriculture and radiative transfer modeling.
[...] Read more.
Hyperspectral and 3D structure measurement are among the active research areas of remote sensing in recent years. The combination of these two kinds of information can provide improved outcomes distinctly, which is widely used in vegetation physiology, precision agriculture and radiative transfer modeling. However, the registration and synchronization has been overlooked in data acquisition. The mismatched characteristics have limited the potential application of the hyperspectral and 3D structure data as a complete data set. This paper proposes a laboratory prototype which can integrate the hyperspectral and 3D structure measurement at the point scale. The prism dispersion and laser triangulation ranging are performed in a common optical path as a result of the coplanar design of the critical optical devices. The hyperspectral data and depth data of the same object point are acquired from the same focal plane, which makes the data auto-registered spatially and temporally. Test experiment verifies the accuracy of the data provided by the prototype and the actual measurement experiment demonstrates the feasibility of the design in vegetation observation. Full article
Figures

Open AccessArticle
Independent System Calibration of Sentinel-1B
Remote Sens. 2017, 9(6), 511; doi:10.3390/rs9060511 -
Abstract
Sentinel-1B is the second of two C-Band Synthetic Aperture Radar (SAR) satellites of the Sentinel-1 mission, launched in April 2016—two years after the launch of the first satellite, Sentinel-1A. In addition to the commissioning of Sentinel-1B executed by the European Space Agency (ESA),
[...] Read more.
Sentinel-1B is the second of two C-Band Synthetic Aperture Radar (SAR) satellites of the Sentinel-1 mission, launched in April 2016—two years after the launch of the first satellite, Sentinel-1A. In addition to the commissioning of Sentinel-1B executed by the European Space Agency (ESA), an independent system calibration was performed by the German Aerospace Center (DLR) on behalf of ESA. Based on an efficient calibration strategy and the different calibration procedures already developed and applied for Sentinel-1A, extensive measurement campaigns were executed by initializing and aligning DLR’s reference targets deployed on the ground. This paper describes the different activities performed by DLR during the Sentinel-1B commissioning phase and presents the results derived from the analysis and the evaluation of a multitude of data takes and measurements. Full article
Figures