Open AccessArticle
Loess Landslide Inventory Map Based on GF-1 Satellite Imagery
Remote Sens. 2017, 9(4), 314; doi:10.3390/rs9040314 -
Abstract
Rainfall-induced landslides are a major threat in the hilly and gully regions of the Loess Plateau. Landslide mapping via field investigations is challenging and impractical in this complex region because of its numerous gullies. In this paper, an algorithm based on an object-oriented
[...] Read more.
Rainfall-induced landslides are a major threat in the hilly and gully regions of the Loess Plateau. Landslide mapping via field investigations is challenging and impractical in this complex region because of its numerous gullies. In this paper, an algorithm based on an object-oriented method (OOA) has been developed to recognize loess landslides by combining spectral, textural, and morphometric information with auxiliary topographic parameters based on high-resolution multispectral satellite data (GF-1, 2 m) and a high-precision DEM (5 m). The quality percentage (QP) values were all greater than 0.80, and the kappa indices were all higher than 0.85, indicating good landslide detection with the proposed approach. We quantitatively analyze the spectral, textural, morphometric, and topographic properties of loess landslides. The normalized difference vegetation index (NDVI) is useful for discriminating landslides from vegetation cover and water areas. Morphometric parameters, such as elongation and roundness, can potentially improve the recognition capacity and facilitate the identification of roads. The combination of spectral properties in near-infrared regions, the textural variance from a grey level co-occurrence matrix (GLCM), and topographic elevation data can be used to effectively discriminate terraces and buildings. Furthermore, loess flows are separated from landslides based on topographic position data. This approach shows great potential for quickly producing accurate results for loess landslides that are induced by extreme rainfall events in the hilly and gully regions of the Loess Plateau, which will help decision makers improve landslide risk assessment, reduce the risk from landslide hazards and facilitate the application of more reliable disaster management strategies. Full article
Figures

Open AccessArticle
Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data
Remote Sens. 2017, 9(4), 315; doi:10.3390/rs9040315 -
Abstract
This paper presents for the first time a detailed study on information content of X-band single-pass interferometric spaceborne SAR data with respect to snow facies characterization. An approach for classifying different snow facies of the Greenland Ice Sheet by exploiting X-band TanDEM-X interferometric
[...] Read more.
This paper presents for the first time a detailed study on information content of X-band single-pass interferometric spaceborne SAR data with respect to snow facies characterization. An approach for classifying different snow facies of the Greenland Ice Sheet by exploiting X-band TanDEM-X interferometric synthetic aperture radar acquisitions is firstly detailed. Large-scale mosaics of radar backscatter and volume correlation factor, derived from quicklook images of the interferometric coherence, represent the starting point for applying an unsupervised classification method based on the c-means fuzzy clustering algorithm. The data was acquired during winter 2010/2011. A partition of four different snow facies was chosen and interpreted using reference melt data, snow density, and in situ measurements. The variations in the stratification and micro-structure of firn, such as the variations of density with depth and the presence of percolation features, are identified as relevant parameters for explaining the significant differences in the observed interferometric signatures among different snow facies. Moreover, a statistical analysis of backscatter and volume correlation factor provided useful parameters for characterizing the snow facies behavior and analyzing their dependency on the acquisition geometry. Finally, knowing the location and characterization of the different snow facies, the two-way X-band penetration depth over the whole Ice Sheet was estimated. The obtained mean values vary from 2.3 m for the outer snow facies up to 4.18 m for the inner one. The presented approach represents a starting point for a long-term monitoring of ice sheet dynamics, by acquiring time-series, and is of high relevance for the design of future SAR missions as well. Full article
Figures

Open AccessArticle
Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations
Remote Sens. 2017, 9(4), 318; doi:10.3390/rs9040318 -
Abstract
Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models
[...] Read more.
Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined. Full article
Figures

Open AccessArticle
Texture-Guided Multisensor Superresolution for Remotely Sensed Images
Remote Sens. 2017, 9(4), 316; doi:10.3390/rs9040316 -
Abstract
This paper presents a novel technique, namely texture-guided multisensor superresolution (TGMS), for fusing a pair of multisensor multiresolution images to enhance the spatial resolution of a lower-resolution data source. TGMS is based on multiresolution analysis, taking object structures and image textures in the
[...] Read more.
This paper presents a novel technique, namely texture-guided multisensor superresolution (TGMS), for fusing a pair of multisensor multiresolution images to enhance the spatial resolution of a lower-resolution data source. TGMS is based on multiresolution analysis, taking object structures and image textures in the higher-resolution image into consideration. TGMS is designed to be robust against misregistration and the resolution ratio and applicable to a wide variety of multisensor superresolution problems in remote sensing. The proposed methodology is applied to six different types of multisensor superresolution, which fuse the following image pairs: multispectral and panchromatic images, hyperspectral and panchromatic images, hyperspectral and multispectral images, optical and synthetic aperture radar images, thermal-hyperspectral and RGB images, and digital elevation model and multispectral images. The experimental results demonstrate the effectiveness and high general versatility of TGMS. Full article
Figures

Open AccessArticle
Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards
Remote Sens. 2017, 9(4), 317; doi:10.3390/rs9040317 -
Abstract
Wine grape quality and quantity are affected by vine growing conditions during critical phenological stages. Field observations of vine growth stages are too sparse to fully capture the spatial variability of vine conditions. In addition, traditional grape yield prediction methods are time consuming
[...] Read more.
Wine grape quality and quantity are affected by vine growing conditions during critical phenological stages. Field observations of vine growth stages are too sparse to fully capture the spatial variability of vine conditions. In addition, traditional grape yield prediction methods are time consuming and require large amount grape samples. Remote sensing data provide detailed spatial and temporal information regarding vine development that is useful for vineyard management. In this study, Landsat surface reflectance products from 2013 and 2014 were used to map satellite-based Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) over two Vitis vinifera L. cv. Pinot Noir vineyards in California, USA. The spatial correlation between grape yield maps and the interpolated daily time series (LAI and NDVI) was quantified. NDVI and LAI were found to have similar performance as a predictor of spatial yield variability, providing peak correlations of 0.8 at specific times during the growing season, and the timing of this peak correlation differed for the two years of study. In addition, correlations with maximum and seasonal-cumulative vegetation indices were also evaluated, and showed slightly lower correlations with the observed yield maps. Finally, the within-season grape yield predictability was examined using a simple strategy in which the relationship between grape yield and vegetation indices were calibrated with limited ground measurements. This strategy has a strong potential to improve the accuracy and efficiency of yield estimation in comparison with traditional approaches used in the wine grape growing industry. Full article
Figures

Open AccessArticle
Spectroscopic Estimation of Biomass in Canopy Components of Paddy Rice Using Dry Matter and Chlorophyll Indices
Remote Sens. 2017, 9(4), 319; doi:10.3390/rs9040319 -
Abstract
Crop biomass is a critical variable for characterizing crop growth development, understanding dry matter partitioning, and predicting grain yield. Previous studies on the spectroscopic estimation of crop biomass focused on the use of various spectral indices based on chlorophyll absorption features and found
[...] Read more.
Crop biomass is a critical variable for characterizing crop growth development, understanding dry matter partitioning, and predicting grain yield. Previous studies on the spectroscopic estimation of crop biomass focused on the use of various spectral indices based on chlorophyll absorption features and found that they often became saturated at high biomass levels. Given that crop biomass is commonly expressed as the dry weight of canopy components per unit ground area, it may be better estimated using the spectral indices that directly characterize dry matter absorption. This study aims to evaluate a group of four dry matter indices (DMIs) by comparison with a group of four chlorophyll indices (CIs) for estimating the biomass of individual components (e.g., leaves, stems) and their combinations with the field data collected from a two-year rice cultivation experiment. The Red-edge Chlorophyll Index (CIRed-edge) of the CI group exhibited the best relationship with leaf biomass (R2 = 0.82) for the whole growing season and with total biomass (R2 = 0.81), but only for the growth stages before heading. However, the Normalized Difference Index for Leaf Mass per Area (NDLMA) of the DMI group showed the best relationships with both stem biomass (R2 = 0.81) and total biomass (R2 = 0.81) for the whole season. This research demonstrated the suitability of dry matter indices and provided physical explanations for the superior performance of dry matter indices over chlorophyll indices for the estimation of whole-season total biomass. Full article
Figures

Open AccessArticle
Flood Monitoring Using Satellite-Based RGB Composite Imagery and Refractive Index Retrieval in Visible and Near-Infrared Bands
Remote Sens. 2017, 9(4), 313; doi:10.3390/rs9040313 -
Abstract
Satellite remote sensing provides significant information for the monitoring of natural disasters. Recently, on a global scale, floods have been increasing both in frequency and in magnitude. In order to map the inundation area, flooding events are investigated using unique RGB composite imagery
[...] Read more.
Satellite remote sensing provides significant information for the monitoring of natural disasters. Recently, on a global scale, floods have been increasing both in frequency and in magnitude. In order to map the inundation area, flooding events are investigated using unique RGB composite imagery based on the MODIS surface reflectance (MOD09GA) data obtained from the Terra satellite, which is used to visualize and analyze these events. This study proposes using an RGB combination of MODIS band 6 (1.64 μm), band 5 (1.24 μm), and band 2 (0.86 μm) data from the visible and the near-infrared spectral ranges to map flood events. The flooding events that were investigated in this study occurred on 25 October 2015 along the Pampanga River in the Philippines, and on 28 July 2016 along the Poyang and Dongting Lakes in China. In the case of the Pampanga River, the inundated areas were estimated with surface reflectance (R) thresholds of 0.0 ≤ R6 ≤ 0.102, 0.0 ≤ R5 ≤ 0.138, and 0.03 ≤ R2 ≤ 0.148 for MODIS bands 6, 5, and 2, respectively, which were determined using Otsu’s method. The total inundated area was estimated to be 487.75 km2. This estimate was indirectly compared with the results obtained from SENTINEL-1A Synthetic Aperture Radar (SAR) data. The total inundated area on 26 October 2015 for the case of the Pampanga River was estimated to be 486.37 km2 using histogram analysis based on Otsu’s method. For the flooding case in China, the total estimated inundated area using MODIS RGB imagery on 28 July 2016 and SAR on 3 August 2016 was 1148.25 km2 and 1110.096 km2, respectively. In addition, RGB imagery results using MODIS 6-5-2 bands were supported by the refractive index retrieval along the inundation area. A threshold of 1.6 for the real part of the complex refractive index allows for the discrimination between the flooded and non-flooded areas using the Hong and ASH approximations. This study shows that the RGB composite techniques using advanced sensors with more bands and higher spatio-temporal resolutions, and supported by the refractive index retrieval method, are useful for estimating flood events. Full article
Figures

Figure 1

Open AccessArticle
Deep Learning Approach for Car Detection in UAV Imagery
Remote Sens. 2017, 9(4), 312; doi:10.3390/rs9040312 -
Abstract
This paper presents an automatic solution to the problem of detecting and counting cars in unmanned aerial vehicle (UAV) images. This is a challenging task given the very high spatial resolution of UAV images (on the order of a few centimetres) and the
[...] Read more.
This paper presents an automatic solution to the problem of detecting and counting cars in unmanned aerial vehicle (UAV) images. This is a challenging task given the very high spatial resolution of UAV images (on the order of a few centimetres) and the extremely high level of detail, which require suitable automatic analysis methods. Our proposed method begins by segmenting the input image into small homogeneous regions, which can be used as candidate locations for car detection. Next, a window is extracted around each region, and deep learning is used to mine highly descriptive features from these windows. We use a deep convolutional neural network (CNN) system that is already pre-trained on huge auxiliary data as a feature extraction tool, combined with a linear support vector machine (SVM) classifier to classify regions into “car” and “no-car” classes. The final step is devoted to a fine-tuning procedure which performs morphological dilation to smooth the detected regions and fill any holes. In addition, small isolated regions are analysed further using a few sliding rectangular windows to locate cars more accurately and remove false positives. To evaluate our method, experiments were conducted on a challenging set of real UAV images acquired over an urban area. The experimental results have proven that the proposed method outperforms the state-of-the-art methods, both in terms of accuracy and computational time. Full article
Figures

Figure 1

Open AccessArticle
A Hybrid Approach for Three-Dimensional Building Reconstruction in Indianapolis from LiDAR Data
Remote Sens. 2017, 9(4), 310; doi:10.3390/rs9040310 -
Abstract
3D building models with prototypical roofs are more valuable in many applications than 2D building footprints. This research proposes a hybrid approach, combining the data- and model-driven approaches for generating LoD2-level building models by using medium resolution (0.91 m) LiDAR nDSM, the 2D
[...] Read more.
3D building models with prototypical roofs are more valuable in many applications than 2D building footprints. This research proposes a hybrid approach, combining the data- and model-driven approaches for generating LoD2-level building models by using medium resolution (0.91 m) LiDAR nDSM, the 2D building footprint and the high resolution orthophoto for the City of Indianapolis, USA. The main objective is to develop a GIS-based procedure for automatic reconstruction of complex building roof structures in a large area with high accuracy, but without requiring high-density point data clouds and computationally-intensive algorithms. A multi-stage strategy, which combined step-edge detection, roof model selection and ridge detection techniques, was adopted to extract key features and to obtain prior knowledge for 3D building reconstruction. The entire roof can be reconstructed successfully by assembling basic models after their shapes were reconstructed. This research finally created a 3D city model at the Level of Detail 2 (LoD2) according to the CityGML standard for the downtown area of Indianapolis (included 519 buildings).The reconstruction achieved 90.6% completeness and 96% correctness for seven tested buildings whose roofs were mixed by different shapes of structures. Moreover, 86.3% of completeness and 90.9% of correctness were achieved for 38 commercial buildings with complex roof structures in the downtown area, which indicated that the proposed method had the ability for large-area building reconstruction. The major contribution of this paper lies in designing an efficient method to reconstruct complex buildings, such as those with irregular footprints and roof structures with flat, shed and tiled sub-structures mixed together. It overcomes the limitation that building reconstruction using coarse resolution LiDAR nDSM cannot be based on precise horizontal ridge locations, by adopting a novel ridge detection method. Full article
Figures

Open AccessArticle
Fuzzy AutoEncode Based Cloud Detection for Remote Sensing Imagery
Remote Sens. 2017, 9(4), 311; doi:10.3390/rs9040311 -
Abstract
Cloud detection of remote sensing imagery is quite challenging due to the influence of complicated underlying surfaces and the variety of cloud types. Currently, most of the methods mainly rely on prior knowledge to extract features artificially for cloud detection. However, these features
[...] Read more.
Cloud detection of remote sensing imagery is quite challenging due to the influence of complicated underlying surfaces and the variety of cloud types. Currently, most of the methods mainly rely on prior knowledge to extract features artificially for cloud detection. However, these features may not be able to accurately represent the cloud characteristics under complex environment. In this paper, we adopt an innovative model named Fuzzy Autoencode Model (FAEM) to integrate the feature learning ability of stacked autoencode networks and the detection ability of fuzzy function for highly accurate cloud detection on remote sensing imagery. Our proposed method begins by selecting and fusing spectral, texture, and structure information. Thereafter, the proposed technique established a FAEM to learn the deep discriminative features from a great deal of selected information. Finally, the learned features are mapped to the corresponding cloud density map with a fuzzy function. To demonstrate the effectiveness of the proposed method, 172 Landsat ETM+ images and 25 GF-1 images with different spatial resolutions are used in this paper. For the convenience of accuracy assessment, ground truth data are manually outlined. Results show that the average RER (ratio of right rate and error rate) on Landsat images is greater than 29, while the average RER of Support Vector Machine (SVM) is 21.8 and Random Forest (RF) is 23. The results on GF-1 images exhibit similar performance as Landsat images with the average RER of 25.9, which is much higher than the results of SVM and RF. Compared to traditional methods, our technique has attained higher average cloud detection accuracy for either different spatial resolutions or various land surfaces. Full article
Figures

Figure 1

Open AccessArticle
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models
Remote Sens. 2017, 9(4), 309; doi:10.3390/rs9040309 -
Abstract
Leaf area index (LAI) is an important indicator of plant growth and yield that can be monitored by remote sensing. Several models were constructed using datasets derived from SRS and STR sampling methods to determine the optimal model for soybean (multiple strains) LAI
[...] Read more.
Leaf area index (LAI) is an important indicator of plant growth and yield that can be monitored by remote sensing. Several models were constructed using datasets derived from SRS and STR sampling methods to determine the optimal model for soybean (multiple strains) LAI inversion for the whole crop growth period and a single growth period. Random forest (RF), artificial neural network (ANN), and support vector machine (SVM) regression models were compared with a partial least-squares regression (PLS) model. The RF model yielded the highest precision, accuracy, and stability with V-R2, SDR2, V-RMSE, and SDRMSE values of 0.741, 0.031, 0.106, and 0.005, respectively, over the whole growth period based on STR sampling. The ANN model had the highest precision, accuracy, and stability (0.452, 0.132, 0.086, and 0.009, respectively) over a single growth phase based on STR sampling. The precision, accuracy, and stability of the RF, ANN, and SVM models were improved by inclusion of STR sampling. The RF model is suitable for estimating LAI when sample plots and variation are relatively large (i.e., the whole growth period or more than one growth period). The ANN model is more appropriate for estimating LAI when sample plots and variation are relatively low (i.e., a single growth period). Full article
Figures

Open AccessArticle
A Novel Approach for Coarse-to-Fine Windthrown Tree Extraction Based on Unmanned Aerial Vehicle Images
Remote Sens. 2017, 9(4), 306; doi:10.3390/rs9040306 -
Abstract
Surveys of windthrown trees, resulting from hurricanes and other types of natural disasters, are an important component of agricultural insurance, forestry statistics, and ecological monitoring. Aerial images are commonly used to determine the total area or number of downed trees, but conventional methods
[...] Read more.
Surveys of windthrown trees, resulting from hurricanes and other types of natural disasters, are an important component of agricultural insurance, forestry statistics, and ecological monitoring. Aerial images are commonly used to determine the total area or number of downed trees, but conventional methods suffer from two primary issues: misclassification of windthrown trees due to the interference from other objects or artifacts, and poor extraction resolution when trunk diameters are small. The objective of this study is to develop a coarse-to-fine extraction technique for individual windthrown trees that reduces the effects of these common flaws. The developed method was tested using UAV imagery collected over rubber plantations on Hainan Island after the Nesat typhoon in China on 19 October 2011. First, a coarse extraction of the affected area was performed by analyzing the image spectrum and textural characteristics. A thinning algorithm was then used to simplify downed trees into skeletal structures. Finally, fine extraction of individual trees was achieved using a line detection algorithm. The completeness of windthrown trees in the study area was 75.7% and the correctness was 92.5%. While similar values have been reported in other studies, they often include constraints, such as tree height. This technique is proposed to be a more feasible extraction algorithm as it is capable of achieving low commission errors across a broad range of tree heights and sizes. As such, it is a viable option for extraction of windthrown trees with a small trunk diameter. Full article
Figures

Open AccessArticle
An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa
Remote Sens. 2017, 9(4), 307; doi:10.3390/rs9040307 -
Abstract
Knowledge of evapotranspiration (ET) is essential for enhancing our understanding of the hydrological cycle, as well as for managing water resources, particularly in semi-arid regions. Remote sensing offers a comprehensive means of monitoring this phenomenon at different spatial and temporal intervals. Currently, several
[...] Read more.
Knowledge of evapotranspiration (ET) is essential for enhancing our understanding of the hydrological cycle, as well as for managing water resources, particularly in semi-arid regions. Remote sensing offers a comprehensive means of monitoring this phenomenon at different spatial and temporal intervals. Currently, several satellite methods exist and are used to assess ET at various spatial and temporal resolutions with various degrees of accuracy and precision. This research investigated the performance of three satellite-based ET algorithms and two global products, namely land surface temperature/vegetation index (TsVI), Penman–Monteith (PM), and the Meteosat Second Generation ET (MET) and the Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) global products, in two eco-regions of South Africa. Daily ET derived from the eddy covariance system from Skukuza, a sub-tropical, savanna biome, and large aperture boundary layer scintillometer system in Elandsberg, a Mediterranean, fynbos biome, during the dry and wet seasons, were used to evaluate the models. Low coefficients of determination (R2) of between 0 and 0.45 were recorded on both sites, during both seasons. Although PM performed best during periods of high ET at both sites, results show it was outperformed by other models during low ET times. TsVI and MET were similarly accurate in the dry season in Skukuza, as GLEAM was the most accurate in Elandsberg during the wet season. The conclusion is that none of the models performed well, as shown by low R2 and high errors in all the models. In essence, our results conclude that further investigation of the PM model is possible to improve its estimation of low ET measurements. Full article
Figures

Open AccessArticle
Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
Remote Sens. 2017, 9(4), 308; doi:10.3390/rs9040308 -
Abstract
Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in
[...] Read more.
Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infected vines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed. Full article
Figures

Figure 1

Open AccessArticle
Application of Bivariate and Multivariate Statistical Techniques in Landslide Susceptibility Modeling in Chittagong City Corporation, Bangladesh
Remote Sens. 2017, 9(4), 304; doi:10.3390/rs9040304 -
Abstract
The communities living on the dangerous hillslopes in Chittagong City Corporation (CCC) in Bangladesh recurrently experience landslide hazards during the monsoon season. The frequency and intensity of landslides are increasing over time because of heavy rainfall occurring over a few days. Furthermore, rapid
[...] Read more.
The communities living on the dangerous hillslopes in Chittagong City Corporation (CCC) in Bangladesh recurrently experience landslide hazards during the monsoon season. The frequency and intensity of landslides are increasing over time because of heavy rainfall occurring over a few days. Furthermore, rapid urbanization through hill-cutting is another factor, which is believed to have a significant impact on the occurrence of landslides. This study aims to develop landslide susceptibility maps (LSMs) through the use of Dempster-Shafer weights of evidence (WoE) and the multiple regression (MR) method. Three different combinations with principal component analysis (PCA) and fuzzy membership techniques were used and tested. Twelve factor maps (i.e., slope, hill-cutting, geology, geomorphology, NDVI, soil moisture, precipitation and distance from existing buildings, stream, road and drainage network, and faults-lineaments) were prepared based on their association with historical landslide events. A landslide inventory map was prepared through field surveys for model simulation and validation purposes. The performance of the predicted LSMs was validated using the area under the relative operating characteristic (ROC) curve method. The overall success rates were 87.3%, 90.9%, 91.3%, and 93.9%, respectively for the WoE, MR with all the layers, MR with PCA layers, and MR with fuzzy probability layers. Full article
Figures

Open AccessArticle
Automated Improvement of Geolocation Accuracy in AVHRR Data Using a Two-Step Chip Matching Approach—A Part of the TIMELINE Preprocessor
Remote Sens. 2017, 9(4), 303; doi:10.3390/rs9040303 -
Abstract
The geolocation of Advanced Very High Resolution Radiometer (AVHRR) data is known to be imprecise due to minor satellite position and orbit uncertainties. These uncertainties lead to distortions once the data are projected based on the provided orbit parameters. This can cause geolocation
[...] Read more.
The geolocation of Advanced Very High Resolution Radiometer (AVHRR) data is known to be imprecise due to minor satellite position and orbit uncertainties. These uncertainties lead to distortions once the data are projected based on the provided orbit parameters. This can cause geolocation errors of up to 10 km per pixel which is an obstacle for applications such as time series analysis, compositing/mosaicking of images, or the combination with other satellite data. Therefore, a fusion of two techniques to match the data in orbit projection has been developed to overcome this limitation, even without the precise knowledge of the orbit parameters. Both techniques attempt to find the best match between small image chips taken from a reference water mask in the first, and from a median Normalized Difference Vegetation Index (NDVI) mask in the second round. This match is determined shifting around the small image chips until the best correlation between reference and satellite data source is found for each respective image part. Only if both attempts result in the same shift in any direction, the position in the orbit is included in a third order polynomial warping process that will ultimately improve the geolocation accuracy of the AVHRR data. The warping updates the latitude and longitude layers and the contents of the data layers itself remain untouched. As such, original sensor measurements are preserved. An included automated quality assessment generates a quality layer that informs about the reliability of the matching. Full article
Figures

Open AccessFeature PaperArticle
No-Reference Hyperspectral Image Quality Assessment via Quality-Sensitive Features Learning
Remote Sens. 2017, 9(4), 305; doi:10.3390/rs9040305 -
Abstract
Assessing the quality of a reconstructed hyperspectral image (HSI) is of significance for restoration and super-resolution. Current image quality assessment methods such as peak signal-noise-ratio require the availability of pristine reference image, which is often not available in reality. In this paper, we
[...] Read more.
Assessing the quality of a reconstructed hyperspectral image (HSI) is of significance for restoration and super-resolution. Current image quality assessment methods such as peak signal-noise-ratio require the availability of pristine reference image, which is often not available in reality. In this paper, we propose a no-reference hyperspectral image quality assessment method based on quality-sensitive features extraction. Difference of statistical properties between pristine and distorted HSIs is analyzed in both spectral and spatial domains, then multiple statistics features that are sensitive to image quality are extracted. By combining all these statistics features, we learn a multivariate Gaussian (MVG) model as benchmark from the pristine hyperspectral datasets. In order to assess the quality of a reconstructed HSI, we partition it into different local blocks and fit a MVG model on each block. A modified Bhattacharyya distance between the MVG model of each reconstructed HSI block and the benchmark MVG model is computed to measure the quality. The final quality score is obtained by average pooling over all the blocks. We assess five state-of-the-art super-resolution methods on Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Hyperspec-VNIR-C (HyperspecVC) data using our proposed method. It is verified that the proposed quality score is consistent with current reference-based assessment indices, which demonstrates the effectiveness and potential of the proposed no-reference image quality assessment method. Full article
Figures

Figure 1

Open AccessArticle
Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared Diffuse Reflectance Spectroscopy in the Central Amazon
Remote Sens. 2017, 9(4), 293; doi:10.3390/rs9040293 -
Abstract
Visible and near-infrared diffuse reflectance spectroscopy (VIS-NIR) has shown levels of accuracy comparable to conventional laboratory methods for estimating soil properties. Soil chemical and physical properties have been predicted by reflectance spectroscopy successfully on subtropical and temperate soils, whereas soils from tropical agro-forest
[...] Read more.
Visible and near-infrared diffuse reflectance spectroscopy (VIS-NIR) has shown levels of accuracy comparable to conventional laboratory methods for estimating soil properties. Soil chemical and physical properties have been predicted by reflectance spectroscopy successfully on subtropical and temperate soils, whereas soils from tropical agro-forest regions have received less attention, especially those from tropical rainforests. A spectral characterization provides a proficient pathway for soil characterization. The first step in this process is to develop a comprehensive VIS-NIR soil library of multiple key soil properties to be used in future soil surveys. This paper presents the first VIS-NIR soil library for a remote region in the Central Amazon. We evaluated the performance of VIS-NIR for the prediction of soil properties in the Central Amazon, Brazil. Soil properties measured and predicted were: pH, Ca, Mg, Al, H, H+Al, P, organic C (SOC), sum of bases, cation exchange capacity (CEC), percentage of base saturation (V), Al saturation (m), clay, sand, silt, silt/clay (S/C), and degree of flocculation. Soil samples were scanned in the laboratory in the VIS-NIR range (350–2500 nm), and forty-one pre-processing methods were tested to improve predictions. Clay content was predicted with the highest accuracy, followed by SOC. Sand, S/C, H, Al, H+Al, CEC, m and V predictions were reasonably good. The other soil properties were poorly predicted. Among the soil properties predicted well, SOC is one of the critical soil indicators in the global carbon cycle. Besides the soil property of interest, the landscape position, soil order and depth influenced in the model performance. For silt content, pH and S/C, the model performed better in well-drained soils, whereas for SOC best predictions were obtained in poorly drained soils. The association of VIS-NIR spectral data to landforms, vegetation classes, and soil types demonstrate potential for soil characterization. Full article
Figures

Open AccessArticle
Evaluation of Satellite Retrievals of Chlorophyll-a in the Arabian Gulf
Remote Sens. 2017, 9(3), 301; doi:10.3390/rs9030301 -
Abstract
The Arabian Gulf is a highly turbid, shallow sedimentary basin whose coastal areas have been classified as optically complex Case II waters (where ocean colour sensors have been proved to be unreliable). Yet, there is no such study assessing the performance and quality
[...] Read more.
The Arabian Gulf is a highly turbid, shallow sedimentary basin whose coastal areas have been classified as optically complex Case II waters (where ocean colour sensors have been proved to be unreliable). Yet, there is no such study assessing the performance and quality of satellite ocean-colour datasets in relation to ground truth data in the Gulf. Here, using a unique set of in situ Chlorophyll-a measurements (Chl-a; an index of phytoplankton biomass), collected from 24 locations in four transects in the central Gulf over six recent research cruises (2015–2016), we evaluated the performance of VIIRS and other merged satellite datasets, for the first time in the region. A highly significant relationship was found (r = 0.795, p < 0.001), though a clear overestimation in satellite-derived Chl-a concentrations is evident. Regardless of this constant overestimation, the remotely sensed Chl-a observations illustrated adequately the seasonal cycles. Due to the optically complex environment, the first optical depth was calculated to be on average 6–10 m depth, and thus the satellite signal is not capturing the deep chlorophyll maximum (DCM at ~25 m). Overall, the ocean colour sensors’ performance was comparable to other Case II waters in other regions, supporting the use of satellite ocean colour in the Gulf. Yet, the development of a regional-tuned algorithm is needed to account for the unique environmental conditions of the Gulf, and ultimately provide a better estimation of surface Chl-a in the region. Full article
Figures

Open AccessFeature PaperArticle
Elevation Change and Improved Velocity Retrieval Using Orthorectified Optical Satellite Data from Different Orbits
Remote Sens. 2017, 9(3), 300; doi:10.3390/rs9030300 -
Abstract
Optical satellite products are available at different processing levels. Of these products, terrain corrected (i.e., orthorectified) products are the ones mostly used for glacier displacement estimation. For terrain correction, a digital elevation model (DEM) is used that typically stems from various data sources
[...] Read more.
Optical satellite products are available at different processing levels. Of these products, terrain corrected (i.e., orthorectified) products are the ones mostly used for glacier displacement estimation. For terrain correction, a digital elevation model (DEM) is used that typically stems from various data sources with variable qualities, from dispersed time instances, or with different spatial resolutions. Consequently, terrain representation used for orthorectifying satellite images is often in disagreement with reality at image acquisition. Normally, the lateral orthoprojection offsets resulting from vertical DEM errors are taken into account in the geolocation error budget of the corrected images, or may even be neglected. The largest offsets of this type are often found over glaciers, as these may show strong elevation changes over time and thus large elevation errors in the reference DEM with respect to image acquisition. The detection and correction of such orthorectification offsets is further complicated by ice flow which adds a second offset component to the displacement vectors between orthorectified data. Vice versa, measurement of glacier flow is complicated by the inherent superposition of ice movement vectors and orthorectification offset vectors. In this study, we try to estimate these orthorectification offsets in the presence of terrain movement and translate them to elevation biases in the reference surface. We demonstrate our method using three different sites which include very dynamic glaciers. For the Oriental Glacier, an outlet of the Southern Patagonian icefield, Landsat 7 and 8 data from different orbits enabled the identification of trends related to elevation change. For the Aletsch Glacier, Swiss Alps, we assess the terrain offsets of both Landsat 8 and Sentinel-2A: a superior DEM appears to be used for Landsat in comparison to Sentinel-2, however a systematic bias is observed in the snow covered areas. Lastly, we demonstrate our methodology in a pipeline structure; displacement estimates for the Helheim-glacier, in Greenland, are mapped and corrected for orthorectification offsets between data from different orbits, which enables a twice as dense a temporal resolution of velocity data, as compared to the standard method of measuring velocities from repeat-orbit data only. In addition, we introduce and implement a novel matching method which uses image triplets. By formulating the three image displacements as a convolution, a geometric constraint can be exploited. Such a constraint enhances the reliability of the displacement estimations. Furthermore the implementation is simple and computationally swift. Full article
Figures