Open AccessArticle
A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate
Polymers 2017, 9(4), 120; doi:10.3390/polym9040120 (registering DOI) -
Abstract
Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented
[...] Read more.
Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The “a-polyP/RA-MP” ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differentiation, collagen type I and alkaline phosphatase. In addition, polyP, applied as Zn-polyP microparticles (“Zn-a-polyP-MP”), showed a distinct inhibitory effect on growth of Streptococcus mutans, in contrast to a toothpaste containing the broad-spectrum antibiotic triclosan that only marginally inhibits this cariogenic bacterium. Moreover, we demonstrate that the “a-polyP/RA-MP”-containing toothpaste efficiently repairs cracks/fissures in the enamel and dental regions and reseals dentinal tubules, already after a five-day treatment (brushing) of teeth as examined by SEM (scanning electron microscopy) and semi-quantitative EDX (energy-dispersive X-ray spectroscopy). The occlusion of the dentin cracks by the microparticles turned out to be stable and resistant against short-time high power sonication. Our results demonstrate that the novel toothpaste prepared here, containing amorphous polyP microparticles enriched with retinyl acetate, is particularly suitable for prevention/repair of (cariogenic) damages of tooth enamel/dentin and for treatment of dental hypersensitivity. While the polyP microparticles function as a sealant for dentinal damages and inducer of remineralization processes, the retinyl acetate acts as a regenerative stimulus for collagen gene expression in cells of the surrounding tissue, the periodontium. Full article
Figures

Open AccessArticle
The Significant Influence of Bacterial Reaction on Physico-Chemical Property Changes of Biodegradable Natural and Synthetic Polymers Using Escherichia coli
Polymers 2017, 9(4), 121; doi:10.3390/polym9040121 (registering DOI) -
Abstract
Escherichia coli (E. coli) was used to activate hydrolysis reaction along with biodegradation in natural and synthetic fibers to identify possibilities as alternative substitutes for textile wastes using chemical solutions and enzymes. To confirm the reaction between the bacterial infections of E. coli
[...] Read more.
Escherichia coli (E. coli) was used to activate hydrolysis reaction along with biodegradation in natural and synthetic fibers to identify possibilities as alternative substitutes for textile wastes using chemical solutions and enzymes. To confirm the reaction between the bacterial infections of E. coli and the excessively abundant interstitial spaces of the fibers, various types of natural and synthetic fibers such as cotton, wool, polyethylene terephalate (PET), polyadmide (PA), polyethylene (PE), and polypropylene (PP) were used to confirm the physico-chemical reactions. Tensile strength analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis were used to determine the physico-chemical property changes of the fiber by the bacteria. When biofilm was formed on the fiber surface, various physical changes such as the following were observed: (i) in the analysis of tensile strength, all except PA and PP were decreased and a decrease in cotton fibers was noticeable (ii) depending on the type of fibers, the degree of roughness was different, but generally the surface became rough. In this study, the change of roughness was the most severe on the cotton fiber surface and the change of PET and PA fiber was relatively small. It was found that the intensity peak of oxygen was increased, except for the in cases of PA and PP, through the change of chemical properties by XPS analysis. Changes in topographical properties on the surface through contact angle analysis were stronger in hydrophilic properties, and in the case of cotton, completely hydrophilic surfaces were formed. Through this study, PA and PP fibers, which are Olefin fibers, were theoretically free of physicochemical and topographical changes since there were no functional groups that could trigger the hydrolysis reaction. Full article
Open AccessArticle
Pentiptycene-Derived Fluorescence Turn-Off Polymer Chemosensor for Copper(II) Cation with High Selectivity and Sensitivity
Polymers 2017, 9(4), 118; doi:10.3390/polym9040118 -
Abstract
Fluorescent conjugated polymers (FCPs) have been explored for selective detection of metal cations with ultra-sensitivity in environmental and biological systems. Herein, a new FCP sensor, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with a N,N,N′-trimethylethylenediamino receptor), has been designed
[...] Read more.
Fluorescent conjugated polymers (FCPs) have been explored for selective detection of metal cations with ultra-sensitivity in environmental and biological systems. Herein, a new FCP sensor, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with a N,N,N′-trimethylethylenediamino receptor), has been designed and synthesized via Sonogashira cross-coupling reaction with the goal of improving solid state polymer sensor development. The polymer was found to be emissive at λmax ~ 459 nm under UV radiation with a quantum yield of 0.119 at room temperature in THF solution. By incorporating diamino receptors and pentiptycene groups into the poly[(phenylene ethynylene)-(thiophene ethynylene)] (PPETE) backbone, the polymer showed an improved turn-off response towards copper(II) cation, with more than 99% quenching in fluorescence emission. It is capable of discriminating copper(II) cation from sixteen common cations, with a detection limit of 16.5 nM (1.04 ppb). Full article
Figures

Open AccessArticle
Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing
Polymers 2017, 9(4), 119; doi:10.3390/polym9040119 -
Abstract
Thermo-responsive hydrogels containing poly(N-isopropylacrylamide) (PNIPAAm), reinforced both with covalent and non-covalent interactions with cellulose nanocrystals (CNC), were synthesized via free-radical polymerization in the absence of any additional cross-linkers. The properties of PNIPAAm-CNC hybrid hydrogels were dependent on the amounts of incorporated
[...] Read more.
Thermo-responsive hydrogels containing poly(N-isopropylacrylamide) (PNIPAAm), reinforced both with covalent and non-covalent interactions with cellulose nanocrystals (CNC), were synthesized via free-radical polymerization in the absence of any additional cross-linkers. The properties of PNIPAAm-CNC hybrid hydrogels were dependent on the amounts of incorporated CNC. The thermal stability of the hydrogels decreased with increasing CNC content. The rheological measurement indicated that the elastic and viscous moduli of hydrogels increased with the higher amounts of CNC addition, representing stronger mechanical properties of the hydrogels. Moreover, the hydrogel injection also supported the hypothesis that CNC reinforced the hydrogels; the increased CNC content exhibited higher structural integrity upon injection. The PNIPAAm-CNC hybrid hydrogels exhibited clear thermo-responsive behavior; the volume phase transition temperature (VPTT) was in the range of 36 to 39 °C, which is close to normal human body temperature. For wound dressing purposes, metronidazole, an antibiotic and antiprotozoal often used for skin infections, was used as a target drug to study drug-loading and the release properties of the hydrogels. The hydrogels showed a good drug-loading capacity at room temperature and a burst drug release, which was followed by slow and sustained release at 37 °C. These results suggested that newly developed drugs containing injectable hydrogels are promising materials for wound dressing. Full article
Open AccessArticle
Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper
Polymers 2017, 9(4), 115; doi:10.3390/polym9040115 -
Abstract
The effects of carbon nanotube (CNT) length on the viscoelasticity and permeability of buckypaper, composed of (5,5) single-walled CNTs (SWCNTs), are systematically explored through large-scale coarse-grained molecular dynamics simulations. The SWCNT length is found to have a pronounced impact on the structure of
[...] Read more.
The effects of carbon nanotube (CNT) length on the viscoelasticity and permeability of buckypaper, composed of (5,5) single-walled CNTs (SWCNTs), are systematically explored through large-scale coarse-grained molecular dynamics simulations. The SWCNT length is found to have a pronounced impact on the structure of buckypapers. When the SWCNTs are short, they are found to form short bundles and to be tightly packed, exhibit high density and small pores, while long SWCNTs are entangled together at a low density accompanied by large pores. These structure variations contribute to distinct performances in the viscoelasticity of buckypapers. The energy dissipation for buckypapers with long SWCNTs under cyclic shear loading is dominated by the attachment and detachment between SWCNTs through a zipping-unzipping mechanism. Thus, the viscoelastic characteristics of buckypapers, such as storage and loss moduli, demonstrate frequency- and temperature-independent behaviors. In contrast, the sliding-friction mechanism controls the energy dissipation between short SWCNTs when the buckypaper is under loading and unloading processes. Friction between short SWCNTs monotonically increases with rising length of SWCNTs and temperature. Therefore, the tanδ, defined as the ratio of the loss modulus over the storage modulus, of buckypaper with short SWCNTs also increases with the increment of temperature or SWCNT length, before the SWCNTs are entangled together. The permeability of buckypapers is further investigated by studying the diffusion of structureless particles within buckypapers, denoted by the obstruction factor (β). It is found to be linearly dependent on the volume fraction of SWCNTs, signifying a mass-dominated permeability, regardless of the structure variations induced by different SWCNT lengths. The present study provides a comprehensive picture of the structure-property relationship for buckypapers composed of SWCNTs. The methodology could be used for designing multifunctional buckypaper-based devices. Full article
Figures

Figure 1

Open AccessArticle
Preparation and Characterization of Antibacterial Cellulose/Chitosan Nanofiltration Membranes
Polymers 2017, 9(4), 116; doi:10.3390/polym9040116 -
Abstract
Abstract: Presently, most nanofiltration membranes are prepared with non-biodegradable petrochemical materials. This process is harmful to the ecosystem and consumes a large amount of non-renewable energy. In this study, biodegradable and biocompatible antibacterial cellulose/chitosan nanofiltration membranes (BC/CS-NFMs) were fabricated and characterized for
[...] Read more.
Abstract: Presently, most nanofiltration membranes are prepared with non-biodegradable petrochemical materials. This process is harmful to the ecosystem and consumes a large amount of non-renewable energy. In this study, biodegradable and biocompatible antibacterial cellulose/chitosan nanofiltration membranes (BC/CS-NFMs) were fabricated and characterized for their mechanical strength, antimicrobial activity, salt and dye filtration performance, and polyethylene glycol (PEG) retention using Thermal gravimetric analysis (TGA), Field emission scanning electron microscopy(FE-SEM), Fourier transform infrared spectroscopy(FT-IR), and X-ray diffraction (XRD). The BC/CS-NFMs were obtained by the hydrolysis and carboxymethylation of dense cellulose/chitosan membranes (BC/CSMs). The tensile strength of the BC/CS-NFMs decreased as the chitosan content increased. In addition, the thermal stability and antibacterial ability of the BC/CS-NFMs improved. The pore size is less than 1 nm, and a spongy, layered structure is observed in the cross-sectional FE-SEM images. FT-IR analysis shows that a part of the hydroxyl in cellulose transforms to carboxymethyl during the hydrolysis and carboxymethylation of the BC/CSMs. No obvious changes can be observed in the cellulose and chitosan after the blend membrane formation from the XRD measurements. Based on the experimental results on the permeation and rejection of BC/CS-NFMs, different proportions of cellulose and chitosan nanofiltration membranes almost did not affect the water flux and rejection rate. The BC/CS-NFMs showed better water flux and a higher rejection rate in aqueous dye-salt solutions. Full article
Figures

Figure 1

Open AccessArticle
Applications of Three Dithienylpyrroles-Based Electrochromic Polymers in High-Contrast Electrochromic Devices
Polymers 2017, 9(3), 114; doi:10.3390/polym9030114 -
Abstract
Three dithienylpyrroles (1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPS), 1-(4-methoxyphenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPO), and 4-(2,5-di(thiophen-2-yl)-pyrrol-1-yl)benzonitrile (ANIL)) were synthesized and their corresponding polydithienylpyrroles (PSNS) were electrosynthesized using electrochemical polymerization. Spectroelectrochemical studies indicated that poly(1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole) (PMPS) film was green, dark green, and brown in the neutral, oxidation, and highly oxidized state, respectively.
[...] Read more.
Three dithienylpyrroles (1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPS), 1-(4-methoxyphenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPO), and 4-(2,5-di(thiophen-2-yl)-pyrrol-1-yl)benzonitrile (ANIL)) were synthesized and their corresponding polydithienylpyrroles (PSNS) were electrosynthesized using electrochemical polymerization. Spectroelectrochemical studies indicated that poly(1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole) (PMPS) film was green, dark green, and brown in the neutral, oxidation, and highly oxidized state, respectively. The incorporation of a MPS unit into the PSNS backbone gave rise to a darker color than those of the MPO and ANIL units in the highly oxidized state. The PMPS film showed higher ΔTmax (54.47% at 940 nm) than those of the PMPO (43.87% at 890 nm) and PANIL (44.63% at 950 nm) films in an ionic liquid solution. Electrochromic devices (ECDs) employing PMPS, PMPO, and PANIL as anodic layers and poly(3,4-(2,2-diethypropylenedioxy)thiophene)(PProDOT-Et2) as a cathodic layer were constructed. PMPO/PProDOT-Et2 ECD showed the highest ΔTmax (41.13%) and coloration efficiency (674.67 cm2·C1) at 626 nm, whereas PMPS/PProDOT-Et2 ECD displayed satisfactory ΔTmax (32.51%) and coloration efficiency (637.25 cm2·C1) at 590 nm. Repeated cyclic voltammograms of PMPS/PProDOT-Et2, PMPO/PProDOT-Et2, and PANIL/PProDOT-Et2 ECDs indicated that ECDs had satisfactory redox stability. Full article
Figures

Open AccessArticle
Reaction-Multi Diffusion Model for Nutrient Release and Autocatalytic Degradation of PLA-Coated Controlled-Release Fertilizer
Polymers 2017, 9(3), 111; doi:10.3390/polym9030111 -
Abstract
A mathematical model for the reaction-diffusion equation is developed to describe the nutrient release profiles and degradation of poly(lactic acid) (PLA)-coated controlled-release fertilizer. A multi-diffusion model that consists of coupled partial differential equations is used to study the diffusion and chemical reaction (autocatalytic
[...] Read more.
A mathematical model for the reaction-diffusion equation is developed to describe the nutrient release profiles and degradation of poly(lactic acid) (PLA)-coated controlled-release fertilizer. A multi-diffusion model that consists of coupled partial differential equations is used to study the diffusion and chemical reaction (autocatalytic degradation) simultaneously. The model is solved using an analytical-numerical method. Firstly, the model equation is transformed using the Laplace transformation as the Laplace transform cannot be inverted analytically. Numerical inversion of the Laplace transform is used by employing the Zakian method. The solution is useful in predicting the nutrient release profiles at various diffusivity, concentration of extraction medium, and reaction rates. It also helps in explaining the transformation of autocatalytic concentration in the coating material for various reaction rates, times of reaction, and reaction-multi diffusion. The solution is also applicable to the other biodegradable polymer-coated controlled-release fertilizers. Full article
Figures

Open AccessReview
Self-Assembled Organic Materials for Photovoltaic Application
Polymers 2017, 9(3), 112; doi:10.3390/polym9030112 -
Abstract
Organic photovoltaic cells based on bulk-heterojunction architecture have been a topic of intense research for the past two decades. Recent reports on power conversion efficiency surpassing 10% suggest these devices are a viable low-cost choice for a range of applications where conventional silicon
[...] Read more.
Organic photovoltaic cells based on bulk-heterojunction architecture have been a topic of intense research for the past two decades. Recent reports on power conversion efficiency surpassing 10% suggest these devices are a viable low-cost choice for a range of applications where conventional silicon solar cells are not suitable. Further improvements in efficiency could be achieved with the enhanced interaction between the donor and acceptor components. Effective utilization of supramolecular interactions to tailor and manipulate the communication between the components in the blend is a good strategy towards this end. Literature reports suggest that the long-term stability of organic solar cells, a major hurdle for commercial applications, can also be partially addressed by generating stable supramolecular nanostructures. In this review, we have made an attempt to summarize advances in small molecule, oligomer and polymer based systems, wherein supramolecular interactions such as hydrogen-bonding, pi-pi stacking, and dipole-dipole are explored for realizing stable and efficient bulk-heterojunction solar cells. Full article
Figures

Open AccessArticle
Epoxy-Based Shape-Memory Actuators Obtained via Dual-Curing of Off-Stoichiometric “Thiol–Epoxy” Mixtures
Polymers 2017, 9(3), 113; doi:10.3390/polym9030113 -
Abstract
In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric “thiol–epoxy” systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing
[...] Read more.
In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric “thiol–epoxy” systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing process), and successfully fixed through the second curing process. The samples were programmed into a flat temporary-shape and the recovery-process was analyzed in unconstrained, partially-constrained and fully-constrained conditions using a dynamic mechanical analyzer (DMA). Different “thiol–epoxy” systems and off-stoichiometric ratios were used to analyze the effect of the network structure on the actuation performance. The results evidenced the possibility to take advantage of the flexural recovery as a potential actuator, the operation of which can be modulated by changing the network structure and properties of the material. Under unconstrained-recovery conditions, faster and narrower recovery-processes (an average speed up to 80%/min) are attained by using materials with homogeneous network structure, while in partially- or fully-constrained conditions, a higher crosslinking density and the presence of crosslinks of higher functionality lead to a higher amount of energy released during the recovery-process, thus, increasing the work or the force released. Finally, an easy approach for the prediction of the work released by the shape-memory actuator has been proposed. Full article
Figures

Open AccessArticle
Preparation of Microporous Polypropylene/Titanium Dioxide Composite Membranes with Enhanced Electrolyte Uptake Capability via Melt Extruding and Stretching
Polymers 2017, 9(3), 110; doi:10.3390/polym9030110 -
Abstract
In this work, a blending strategy based on compounding the hydrophilic titanium dioxide (TiO2) particles with the host polypropylene (PP) pellets, followed by the common membrane manufacture process of melt extruding/annealing/stretching, was used to improve the polarity and thus electrolyte uptake
[...] Read more.
In this work, a blending strategy based on compounding the hydrophilic titanium dioxide (TiO2) particles with the host polypropylene (PP) pellets, followed by the common membrane manufacture process of melt extruding/annealing/stretching, was used to improve the polarity and thus electrolyte uptake capability of the PP-based microporous membranes. The influence of the TiO2 particles on the crystallinity and crystalline orientation of the PP matrix was studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and infrared dichroic methods. The results showed that the TiO2 incorporation has little influence on the oriented lamellar structure of the PP-based composite films. Investigations of the deformation behavior indicated that both the lamellar separation and interfacial debonding occurred when the PP/TiO2 composite films were subjected to uniaxial tensile stress. The scanning electron microscopy (SEM) observations verified that two forms of micropores were generated in the stretched PP/TiO2 composite membranes. Compared to the virgin PP membrane, the PP/TiO2 composite membranes especially at high TiO2 loadings showed significant improvements in terms of water vapor permeability, polarity, and electrolyte uptake capability. The electrolyte uptake of the PP/TiO2 composite membrane with 40 wt % TiO2 was 104%, which had almost doubled compared with that of the virgin PP membrane. Full article
Figures

Figure 1

Open AccessArticle
The Influence of pH on the Melamine-Dimethylurea-Formaldehyde Co-Condensations: A Quantitative 13C-NMR Study
Polymers 2017, 9(3), 109; doi:10.3390/polym9030109 -
Abstract
1,3-dimethylurea (DMU) was used to mimic urea and to model melamine-urea-formaldehyde (MUF) co-condensation reactions. The products of 1,3-dimethylurea-formaldehyde (DMUF), melamine-formaldehyde (MF), and melamine-1,3-dimethylurea-formaldehyde (MDMUF) reactions under alkaline and weak acidic conditions were compared by performing quantitative carbon-13 nuclear magnetic resonance (13C-NMR)
[...] Read more.
1,3-dimethylurea (DMU) was used to mimic urea and to model melamine-urea-formaldehyde (MUF) co-condensation reactions. The products of 1,3-dimethylurea-formaldehyde (DMUF), melamine-formaldehyde (MF), and melamine-1,3-dimethylurea-formaldehyde (MDMUF) reactions under alkaline and weak acidic conditions were compared by performing quantitative carbon-13 nuclear magnetic resonance (13C-NMR) analysis. The effect of pH on the co-condensation reactions was clarified. With the presence of the methyl groups in DMU, the appearance or absence of the featured signal at 54–55 ppm can be used to identify the co-condensed methylene linkage –N(–CH3) –CH2–NH–. Under alkaline condition, MDMUF reactions produced primarily MF polymers and the featured signal at 54–55 ppm was absent. Even though the co-condensations concurrently occurred, undistinguishable and very minor condensed structures with ether linkage were formed. Differently, under weak acidic condition, the relative content of co-condensed methylene carbons accounts for over 40%, indicating the MDMUF co-condensation reactions were much more competitive than the self-condensations. The formation of reactive carbocation intermediate was proposed to rationalize the results. Full article
Figures

Open AccessArticle
Chiral MnIII (Salen) Covalently Bonded on Modified ZPS-PVPA and ZPS-IPPA as Efficient Catalysts for Enantioselective Epoxidation of Unfunctionalized Olefins
Polymers 2017, 9(3), 108; doi:10.3390/polym9030108 -
Abstract
Chiral MnIII (salen) complex supported on modified ZPS-PVPA (zirconium poly(styrene-phenylvinylphosphonate)) and ZPS-IPPA (zirconium poly(styrene-isopropenyl phosphonate)) were prepared using –CH2Cl as a reactive surface modifier by a covalent grafting method. The supported catalysts showed higher chiral induction (ee: 72%–83%) compared
[...] Read more.
Chiral MnIII (salen) complex supported on modified ZPS-PVPA (zirconium poly(styrene-phenylvinylphosphonate)) and ZPS-IPPA (zirconium poly(styrene-isopropenyl phosphonate)) were prepared using –CH2Cl as a reactive surface modifier by a covalent grafting method. The supported catalysts showed higher chiral induction (ee: 72%–83%) compared with the corresponding homogeneous catalyst (ee: 54%) for asymmetric epoxidation of α-methylstrene in the presence of 4-phenylpyridine N-oxide (PPNO) as axial base using NaClO as an oxidant. ZPS-PVPA-based catalyst 1, with a larger pore diameter and surface area, was found to be more active than ZPS-IPPA-based catalyst 2. In addition, bulkier alkene-like indene, was efficiently epoxidized with these supported catalysts (ee: 96%–99%), the results were much higher than those for the homogeneous system (ee: 65%). Moreover, the prepared catalysts were relatively stable and can be recycled at least eight times without significant loss of activity and enantioselectivity. Full article
Figures

Figure 1

Open AccessArticle
Mononuclear Nickel(II) Complexes with Schiff Base Ligands: Synthesis, Characterization, and Catalytic Activity in Norbornene Polymerization
Polymers 2017, 9(3), 105; doi:10.3390/polym9030105 -
Abstract
The nickel(II) catalyst has manifested higher catalytic activity compared to that of other late transition metal catalysts for norbornene polymerization. Therefore, several structurally similar trans-nickel(II) compounds of N,O-chelate bidentate ligands were synthesized and characterized. Both the electronic effect and
[...] Read more.
The nickel(II) catalyst has manifested higher catalytic activity compared to that of other late transition metal catalysts for norbornene polymerization. Therefore, several structurally similar trans-nickel(II) compounds of N,O-chelate bidentate ligands were synthesized and characterized. Both the electronic effect and the steric hindrance influence polymerization. The molecular structures of 2, 4 and 5 were further confirmed by single-crystal X-ray diffraction. Full article
Figures

Open AccessArticle
Unusual Emission of Polystyrene-Based Alternating Copolymers Incorporating Aminobutyl Maleimide Fluorophore-Containing Polyhedral Oligomeric Silsesquioxane Nanoparticles
Polymers 2017, 9(3), 103; doi:10.3390/polym9030103 -
Abstract
In this study, we synthesized an unusual 2-aminobutyl maleimide isobutyl polyhedral oligomeric silsesquioxane (MIPOSS-NHBu) monomer lacking conventional fluorescent groups. We then prepared poly(styrene-alt-2-aminobutyl maleimide isobutyl POSS) [poly(S-alt-MIPOSS-NHBu)] and poly(4-acetoxystyrene-alt-2-aminobutyl maleimide isobutyl POSS) [poly(AS-alt-MIPOSS-NHBu)] copolymers through
[...] Read more.
In this study, we synthesized an unusual 2-aminobutyl maleimide isobutyl polyhedral oligomeric silsesquioxane (MIPOSS-NHBu) monomer lacking conventional fluorescent groups. We then prepared poly(styrene-alt-2-aminobutyl maleimide isobutyl POSS) [poly(S-alt-MIPOSS-NHBu)] and poly(4-acetoxystyrene-alt-2-aminobutyl maleimide isobutyl POSS) [poly(AS-alt-MIPOSS-NHBu)] copolymers through facile free radical copolymerizations using azobisisobutyronitrile as the initiator and tetrahydrofuran as the solvent. A poly(4-hydroxystyrene-alt-2-aminobutyl maleimide isobutyl POSS) [poly(HS-alt-MIPOSS-NHBu)] copolymer was prepared through acetoxyl hydrazinolysis of poly(AS-alt-MIPOSS-NHBu). We employed 1H, 13C, and 29Si nuclear magnetic resonance spectroscopy; Fourier transform infrared spectroscopy; differential scanning calorimetry; and photoluminescence spectroscopy to investigate the structures and the thermal and optical properties of the monomers and novel POSS-containing alternating copolymers. Intramolecular hydrogen bonding between the amino and dihydrofuran-2,5-dione group and clustering of the locked C=O groups from the POSS nanoparticles in the MIPOSS-NHBu units restricted the intramolecular motion of the polymer chain, causing it to exhibit strong light emission. As a result, the MIPOSS-NHBu monomer and the poly(AS-alt-MIPOSS-NHBu) copolymer both have potential applicability in the detection of metal ions with good selectivity. Full article
Figures

Open AccessArticle
Microwave Assisted Reduction of Pt-Catalyst by N-Phenyl-p-Phenylenediamine for Proton Exchange Membrane Fuel Cells
Polymers 2017, 9(3), 104; doi:10.3390/polym9030104 -
Abstract
The presence of N-phenyl-p-phenylenediamine (PPDA: a dimer of aniline) during microwave (MW) irradiation can significantly improve Pt-loading on the XC72 carbon matrix as a catalyst support of proton exchange membrane fuel cells (PEMFCs). PPDA is converted to an emeraldine base
[...] Read more.
The presence of N-phenyl-p-phenylenediamine (PPDA: a dimer of aniline) during microwave (MW) irradiation can significantly improve Pt-loading on the XC72 carbon matrix as a catalyst support of proton exchange membrane fuel cells (PEMFCs). PPDA is converted to an emeraldine base state during MW-assisted redox reaction, which is characterized by both FTIR and Raman spectra. The increased degree of conjugation from the formation of quinone-state of PPDA is confirmed by UV-VIS spectra. TEM micrographs and residue weights obtained from the TGA thermograms illustrate the particle size and Pt-loading percent of Pt nanoparticles (NPs) after MW irradiation, respectively. X-ray diffraction patterns indicate Pt NPs are successfully loaded on XC72 by MW irradiation corresponding to hydrothermal method. The single cell performance demonstrates an increasing power and maximum current density when Pt-catalyst of membrane exchanged assembly (MEA) is prepared by MW-assisted reduction in the presence of PPDA. Full article
Figures

Figure 1

Open AccessArticle
Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment
Polymers 2017, 9(3), 106; doi:10.3390/polym9030106 -
Abstract
The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur
[...] Read more.
The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties. The acetone pretreatment of the bio-oil/epoxy mixture was found to improve the cross-linking potential and substitution rate based on its mechanical, chemical, and thermal properties. Specifically, the bio-oil was blended with epoxy resin at weight ratios ranging from 2:1 to 1:5 and were then cured. A higher bio-oil substitution rate was found to lower the shear bond strength of the bio-oil/epoxy resins. However, when an acetone pretreatment was used, it was possible to replace the bio-oil by as much as 50% while satisfying usage requirements. Extraction of the bio-oil/epoxy mixture with four different solvents demonstrated an improvement in cross-linking after acetone pretreatment. ATR-FTIR analysis confirmed that the polymer achieved a higher cross-linked structure. DSC and TGA curves showed improved thermal stability with the addition of the acetone pretreatment. UV-Vis characterization showed that some functional groups of the bio-oil to epoxy system were unreacted. Finally, when the resin mixture was utilized to bond wood, the acetone pretreatment coupled with precise tuning of the bio-oil:epoxy ratio was an effective method to control cross-linking while ensuring acceptable bond strength. Full article
Figures

Figure 1

Open AccessArticle
Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length
Polymers 2017, 9(3), 107; doi:10.3390/polym9030107 -
Abstract
Stereocomplex poly(lactide) (PLA) was obtained by solution blending of linear PLLA and PDLA-PEG-PDLA. Effects of the L/D ratios, PEG block, and PDLA block on stereocomplexation of the blends are systemically discussed. The full stereocomplex PLA can be acquired by solution blending when L/D
[...] Read more.
Stereocomplex poly(lactide) (PLA) was obtained by solution blending of linear PLLA and PDLA-PEG-PDLA. Effects of the L/D ratios, PEG block, and PDLA block on stereocomplexation of the blends are systemically discussed. The full stereocomplex PLA can be acquired by solution blending when L/D ratios are in the range of 7/3–5/5. The experiment results demonstrated that the stereocomplex degree of PLLA/PDLA-PEG-PDLA prepared by melt blending was closely related to the PEG block and PDLA block. POM results indicated that the blends with high L/D ratio showed large disordered spherulites, and the typical Maltese cross pattern was observed as the L/D ratios decreased. The results of PEG block on the stereocomplexation of PLLA/PDLA-PEG-PDLA revealed that the PEG blocks possessed two sides: accelerating agent for the mobility of polymer chains and decreasing nucleation capacity due to their diluting effect. The effect of PDLA block on the stereocomplexation of the blends was also well investigated. The results showed that the crystallization of sc-crystallites and hc-crystallites in the PLLA/PDLA-PEG4k-PDLA blends with different PDLA blocks presents an obvious competition relationship, and this is not beneficial to the formation of sc-crystallites with increasing PDLA block. The melting behavior of PLLA/PDLA-PEG4k-PDLA with different PDLA blocks after isothermal crystallization showed that the blends could achieve full stereocomplex when the crystallization temperature exceeded 160 °C, and a crystallite with high perfection could be formed as the crystallization temperature increased. This study systemically investigated the effects of the L/D ratios, PEG block, PDLA block, and crystallization conditions on stereocomplex crystallization of PLLA/PDLA-PEG-PDLA blends, which can provide potential approaches to control the microstructure and physical performances of PLLA/PDLA-PEG-PDLA blends. Full article
Figures

Open AccessArticle
Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films
Polymers 2017, 9(3), 102; doi:10.3390/polym9030102 -
Abstract
Ternary blend films were prepared with different ratios of starch/polyvinyl alcohol (PVA)/citric acid. The films were characterized by field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, as well as Fourier transform infrared (FTIR) analysis. The influence of different ratios of starch/polyvinyl alcohol (PVA)/citric
[...] Read more.
Ternary blend films were prepared with different ratios of starch/polyvinyl alcohol (PVA)/citric acid. The films were characterized by field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, as well as Fourier transform infrared (FTIR) analysis. The influence of different ratios of starch/polyvinyl alcohol (PVA)/citric acid and different drying times on the performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water solubility (WS), color difference (ΔE), and antimicrobial activity of the ternary blends films were investigated. The starch/polyvinyl alcohol/citric acid (S/P/C1:1:0, S/P/C3:1:0.08, and S/P/C3:3:0.08) films were all highly transparent. The S/P/C3:3:0.08 had a 54.31 times water-holding capacity of its own weight and its mechanical tensile strength was 46.45 MPa. In addition, its surface had good uniformity and compactness. The S/P/C3:1:0.08 and S/P/C3:3:0.08 showed strong antimicrobial activity to Listeria monocytogenes and Escherichia coli, which were the food-borne pathogenic bacteria used. The freshness test results of fresh figs showed that all of the blends prevented the formation of condensed water on the surface of the film, and the S/P/C3:1:0.08 and S/P/C3:3:0.08 prevented the deterioration of figs during storage. The films can be used as an active food packaging system due to their strong antibacterial effect. Full article
Figures

Open AccessArticle
Exploring the Limits of the Geometric Copolymerization Model
Polymers 2017, 9(3), 101; doi:10.3390/polym9030101 -
Abstract
The geometric copolymerization model is a recently introduced statistical Markov chain model. Here, we investigate its practicality. First, several approaches to identify the optimal model parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated data. Directly optimizing the parameters is robust
[...] Read more.
The geometric copolymerization model is a recently introduced statistical Markov chain model. Here, we investigate its practicality. First, several approaches to identify the optimal model parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated data. Directly optimizing the parameters is robust against noise but has impractically long running times. A compromise between robustness and running time is found by exploiting the relationship between monomer concentrations calculated by ordinary differential equations and the geometric model. Second, we investigate the applicability of the model to copolymerizations beyond living polymerization and show that the model is useful for copolymerizations involving termination and depropagation reactions. Full article
Figures