Open AccessFeature PaperArticle
Climate Modelling Shows Increased Risk to Eucalyptus sideroxylon on the Eastern Coast of Australia Compared to Eucalyptus albens
Plants 2017, 6(4), 58; doi:10.3390/plants6040058 -
Abstract
Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs). Each was generated using four global climate models (GCMs), under two representative concentration
[...] Read more.
Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs). Each was generated using four global climate models (GCMs), under two representative concentration pathways (RCPs). Location: Australia. Methods: We used four SDMs of (i) generalized linear model, (ii) MaxEnt, (iii) random forest, and (iv) boosted regression tree to construct SDMs for species E. sideroxylon and E. albens under four GCMs including (a) MRI-CGCM3, (b) MIROC5, (c) HadGEM2-AO and (d) CCSM4, under two RCPs of 4.5 and 6.0. Here, the true skill statistic (TSS) index was used to assess the accuracy of each SDM. Results: Results showed that E. albens and E. sideroxylon will lose large areas of their current suitable range by 2050 and E. sideroxylon is projected to gain in eastern and southeastern Australia. Some areas were also projected to remain suitable for each species between now and 2050. Our modelling showed that E. sideroxylon will lose suitable habitat on the western side and will not gain any on the eastern side because this region is one the most heavily populated areas in the country, and the populated areas are moving westward. The predicted decrease in E. sideroxylon’s distribution suggests that land managers should monitor its population closely, and evaluate whether it meets criteria for a protected legal status. Main conclusions: Both Eucalyptus sideroxylon and E. albens will be negatively affected by climate change and it is projected that E. sideroxylon will be at greater risk of losing habitat than E. albens. Full article
Figures

Figure 1

Open AccessReview
Assembly of the Cutin Polyester: From Cells to Extracellular Cell Walls
Plants 2017, 6(4), 57; doi:10.3390/plants6040057 -
Abstract
Cuticular matrices covering aerial plant organs or delimiting compartments in these organs are composed of an insoluble hydrophobic polymer of high molecular mass, i.e., cutin, that encompass some cell wall polysaccharides and is filled by waxes. Cutin is a polyester of hydroxy and-or
[...] Read more.
Cuticular matrices covering aerial plant organs or delimiting compartments in these organs are composed of an insoluble hydrophobic polymer of high molecular mass, i.e., cutin, that encompass some cell wall polysaccharides and is filled by waxes. Cutin is a polyester of hydroxy and-or epoxy fatty acids including a low amount of glycerol. Screening of Arabidopsis and more recently of tomato (Solanum lycopersicum) mutants allowed the delineation of the metabolic pathway involved in the formation of cutin monomers, as well as their translocation in the apoplast. Furthermore, these studies identified an extracellular enzyme involved in the polymerization of these monomers, i.e., cutin synthase 1 (CUS1), an acyl transferase of the GDSL lipase protein family. By comparing the structure of tomato fruit cutins from wild type and down-regulated CUS1 mutants, as well as with the CUS1-catalyzed formation of oligomers in vitro, hypothetical models can be elaborated on the polymerization of cutins. The polymorphism of the GDSL-lipase family raises a number of questions concerning the function of the different isoforms in relation with the formation of a composite material, the cuticle, containing entangled hydrophilic and hydrophobic polymers, i.e., polysaccharides and cutin, and plasticizers, i.e., waxes. Full article
Figures

Figure 1

Open AccessCommunication
Development of pGEMINI, a Plant Gateway Destination Vector Allowing the Simultaneous Integration of Two cDNA via a Single LR-Clonase Reaction
Plants 2017, 6(4), 55; doi:10.3390/plants6040055 -
Abstract
Gateway technology has been used to facilitate the generation of a large number of constructs for the modification of plants for research purposes. However, many of the currently available vectors only allow the integration of a single cDNA of interest into an expression
[...] Read more.
Gateway technology has been used to facilitate the generation of a large number of constructs for the modification of plants for research purposes. However, many of the currently available vectors only allow the integration of a single cDNA of interest into an expression clone. The ability to over-express multiple genes in combination is essential for the study of plant development where several transcripts have a role to play in one or more metabolic processes. The tools to carry out such studies are limited, and in many cases rely on the incorporation of cDNA into expression systems via conventional cloning, which can be both time consuming and laborious. To our knowledge, this study reports on the first development of a vector allowing the simultaneous integration of two independent cDNAs via a single LR-clonase reaction. This vector “pGEMINI” represents a powerful molecular tool offering the ability to study the role of multi-cDNA constructs on plant development, and opens up the process of gene stacking and the study of gene combinations through transient or stable transformation procedures. Full article
Figures

Figure 1

Open AccessReview
Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity
Plants 2017, 6(4), 54; doi:10.3390/plants6040054 -
Abstract
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The
[...] Read more.
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Genus-Specific Real-Time PCR and HRM Assays to Distinguish Liriope from Ophiopogon Samples
Plants 2017, 6(4), 53; doi:10.3390/plants6040053 -
Abstract
Liriope and Ophiopogon species have a long history of use as traditional medicines across East Asia. They have also become widely used around the world for ornamental and landscaping purposes. The morphological similarities between Liriope and Ophiopogon taxa have made the taxonomy of
[...] Read more.
Liriope and Ophiopogon species have a long history of use as traditional medicines across East Asia. They have also become widely used around the world for ornamental and landscaping purposes. The morphological similarities between Liriope and Ophiopogon taxa have made the taxonomy of the two genera problematic and caused confusion about the identification of individual specimens. Molecular approaches could be a useful tool for the discrimination of these two genera in combination with traditional methods. Seventy-five Liriope and Ophiopogon samples from the UK National Plant Collections of Ophiopogon and Liriope were analyzed. The 5′ end of the DNA barcode region of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcLa) was used for the discrimination of the two genera. A single nucleotide polymorphism (SNP) between the two genera allowed the development of discriminatory tests for genus-level identification based on specific PCR and high-resolution melt curve (HRM) assays. The study highlights the advantage of incorporating DNA barcoding methods into plant identification protocols and provides simple assays that could be used for the quality assurance of commercially traded plants and herbal drugs. Full article
Figures

Figure 1

Open AccessArticle
In Situ Dark Adaptation Enhances the Efficiency of DNA Extraction from Mature Pin Oak (Quercus palustris) Leaves, Facilitating the Identification of Partial Sequences of the 18S rRNA and Isoprene Synthase (IspS) Genes
Plants 2017, 6(4), 52; doi:10.3390/plants6040052 -
Abstract
Mature oak (Quercus spp.) leaves, although abundantly available during the plants’ developmental cycle, are rarely exploited as viable sources of genomic DNA. These leaves are rich in metabolites difficult to remove during standard DNA purification, interfering with downstream molecular genetics applications. The
[...] Read more.
Mature oak (Quercus spp.) leaves, although abundantly available during the plants’ developmental cycle, are rarely exploited as viable sources of genomic DNA. These leaves are rich in metabolites difficult to remove during standard DNA purification, interfering with downstream molecular genetics applications. The current work assessed whether in situ dark adaptation, to deplete sugar reserves and inhibit secondary metabolite synthesis could compensate for the difficulties encountered when isolating DNA from mature leaves rich in secondary metabolites. We optimized a rapid, commercial kit based method to extract genomic DNA from dark- and light-adapted leaves. We demonstrated that in situ dark adaptation increases the yield and quality of genomic DNA obtained from mature oak leaves, yielding templates of sufficiently high quality for direct downstream applications, such as PCR amplification and gene identification. The quality of templates isolated from dark-adapted pin oak leaves particularly improved the amplification of larger fragments in our experiments. From DNA extracts prepared with our optimized method, we identified for the first time partial segments of the genes encoding 18S rRNA and isoprene synthase (IspS) from pin oak (Quercus palustris), whose full genome has not yet been sequenced. Full article
Figures

Figure 1

Open AccessArticle
An Investigation of the Antioxidant Capacity in Extracts from Moringa oleifera Plants Grown in Jamaica
Plants 2017, 6(4), 48; doi:10.3390/plants6040048 -
Abstract
Moringa oleifera trees grow well in Jamaica and their parts are popularly used locally for various purposes and ailments. Antioxidant activities in Moringa oleifera samples from different parts of the world have different ranges. This study was initiated to determine the antioxidant activity
[...] Read more.
Moringa oleifera trees grow well in Jamaica and their parts are popularly used locally for various purposes and ailments. Antioxidant activities in Moringa oleifera samples from different parts of the world have different ranges. This study was initiated to determine the antioxidant activity of Moringa oleifera grown in Jamaica. Dried and milled Moringa oleifera leaves were extracted with ethanol/water (4:1) followed by a series of liquid–liquid extractions. The antioxidant capacities of all fractions were tested using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. IC50 values (the amount of antioxidant needed to reduce 50% of DPPH) were then determined and values for the extracts ranged from 177 to 4458 μg/mL. Extracts prepared using polar solvents had significantly higher antioxidant capacities than others and may have clinical applications in any disease characterized by a chronic state of oxidative stress, such as sickle cell anemia. Further work will involve the assessment of these extracts in a sickle cell model of oxidative stress. Full article
Figures

Figure 1

Open AccessArticle
Effects of Silicon Amendment on Soilborne and Fruit Diseases of Avocado
Plants 2017, 6(4), 51; doi:10.3390/plants6040051 -
Abstract
The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch
[...] Read more.
The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch (MM) or Mineral Dust (MD), containing 5% available Si) were investigated in field and greenhouse trials with avocado. Orchard soil drench applications with potassium silicate improved yield and quality of fruit, but visual health of trees declining from Phytophthora root rot (PRR) was not affected. Orchard spray or trunk injection applications with potassium silicate were ineffective. Amendment of potting mix with MM and MD reduced root necrosis of avocado seedlings after inoculation with Calonectria ilicicola, an aggressive soilborne pathogen causing black root rot. Application of MM to mature orchard trees declining with PRR had a beneficial effect on visual tree health, and Si accumulation in leaves and fruit peel, after only 10 months. Products that deliver available Si consistently for uptake are likely to be most successful in perennial tree crops. Full article
Figures

Figure 1

Open AccessArticle
Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.
Plants 2017, 6(4), 50; doi:10.3390/plants6040050 -
Abstract
The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured
[...] Read more.
The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured by the Folin-Ciocalteau method, were observed for P. niruri extracts (328.8 gallic acid equivalents/g) than for S. reticulata (79.30 gallic acid equivalents/g) whereas P. alliaceae extract showed the lowest value (13.45 gallic acid equivalents/g). A total of 20 phenolic acids and proanthocyanidins were identified in the extracts, including hydroxybenzoic acids (benzoic, 4-hydroxybenzoic, gallic, prochatechuic, salicylic, syringic and vanillic acids); hydroxycinnamic acids (caffeic, ferulic, and p-coumaric acids); and flavan-3-ols monomers [(+)-catechin and (−)-epicatechin)]. Regarding proanthocyanidin oligomers, five procyanidin dimers (B1, B2, B3, B4, and B5) and one trimer (T2) are reported for the first time in P. niruri, as well as two propelargonidin dimers in S. reticulata. Additionally, P. niruri showed the highest antioxidant DPPH and ORAC values (IC50 of 6.4 μg/mL and 6.5 mmol TE/g respectively), followed by S. reticulata (IC50 of 72.9 μg/mL and 2.68 mmol TE/g respectively) and P. alliaceae extract (IC50 >1000 μg/mL and 1.32 mmol TE/g respectively). Finally, cytotoxicity and selectivity on gastric AGS and colon SW20 adenocarcinoma cell lines were evaluated and the best values were also found for P. niruri (SI = 2.8), followed by S. reticulata (SI = 2.5). Therefore, these results suggest that extracts containing higher proanthocyanidin content also show higher bioactivities. Significant positive correlation was found between TPC and ORAC (R2 = 0.996) as well as between phenolic content as measured by UPLC-DAD and ORAC (R2 = 0.990). These findings show evidence for the first time of the diversity of phenolic acids in P. alliaceae and S. reticulata, and the presence of proanthocyanidins as minor components in latter species. Of particular relevance is the occurrence of proanthocyanidin oligomers in phenolic extracts from P. niruri and their potential bioactivity. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress
Plants 2017, 6(4), 49; doi:10.3390/plants6040049 -
Abstract
Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis
[...] Read more.
Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. Full article
Figures

Figure 1

Open AccessArticle
Effect of Silicate Slag Application on Wheat Grown Under Two Nitrogen Rates
Plants 2017, 6(4), 47; doi:10.3390/plants6040047 -
Abstract
Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in
[...] Read more.
Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha−1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha−1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha−1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg−1. Yield increases due to N or Si were attributed to the increase in number of spike m−2 and grain number spike−1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si. Full article
Figures

Figure 1

Open AccessArticle
Image-Based Analysis to Dissect Vertical Distribution and Horizontal Asymmetry of Conspecific Root System Interactions in Response to Planting Densities, Nutrients and Root Exudates in Arabidopsis thaliana
Plants 2017, 6(4), 46; doi:10.3390/plants6040046 -
Abstract
Intraspecific competition is an important plant interaction that has been studied extensively aboveground, but less so belowground, due to the difficulties in accessing the root system experimentally. Recent in vivo and in situ automatic imaging advances help understand root system architecture. In this
[...] Read more.
Intraspecific competition is an important plant interaction that has been studied extensively aboveground, but less so belowground, due to the difficulties in accessing the root system experimentally. Recent in vivo and in situ automatic imaging advances help understand root system architecture. In this study, a portable imaging platform and a scalable transplant technique were applied to test intraspecific competition in Arabidopsis thaliana. A single green fluorescent protein labeled plant was placed in the center of a grid of different planting densities of neighboring unlabeled plants or empty spaces, into which different treatments were made to the media. The root system of the central plant showed changes in the vertical distribution with increasing neighbor density, becoming more positively kurtotic, and developing an increasing negative skew with time. Horizontal root distribution was initially asymmetric, but became more evenly circular with time, and mean direction was not affected by the presence of adjacent empty spaces as initially hypothesized. To date, this is the first study to analyze the patterns of both vertical and horizontal growth in conspecific root systems. We present a portable imaging platform with simplicity, accessibility, and scalability, to capture the dynamic interactions of plant root systems. Full article
Open AccessCommunication
Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits
Plants 2017, 6(4), 44; doi:10.3390/plants6040044 -
Abstract
Phytochemical investigation of Ficus hirta Vahl. (Moraceae) fruits led to isolate two carboline alkaloids (1 and 2), five sesquiterpenoids/norsesquiterpenoids (3–7), three flavonoids (8–10), and one phenylpropane-1,2-diol (11). Their structures were elucidated by the analysis of
[...] Read more.
Phytochemical investigation of Ficus hirta Vahl. (Moraceae) fruits led to isolate two carboline alkaloids (1 and 2), five sesquiterpenoids/norsesquiterpenoids (3–7), three flavonoids (8–10), and one phenylpropane-1,2-diol (11). Their structures were elucidated by the analysis of their 1D and 2D NMR, and HR-ESI-MS data. All of the isolates were isolated from this species for the first time, while compounds 2, 4–6, and 8–11 were firstly reported from the genus Ficus. Antifungal assay revealed that compound 8 (namely pinocembrin-7-O-β-d-glucoside), a major flavonoid compound present in the ethanol extract of F. hirta fruits, showed good antifungal activity against Penicillium italicum, the phytopathogen of citrus blue mold caused the majority rotten of citrus fruits. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Comparative Evaluation of Polyphenol Contents and Antioxidant Activities between Ethanol Extracts of Vitex negundo and Vitex trifolia L. Leaves by Different Methods
Plants 2017, 6(4), 45; doi:10.3390/plants6040045 -
Abstract
The in vitro antioxidant potential assay between ethanolic extracts of two species from the genus Vitex (Vitex negundo L. and Vitex trifolia L.) belonging to the Lamiaceae family were evaluated. The antioxidant properties of different extracts prepared from both plant species were
[...] Read more.
The in vitro antioxidant potential assay between ethanolic extracts of two species from the genus Vitex (Vitex negundo L. and Vitex trifolia L.) belonging to the Lamiaceae family were evaluated. The antioxidant properties of different extracts prepared from both plant species were evaluated by different methods. DPPH scavenging, nitric oxide scavenging, and β-carotene-linoleic acid and ferrous ion chelation methods were applied. The antioxidant activities of these two species were compared to standard antioxidants such as butylated hydroxytoluene (BHT), ascorbic acid, and Ethylene diamine tetra acetic acid (EDTA). Both species of Vitex showed significant antioxidant activity in all of the tested methods. As compared to V. trifolia L. (60.87–89.99%; 40.0–226.7 μg/mL), V. negundo has been found to hold higher antioxidant activity (62.6–94.22%; IC50 = 23.5–208.3 μg/mL) in all assays. In accordance with antioxidant activity, total polyphenol contents in V. negundo possessed greater phenolic (89.71 mg GAE/g dry weight of extract) and flavonoid content (63.11 mg QE/g dry weight of extract) as compared to that of V. trifolia (77.20 mg GAE/g and 57.41 mg QE/g dry weight of extract respectively). Our study revealed the significant correlation between the antioxidant activity and total phenolic and flavonoid contents of both plant species. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Flavonoid Profile of the Cotton Plant, Gossypium hirsutum: A Review
Plants 2017, 6(4), 43; doi:10.3390/plants6040043 -
Abstract
Cotton, Gossypium hirsutum L., is a plant fibre of significant economic importance, with seeds providing an additional source of protein in human and animal nutrition. Flavonoids play a vital role in maintaining plant health and function and much research has investigated the role
[...] Read more.
Cotton, Gossypium hirsutum L., is a plant fibre of significant economic importance, with seeds providing an additional source of protein in human and animal nutrition. Flavonoids play a vital role in maintaining plant health and function and much research has investigated the role of flavonoids in plant defence and plant vigour and the influence these have on cotton production. As part of ongoing research into host plant/invertebrate pest interactions, we investigated the flavonoid profile of cotton reported in published, peer-reviewed literature. Here we report 52 flavonoids representing seven classes and their reported distribution within the cotton plant. We briefly discuss the historical research of flavonoids in cotton production and propose research areas that warrant further investigation. Full article
Figures

Figure 1

Open AccessReview
Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts
Plants 2017, 6(4), 42; doi:10.3390/plants6040042 -
Abstract
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been
[...] Read more.
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed. Full article
Figures

Figure 1

Open AccessArticle
The Effect of Harvesting on the Composition of Essential Oils from Five Varieties of Ocimum basilicum L. Cultivated in the Island of Kefalonia, Greece
Plants 2017, 6(3), 41; doi:10.3390/plants6030041 -
Abstract
Five varieties of Ocimum basilicum L. namely lettuce, cinnamon, minimum, latifolia, and violetto were separately cultivated in field and greenhouse in the island Kefalonia (Greece). The effect of successive harvesting to the essential oil content was evaluated. In total 23 samples of essential
[...] Read more.
Five varieties of Ocimum basilicum L. namely lettuce, cinnamon, minimum, latifolia, and violetto were separately cultivated in field and greenhouse in the island Kefalonia (Greece). The effect of successive harvesting to the essential oil content was evaluated. In total 23 samples of essential oils (EOs) were analyzed by GC-FID and GC-MS. Ninety-six constituents, which accounted for almost 99% of the oils, were identified. Cluster analysis was performed for all of the varieties in greenhouse and field conditions, in order to investigate the possible differentiation on the chemical composition of the essential oils, obtained between harvests during growing period. Each basil variety showed a unique chemical profile, but also the essential oil composition within each variety seems to be differentiated, affected by the harvests and the cultivation site. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Silicon and Nitrate Differentially Modulate the Symbiotic Performances of Healthy and Virus-Infected Bradyrhizobium-nodulated Cowpea (Vigna unguiculata), Yardlong Bean (V. unguiculata subsp. sesquipedalis) and Mung Bean (V. radiata)
Plants 2017, 6(3), 40; doi:10.3390/plants6030040 -
Abstract
The effects of 2 mM silicon (Si) and 10 mM KNO3 (N)—prime signals for plant resistance to pathogens—were analyzed in healthy and Cowpea chlorotic mottle virus (CCMV) or Cowpea mild mottle virus (CMMV)-infected Bradyrhizobium-nodulated cowpea, yardlong bean and mung bean plants.
[...] Read more.
The effects of 2 mM silicon (Si) and 10 mM KNO3 (N)—prime signals for plant resistance to pathogens—were analyzed in healthy and Cowpea chlorotic mottle virus (CCMV) or Cowpea mild mottle virus (CMMV)-infected Bradyrhizobium-nodulated cowpea, yardlong bean and mung bean plants. In healthy plants of the three Vigna taxa, nodulation and growth were promoted in the order of Si + N > N > Si > controls. In the case of healthy cowpea and yardlong bean, the addition of Si and N decreased ureide and α-amino acids (AA) contents in the nodules and leaves in the order of Si + N> N > Si > controls. On the other hand, the addition of N arrested the deleterious effects of CCMV or CMMV infections on growth and nodulation in the three Vigna taxa. However, the addition of Si or Si + N hindered growth and nodulation in the CCMV- or CMMV-infected cowpea and yardlong bean, causing a massive accumulation of ureides in the leaves and nodules. Nevertheless, the AA content in leaves and nodules of CCMV- or CMMV-infected cowpea and yardlong bean was promoted by Si but reduced to minimum by Si + N. These results contrasted to the counteracting effects of Si or Si + N in the CCMV- and CMMV-infected mung bean via enhanced growth, nodulation and levels of ureide and AA in the leaves and nodules. Together, these observations suggest the fertilization with Si + N exclusively in virus-free cowpea and yardlong bean crops. However, Si + N fertilization must be encouraged in virus-endangered mung bean crops to enhance growth, nodulation and N-metabolism. It is noteworthy to see the enhanced nodulation of the three Vigna taxa in the presence of 10 mM KNO3. Full article
Figures

Open AccessArticle
Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana
Plants 2017, 6(3), 39; doi:10.3390/plants6030039 -
Abstract
Traditional medicine and ecological cues can both help to reveal bioactive natural compounds. Indigenous Australians have long used kino from trunks of the eucalypt tree, Corymbia citriodora, in traditional medicine. A closely related eucalypt, C. torelliana, produces a fruit resin with
[...] Read more.
Traditional medicine and ecological cues can both help to reveal bioactive natural compounds. Indigenous Australians have long used kino from trunks of the eucalypt tree, Corymbia citriodora, in traditional medicine. A closely related eucalypt, C. torelliana, produces a fruit resin with antimicrobial properties that is highly attractive to stingless bees. We tested the antimicrobial activity of extracts from kino of C. citriodora, C. torelliana × C. citriodora, and C. torelliana against three Gram-negative and two Gram-positive bacteria and the unicellular fungus, Candida albicans. All extracts were active against all microbes, with the highest activity observed against P. aeruginosa. We tested the activity of seven flavonoids from the kino of C. torelliana against P. aeruginosa and S. aureus. All flavonoids were active against P. aeruginosa, and one compound, (+)-(2S)-4′,5,7-trihydroxy-6-methylflavanone, was active against S. aureus. Another compound, 4′,5,7-trihydroxy-6,8-dimethylflavanone, greatly increased biofilm formation by both P. aeruginosa and S. aureus. The presence or absence of methyl groups at positions 6 and 8 in the flavonoid A ring determined their anti-Staphylococcus and biofilm-stimulating activity. One of the most abundant and active compounds, 3,4′,5,7-tetrahydroxyflavanone, was tested further against P. aeruginosa and was found to be bacteriostatic at its minimum inhibitory concentration of 200 µg/mL. This flavanonol reduced adhesion of P. aeruginosa cells while inducing no cytotoxic effects in Vero cells. This study demonstrated the antimicrobial properties of flavonoids in eucalypt kino and highlighted that traditional medicinal knowledge and ecological cues can reveal valuable natural compounds. Full article
Figures

Figure 1

Open AccessFeature PaperCommunication
Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats
Plants 2017, 6(3), 38; doi:10.3390/plants6030038 -
Abstract
The principal aim of this paper is to show the influence of soil characteristics on the quantitative variability of secondary metabolites. Analysis of phenolic content, flavonoid concentrations, and the antioxidant activity was performed using the ethanol and ethyl acetate plant extracts of the
[...] Read more.
The principal aim of this paper is to show the influence of soil characteristics on the quantitative variability of secondary metabolites. Analysis of phenolic content, flavonoid concentrations, and the antioxidant activity was performed using the ethanol and ethyl acetate plant extracts of the species Cichorium intybus L. (Asteraceae). The samples were collected from one saline habitat and two non-saline habitats. The values of phenolic content from the samples taken from the saline habitat ranged from 119.83 to 120.83 mg GA/g and from non-saline habitats from 92.44 to 115.10 mg GA/g. The amount of flavonoids in the samples from the saline locality varied between 144.36 and 317.62 mg Ru/g and from non-saline localities between 86.03 and 273.07 mg Ru/g. The IC50 values of antioxidant activity in the samples from the saline habitat ranged from 87.64 to 117.73 μg/mL and from 101.44 to 125.76 μg/mL in the samples from non-saline habitats. The results confirmed that soil types represent a significant influence on the quantitative content of secondary metabolites. The greatest concentrations of phenols and flavonoids and the highest level of antioxidant activity were found in the samples from saline soil. This further corroborates the importance of saline soil as an ecological factor, as it is proven to give rise to increased biosynthesis of secondary metabolites and related antioxidant activity. Full article