Open AccessArticle
Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature
Plants 2016, 5(3), 36; doi:10.3390/plants5030036 -
Abstract
The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly [...] Read more.
The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0) and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary. Full article
Figures

Figure 1

Open AccessArticle
Interaction Effect between Elevated CO2 and Fertilization on Biomass, Gas Exchange and C/N Ratio of European Beech (Fagus sylvatica L.)
Plants 2016, 5(3), 38; doi:10.3390/plants5030038 -
Abstract
The effects of elevated CO2 and interaction effects between elevated CO2 and nutrient supplies on growth and the C/N ratio of European beech (Fagus sylvatica L.) saplings were studied. One-year-old beech saplings were grown in a greenhouse at ambient [...] Read more.
The effects of elevated CO2 and interaction effects between elevated CO2 and nutrient supplies on growth and the C/N ratio of European beech (Fagus sylvatica L.) saplings were studied. One-year-old beech saplings were grown in a greenhouse at ambient (385 ppm) and elevated CO2 (770 ppm/950 ppm), with or without fertilization for two growing seasons. In this study, emphasis is placed on the combined fertilization including phosphorus, potassium and nitrogen with two level of elevated CO2. The fertilized plants grown under elevated CO2 had the highest net leaf photosynthesis rate (Ac). The saplings grown under elevated CO2 had a significantly lower stomatal conductance (gs) than saplings grown under ambient air. No interaction effect was found between elevated CO2 and fertilization on Ac. A interaction effect between CO2 and fertilization, as well as between date and fertilization and between date and CO2 was detected on gs. Leaf chlorophyll content index (CCI) and leaf nitrogen content were strongly positively correlated to each other and both of them decreased under elevated CO2. At the end of both growing seasons, stem dry weight was greater under elevated CO2 and root dry weight was not affected by different treatments. No interaction effect was detected between elevated CO2 and nutrient supplies on the dry weight of different plant tissues (stems and roots). However, elevated CO2 caused a significant decrease in the nitrogen content of plant tissues. Nitrogen reduction in the leaves under elevated CO2 was about 10% and distinctly higher than in the stem and root. The interaction effect of elevated CO2 and fertilization on C/N ratio in plants tissues was significant. The results led to the conclusion that photosynthesis and the C/N ratio increased while stomatal conductance and leaf nitrogen content decreased under elevated CO2 and nutrient-limited conditions. In general, under nutrient-limited conditions, the plant responses to elevated CO2 were decreased. Full article
Figures

Figure 1

Open AccessArticle
Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40
Plants 2016, 5(3), 37; doi:10.3390/plants5030037 -
Abstract
The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated [...] Read more.
The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under normal and drought stress conditions. The course of leaf senescence in these lines was monitored by physiological parameters and studies on the expression of senescence- and drought stress-related genes. Drought treatment accelerated leaf senescence in WT plants, whereas WHIRLY 1 knockdown lines (RNAi-W1) showed a stay-green phenotype. Expression of both senescence-associated and drought stress-responsive genes, was delayed in the transgenic plants. Notably, expression of transcription factors of the WRKY and NAC families, which are known to function in senescence- and stress-related signaling pathways, was affected in plants with impaired accumulation of WHIRLY1, indicating that WHIRLY1 acts as an upstream regulator of drought stress-induced senescence. To reveal the epigenetic indexing of HvS40 at the onset of drought-induced senescence in WT and RNAi-W1 lines, stress-responsive loading with histone modifications of promoter and coding sequences of HvS40 was analyzed by chromatin immunoprecipitation and quantified by qRT-PCR. In the wildtype, the euchromatic mark H3K9ac of the HvS40 gene was low under control conditions and was established in response to drought treatment, indicating the action of epigenetic mechanisms in response to drought stress. However, drought stress caused no significant increase in H3K9ac in plants impaired in accumulation of WHIRLY1. The results show that WHIRLY1 knockdown sets in motion a delay in senescence that involves all aspects of gene expression, including changes in chromatin structure. Full article
Figures

Figure 1

Open AccessCorrection
Correction: Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. Plants 2015, 4, 691–709
Plants 2016, 5(3), 35; doi:10.3390/plants5030035 -
Abstract The authors wish to make the following corrections to their paper [1].[...] Full article
Open AccessArticle
Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil
Plants 2016, 5(3), 34; doi:10.3390/plants5030034 -
Abstract
Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana [...] Read more.
Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils. Full article
Figures

Open AccessReview
The Role of Flavonoids in Nodulation Host-Range Specificity: An Update
Plants 2016, 5(3), 33; doi:10.3390/plants5030033 -
Abstract
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which [...] Read more.
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key “infection” flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role. Full article
Figures

Open AccessMeeting Report
Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity
Plants 2016, 5(3), 32; doi:10.3390/plants5030032 -
Abstract
The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres [...] Read more.
The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. Full article
Figures

Open AccessArticle
Comparison between Canadian Canola Harvest and Export Surveys
Plants 2016, 5(3), 30; doi:10.3390/plants5030030 -
Abstract
Parameters, such as oil, protein, glucosinolates, chlorophyll content and fatty acid composition, were determined using reference methods for both harvest survey samples and Canadian Canola exports. Canola harvest survey and export data were assessed to evaluate if canola harvest survey data can [...] Read more.
Parameters, such as oil, protein, glucosinolates, chlorophyll content and fatty acid composition, were determined using reference methods for both harvest survey samples and Canadian Canola exports. Canola harvest survey and export data were assessed to evaluate if canola harvest survey data can be extrapolated to predict the quality of the Canadian canola exports. There were some differences in some measured parameters between harvest and export data, while other parameters showed little difference. Protein content and fatty acid composition showed very similar data for harvest and export averages. Canadian export data showed lower oil content when compared to the oil content of harvest survey was mainly due to a diluting effect of dockage in the export cargoes which remained constant over the years (1.7% to 1.9%). Chlorophyll was the least predictable parameter; dockage quality as well as commingling of the other grades in Canola No. 1 Canada affected the chlorophyll content of the exports. Free fatty acids (FFA) were also different for the export and harvest survey. FFA levels are affected by storage conditions; they increase during the shipping season and, therefore, are difficult to predict from their harvest survey averages. Full article
Figures

Open AccessArticle
Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada
Plants 2016, 5(3), 31; doi:10.3390/plants5030031 -
Abstract
Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the [...] Read more.
Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. Full article
Open AccessArticle
Variations in the Life Cycle of Anemone patens L. (Ranunculaceae) in Wild Populations of Canada
Plants 2016, 5(3), 29; doi:10.3390/plants5030029 -
Abstract
Based on a study of a perennial herb Anemone patens L. (Ranunculaceae) in a variety of natural habitats in Saskatchewan, Canada, eight life stages (seed, seedling, juvenile, immature, vegetative, generative, subsenile, and senile) are distinguished and characterized in detail. The species ontogenetic [...] Read more.
Based on a study of a perennial herb Anemone patens L. (Ranunculaceae) in a variety of natural habitats in Saskatchewan, Canada, eight life stages (seed, seedling, juvenile, immature, vegetative, generative, subsenile, and senile) are distinguished and characterized in detail. The species ontogenetic growth patterns are investigated. A. patens has a long life cycle that may last for several decades which leads to the formation of compact clumps. The distribution and age of clumps vary substantially in different environments with different levels of disturbance. The plant ontogeny includes the regular cycle with reproduction occurring through seeds. There is an optional subsenile vegetative disintegration at the end of the life span. The following variations in the life cycle of A. patens are identified: with slower development in young age, with an accelerated development, with omission of the generative stage, with retrogression to previous life stages in mature age, and with vegetative dormancy. The range of variations in the life cycle of A. patens may play an important role in maintaining population stability in different environmental conditions and management regimes. Full article
Open AccessArticle
The Occurrence of Flavonoids and Related Compounds in Flower Sections of Papaver nudicaule
Plants 2016, 5(2), 28; doi:10.3390/plants5020028 -
Abstract
Flavonoids play an important role in the pigmentation of flowers; in addition, they protect petals and other flower parts from UV irradiation and oxidative stress. Nudicaulins, flavonoid-derived indole alkaloids, along with pelargonidin, kaempferol, and gossypetin glycosides, are responsible for the color of [...] Read more.
Flavonoids play an important role in the pigmentation of flowers; in addition, they protect petals and other flower parts from UV irradiation and oxidative stress. Nudicaulins, flavonoid-derived indole alkaloids, along with pelargonidin, kaempferol, and gossypetin glycosides, are responsible for the color of white, red, orange, and yellow petals of different Papaver nudicaule cultivars. The color of the petals is essential to attract pollinators. We investigated the occurrence of flavonoids in basal and apical petal areas, stamens, and capsules of four differently colored P. nudicaule cultivars by means of chromatographic and spectroscopic methods. The results reveal the specific occurrence of gossypetin glycosides in the basal spot of all cultivars and demonstrate that kaempferol glycosides are the major secondary metabolites in the capsules. Unlike previous reports, the yellow-colored stamens of all four P. nudicaule cultivars are shown to contain not nudicaulins but carotenoids. In addition, the presence of nudicaulins, pelargonidin, and kaempferol glycosides in the apical petal area was confirmed. The flavonoids and related compounds in the investigated flower parts and cultivars of P. nudicaule are profiled, and their potential ecological role is discussed. Full article
Figures

Open AccessReview
Flavones: From Biosynthesis to Health Benefits
Plants 2016, 5(2), 27; doi:10.3390/plants5020027 -
Abstract
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites [...] Read more.
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved in plant signaling and defense, as well as key ingredients of the human diet, with significant health benefits. Here, we appraise flavone formation in plants, emphasizing the emerging theme that biosynthesis pathway determines flavone chemistry. Additionally, we briefly review the biological activities of flavones, both from the perspective of the functions that they play in biotic and abiotic plant interactions, as well as their roles as nutraceutical components of the human and animal diet. Full article
Figures

Open AccessArticle
Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions
Plants 2016, 5(2), 26; doi:10.3390/plants5020026 -
Abstract
Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and [...] Read more.
Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand from May 2003 to May 2005. FPS DCD was applied to grazed pasture plots at 10 kg·ha−1 in autumn and spring in addition to applied cow urine at a N loading rate of 1000 kg·N·ha−1, with non-urine control plots. Pasture N ranged between 1.9 and 4.8% with higher concentrations from urine. Results indicated that urine consistently increased N concentrations for around 220 days post deposition (mid December/early summer) at which point concentrations dropped to background levels. In urine patches, pasture yield and annual N uptake were dramatically increased on average by 51% for autumn and 28% for spring applied urine, in both years, when DCD was applied. This field experiment provides strong evidence that annual pasture N uptake is more strongly influenced by high urine N deposition than pasture N concentrations. FPS DCD has the potential to result in very high N uptake in urine patches, even when they are autumn deposited. Full article
Open AccessReview
Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)
Plants 2016, 5(2), 25; doi:10.3390/plants5020025 -
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other [...] Read more.
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. Full article
Figures

Open AccessReview
Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants
Plants 2016, 5(2), 24; doi:10.3390/plants5020024 -
Abstract
Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently [...] Read more.
Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. Full article
Figures

Open AccessArticle
Two New Nepenthes Species from the Philippines and an Emended Description of Nepenthes ramos
Plants 2016, 5(2), 23; doi:10.3390/plants5020023 -
Abstract
With 50 species of the genus Nepenthes L. currently described from the Philippines, it is without doubt that the country, along with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia, Brunei), should be considered the center of diversity of the genus. [...] Read more.
With 50 species of the genus Nepenthes L. currently described from the Philippines, it is without doubt that the country, along with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia, Brunei), should be considered the center of diversity of the genus. In this work, we describe two new species. One species, N. aenigmasp. nov., is from Ilocos Norte province on Luzon Island and has the—for Nepenthes—unusual ecological preference to grow in dense vegetation in deep shade. The other new species is from Mount Hamiguitan in Davao Oriental province on Mindanao Island. With this new entry, Mount Hamiguitan is now home to four endemic species (N. peltata, N. micramphora, N. hamiguitanensis, N. justinae sp. nov.). Furthermore, we provide an emended description of N. ramos based on field data. Nepenthes kurata is synonymized here with N. ramos. Full article
Open AccessCommunication
Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan
Plants 2016, 5(2), 22; doi:10.3390/plants5020022 -
Abstract
There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum [...] Read more.
There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield of PSII (Fv/Fm) could be used as an indicator of adaptation or temperature stress in two bryophyte species: Pleurozium schreberi (Willd. ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. We sought to test the hypothesis that differences in the ability to acclimate to short-term temperature treatment would be revealed as differences in photosystem II maximum yield (Fv/Fm). Thermal treatments were applied to samples from 12 and 11 populations during 12 or 13 days in growth chambers and comprised: (1) 10/5 °C; (2) 20/10 °C; (3) 25/15 °C; (4) 30/20 °C (12 hours day/night temperature). In Pleurozium schreberi, there were no significant site-dependent differences before or after the experiment, while site dependencies were clearly shown in Racomitrium lanuginosum throughout the study. Fv/Fm in Pleurozium schreberi decreased at the highest and lowest temperature treatments, which can be interpreted as a stress response, but no similar trends were shown by Racomitrium lanuginosum. Full article
Open AccessArticle
Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production
Plants 2016, 5(2), 21; doi:10.3390/plants5020021 -
Abstract
Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. [...] Read more.
Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of disease spread by cleaning of farm equipment, footwear, etc.Full article
Figures

Open AccessArticle
Patterns of Growth Costs and Nitrogen Acquisition in Cytisus striatus (Hill) Rothm. and Cytisus balansae (Boiss.) Ball are Mediated by Sources of Inorganic N
Plants 2016, 5(2), 20; doi:10.3390/plants5020020 -
Abstract
Nitrogen-fixing shrubby legumes in the Mediterranean area partly overcome nutrient limitations by making use of soil N and atmospheric N2 sources. Their ability to switch between different sources lets them adjust to the carbon costs pertaining to N acquisition throughout the [...] Read more.
Nitrogen-fixing shrubby legumes in the Mediterranean area partly overcome nutrient limitations by making use of soil N and atmospheric N2 sources. Their ability to switch between different sources lets them adjust to the carbon costs pertaining to N acquisition throughout the year. We investigated the utilization of different inorganic N sources by Cytisus balansae and Cytisus striatus, shrubby legumes under low and a sufficient (5 and 500 µM P, respectively) levels of P. Plants grew in sterile sand, supplied with N-free nutrient solution and inoculated with effective Bradyrhizobium strains; other treatments consisted of plants treated with (i) 500 µM NH4NO3; and (ii) 500 µM NH4NO3 and inoculation with effective rhizobial strains. The application of NH4NO3 always resulted in greater dry biomass production. Carbon construction costs were higher in plants that were supplied with mineral and symbiotic N sources and always greater in the endemic C. striatus. Photosynthetic rates were similar in plants treated with different sources of N although differences were observed between the two species. Non-fertilized inoculated plants showed a neat dependence on N2 fixation and had more effective root nodules. Results accounted for the distribution of the two species with regards to their ability to use different N sources. Full article
Open AccessArticle
Short-Term Response of Sasa Dwarf Bamboo to a Change of Soil Nitrogen Fertility in a Forest Ecosystem in Northern Hokkaido, Japan
Plants 2016, 5(2), 19; doi:10.3390/plants5020019 -
Abstract
In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the [...] Read more.
In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem function of Sasa after disturbances in the soil N cycling is not fully understood. The purpose of this study was to determine the short-term response of Sasa to a change of soil N fertility. Biomass, litterfall, litter decomposition, soil N pool, and N leaching from soil were measured in control, and low- (5 g N m−2 year−1) and high-N (15 g N m−2 year−1) addition plots. Sasa immobilized much N as the soil N fertility increased. However, the leaf N concentration in aboveground biomass did not increase, suggesting that the N in leaves was maintained because of the increase of leaf biomass. As a result, the decomposition and mineralization rates of the produced litter before and after N addition were comparable among plots, even though the soil inorganic N fertility increased greatly. These results suggest that immediate response of Sasa to an increase of soil inorganic N mitigates the excess N leaching from soil. Full article