Open AccessCommunication
FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz)
Plants 2017, 6(2), 22; doi:10.3390/plants6020022 (registering DOI) -
Abstract
Accelerated breeding of plant species has the potential to help challenge environmental and biochemical cues to support global crop security. We demonstrate the over-expression of ArabidopsisFLOWERING LOCUS T in Agrobacterium-mediated transformed cassava (Manihot esculenta Crantz; cultivar 60444) to trigger early
[...] Read more.
Accelerated breeding of plant species has the potential to help challenge environmental and biochemical cues to support global crop security. We demonstrate the over-expression of ArabidopsisFLOWERING LOCUS T in Agrobacterium-mediated transformed cassava (Manihot esculenta Crantz; cultivar 60444) to trigger early flowering in glasshouse-grown plants. An event seldom seen in a glasshouse environment, precocious flowering and mature inflorescence were obtained within 4–5 months from planting of stem cuttings. Manual pollination using pistillate and staminate flowers from clonal propagants gave rise to viable seeds that germinated into morphologically typical progeny. This strategy comes at a time when accelerated crop breeding is of increasing importance to complement progressive genome editing techniques. Full article
Figures

Figure 1

Open AccessArticle
Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress
Plants 2017, 6(2), 21; doi:10.3390/plants6020021 (registering DOI) -
Abstract
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At
[...] Read more.
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions. Full article
Figures

Open AccessArticle
Attenuation of Drought Stress in Brassica Seedlings with Exogenous Application of Ca2+ and H2O2
Plants 2017, 6(2), 20; doi:10.3390/plants6020020 -
Abstract
Drought is one of the most common abiotic stresses, affecting the growth and productivity of crop plants globally, particularly in arid and semi-arid regions. Different strategies are used to mitigate the impact of drought among crop plants. Exogenous application of different substances are
[...] Read more.
Drought is one of the most common abiotic stresses, affecting the growth and productivity of crop plants globally, particularly in arid and semi-arid regions. Different strategies are used to mitigate the impact of drought among crop plants. Exogenous application of different substances are known to decrease the effects of various abiotic stresses, including drought stress. The aim of this study was to evaluate the effect of Ca2+ and H2O2 in developing drought stress tolerance in Brassica napus “Bulbul-98” seedlings. Brassica napus “Bulbul-98” seedlings were exposed to 5, 10 and 15 mM Ca2+ and 2, 5 and 10 μM H2O2 concentrations twice at an interval of two days for up to 20 days after germination. Drought stress decreased relative water content (RWC), chlorophyll content and increased proline, H2O2, soluble protein and electrolyte leakage in Brassica seedlings. Exogenous Ca2+ (5, 10,15 mM) and H2O2 (2, 5, 10 μM) supplementations, during drought stress induction, showed a significant increase in RWC by 5.4%, 18.06%, 26.2% and 6.87%, 13.9%, 18.3% respectively. Similarly, with the exogenous application of Ca2+ (5, 10, 15 mM) and H2O2 (2, 5, 10 μM), chlorophyll content was increased by 15.03%, 22.2%, and 28.4%, and 9.6%, 23.3%, and 27.5% respectively. It was confirmed that the seedlings under drought stress that were supplemented with Ca2+ and H2O2 recovered from water content reduction and chlorosis, and were able to grow normally. Full article
Figures

Figure 1

Open AccessArticle
Pastoralism versus Agriculturalism—How Do Altered Land-Use Forms Affect the Spread of Invasive Plants in the Degraded Mutara Rangelands of North-Eastern Rwanda?
Plants 2017, 6(2), 19; doi:10.3390/plants6020019 -
Abstract
Lantana camara L. (Verbenaceae) originates from tropical Central and South America and has become invasive in about 50 countries. It causes problems when invading rangelands due to its toxicity to livestock and its tendency to form dense, monotonous thickets. Its invasiveness can partly
[...] Read more.
Lantana camara L. (Verbenaceae) originates from tropical Central and South America and has become invasive in about 50 countries. It causes problems when invading rangelands due to its toxicity to livestock and its tendency to form dense, monotonous thickets. Its invasiveness can partly be explained by the high tannin content largely protecting the species from being browsed, its tolerance to a wide range of environmental conditions, as well as its general preference for anthropogenically disturbed habitats. The dispersal of L. camara is facilitated by birds and other animals consuming its drupes (endozoochory), and so both wild and domestic ungulates could contribute to its spread. In our study, we investigated the distribution of L. camara in the Mutara rangelands of north-eastern Rwanda, an area that faced dramatic landscape changes in recent decades. We assessed 23 ecological factors and factors related to land-use and conservation-political history. Major effects on the local abundance of L. camara were found in that the relative canopy cover of L. camara was negatively correlated with the occurrence of other shrubs (suggesting competition for space and nutrients), while encounter rates of houses, ‘living fences’ (Euphorbia tirucalli L.) and cattle tracks were positively correlated with L. camara cover. Hence, the spread of non-native L. camara in the Mutara rangelands appears to be linked to landscape alterations arising from the transformation of rangelands supporting traditional pastoralist communities to other agricultural land-use forms. Full article
Figures

Open AccessArticle
Effect of Gamma Irradiation on 2-Acetyl-1-pyrroline Content, GABA Content and Volatile Compounds of Germinated Rice (Thai Upland Rice)
Plants 2017, 6(2), 18; doi:10.3390/plants6020018 -
Abstract
Aroma intensity in rice is related to the level of 2-acetyl-1-pyrroline (2AP). The accumulation of 2AP in rice has been synthesized via l-proline metabolism by inactive betaine aldehyde dehydrogenase enzyme (BADH2), which activates 2AP accumulation. Meanwhile, active BADH2 inhibits 2AP accumulation but
[...] Read more.
Aroma intensity in rice is related to the level of 2-acetyl-1-pyrroline (2AP). The accumulation of 2AP in rice has been synthesized via l-proline metabolism by inactive betaine aldehyde dehydrogenase enzyme (BADH2), which activates 2AP accumulation. Meanwhile, active BADH2 inhibits 2AP accumulation but activates γ-aminobutyric acid (GABA) accumulation. The improvement of 2AP content in rice has been reported under certain conditions, such as high salinity, water treatment, and reduction of high intensity solar exposure. In this study, we conducted the effects of gamma irradiation on 2AP content, GABA content and volatile compounds of germinated rice (Thai upland rice). Our results showed that the GABA content was highest when rice seeds germinated within a 24-h. The 2AP content of irradiated rice (germinated within a 24-h duration) was higher than non-irradiated rice for all gamma doses, particularly at 20 Gy, which showed a 23-fold higher level of 2AP than non-irradiated rice. On the other hand, the reduction of the GABA content of irradiated rice was caused by an increase in the gamma dose. At 300 Gy, irradiated rice had a GABA content approximately 2.6-fold lower than non-irradiated rice. Moreover, we observed that a reduction of volatile compounds occurred when increasing gamma dose. However, some volatile compounds appeared in the irradiated rice at gamma doses of 60 Gy, 80 Gy, 100 Gy and 300 Gy. Furthermore, we observed that the level of Octanal, which is the compound most related to aroma intensity, of irradiated rice was stronger than that of non-irradiated rice. Our results demonstrate for the first time that 2AP and GABA contents are sensitive to gamma irradiation conditions. Moreover, the results indicate that the gamma irradiation technique can be used to improve the aroma intensity of rice. Full article
Figures

Figure 1

Open AccessArticle
Pollen Grain Preservation and Fertility in Valuable Commercial Rose Cultivars
Plants 2017, 6(2), 17; doi:10.3390/plants6020017 -
Abstract
In the cut flower market, traditional breeding is still the best way to achieve new rose cultivars. The geographical delocalization of cultivar constitution (generally made in Europe and North America) and plant cultivation (large areas in Africa and South America) represents a limit
[...] Read more.
In the cut flower market, traditional breeding is still the best way to achieve new rose cultivars. The geographical delocalization of cultivar constitution (generally made in Europe and North America) and plant cultivation (large areas in Africa and South America) represents a limit point for crossing and selection. Rose breeders often need to overcome geographical distances, resulting in asynchrony in flowering among crossing parents, by storing and sending pollen. Hence, a key aspect in breeding programs is linked to pollen availability and conservation, jointly with the identification of parameters related to pollen fertility. In this study we present the results of three different trials. In the first, pollen diameter and pollen viability were chosen as fertility predictors of 10 Rosa hybrida commercial cultivars. In the second trial, aliquots of dried pollen grains of six R. hybrida cultivar were stored under two different temperatures (freezer at T = −20 °C and deep freezer at T = −80 °C) and after a wide range of conservation period, their viability was measured. In the third trial, the effective fertilization capacity of frozen pollen of 19 pollen donor cultivars was evaluated during 2015 crossing breeding plan, performing 44 hybridizations and correlating the number of seeds and the ratio seeds/crossing, obtained by each cultivar, with in vitro pollen germination ability. Full article
Figures

Open AccessReview
Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review
Plants 2017, 6(2), 16; doi:10.3390/plants6020016 -
Abstract
Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according
[...] Read more.
Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes. Full article
Figures

Figure 1

Open AccessReview
Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis
Plants 2017, 6(2), 15; doi:10.3390/plants6020015 -
Abstract
Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD),
[...] Read more.
Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC. Full article
Figures

Figure 1

Open AccessArticle
Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars
Plants 2017, 6(1), 14; doi:10.3390/plants6010014 -
Abstract
The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did
[...] Read more.
The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did not cause leaf injury but restricted growth through stomatal closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyldiacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the stomatal response to drought and the observed effects on whole-plant physiology were essentially the same as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to alleviate ozone effects through the reduction of ozone uptake. Full article
Figures

Figure 1

Open AccessCommunication
First Report on the Ethnopharmacological Uses of Medicinal Plants by Monpa Tribe from the Zemithang Region of Arunachal Pradesh, Eastern Himalayas, India
Plants 2017, 6(1), 13; doi:10.3390/plants6010013 -
Abstract
The Himalayas are well known for high diversity and ethnobotanical uses of the region’s medicinal plants. However, not all areas of the Himalayan regions are well studied. Studies on ethnobotanical uses of plants from the Eastern Himalayas are still lacking for many tribes.
[...] Read more.
The Himalayas are well known for high diversity and ethnobotanical uses of the region’s medicinal plants. However, not all areas of the Himalayan regions are well studied. Studies on ethnobotanical uses of plants from the Eastern Himalayas are still lacking for many tribes. Past studies have primarily focused on listing plants’ vernacular names and their traditional medicinal uses. However, studies on traditional ethnopharmacological practices on medicine preparation by mixing multiple plant products of different species has not yet been reported in published literature from the state of Arunachal Pradesh, India, Eastern Himalayas. In this study, we are reporting for the first time the ethnopharmacological uses of 24 medicines and their procedures of preparation, as well as listing 53 plant species used for these medicines by the Monpa tribe. Such documentations are done first time in Arunachal Pradesh region of India as per our knowledge. Our research emphasizes the urgent need to document traditional medicine preparation procedures from local healers before traditional knowledge of tribal people living in remote locations are forgotten in a rapidly transforming country like India. Full article
Figures

Figure 1

Open AccessReview
Plasmodesmata-Mediated Cell-to-Cell Communication in the Shoot Apical Meristem: How Stem Cells Talk
Plants 2017, 6(1), 12; doi:10.3390/plants6010012 -
Abstract
Positional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD)
[...] Read more.
Positional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD) spanning the cell wall. PD interconnect most cells in the plant and generate a cytoplasmic continuum, to mediate short- and long-distance trafficking of various molecules. Cell-to-cell communication through PD plays a role in transmitting positional signals, however, the regulatory mechanisms of PD-mediated trafficking are still largely unknown. The induction and maintenance of stem cells in the shoot apical meristem (SAM) depends on PDmediated cell-to-cell communication, hence, it is an optimal model for dissecting the regulatory mechanisms of PD-mediated cell-to-cell communication and its function in specifying cell fates. In this review, we summarize recent knowledge of PD-mediated cell-to-cell communication in the SAM, and discuss mechanisms underlying molecular trafficking through PD and its role in plant development. Full article
Figures

Figure 1

Open AccessReview
Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants
Plants 2017, 6(1), 11; doi:10.3390/plants6010011 -
Abstract
The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and
[...] Read more.
The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed. Full article
Figures

Open AccessCommunication
Caffeoylquinic Acids from the Aerial Parts of Chrysanthemum coronarium L.
Plants 2017, 6(1), 10; doi:10.3390/plants6010010 -
Abstract
To elucidate the chemical compositions of the aerial parts of Chrysanthemum coronarium L., the ethanol extracts of Ch. coronarium L. were firstly isolated by the MCI-gel resin column. The caffeoylquinic acid-rich fractions were further purified by various chromatographic columns including silica gel, Sephadex
[...] Read more.
To elucidate the chemical compositions of the aerial parts of Chrysanthemum coronarium L., the ethanol extracts of Ch. coronarium L. were firstly isolated by the MCI-gel resin column. The caffeoylquinic acid-rich fractions were further purified by various chromatographic columns including silica gel, Sephadex LH-20, and semi-preparative HPLC to yield the compounds. The purified compounds were characterized by 1H-Nuclear Magnetic Resonance (1H-NMR), 13C-NMR, and high resolution electrospray ionisation mass spectral (HR-ESI-MS) spectroscopy. Seven caffeoylquinic acid (CQA) compounds were isolated from this plant. Their structures were clarified by spectrometric methods and identified as 3-O-caffeoylquinic acid (1), 5-O-caffeoylquinic acid (2), 4-O-caffeoylquinic acid (3), 3,4-di-O-caffeoylquinic acid (4), 1,5-di-O-caffeoylquinic acid (5), 3,5-di-O-caffeoylquinic acid (6), and 4,5-di-O-caffeoylquinic acid (7). Caffeoylquinic acids were the major constituents present in the aerial parts of Ch. coronarium L. All of the isolates except for compounds 2 and 6 were reported for the first time from this species. Moreover, compounds 35, and 7 were identified from the Chrysanthemum genus for the first time. Full article
Figures

Figure 1

Open AccessArticle
An Improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbate Acid and Tween-20
Plants 2017, 6(1), 9; doi:10.3390/plants6010009 -
Abstract
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency
[...] Read more.
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase (GUS) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% (v/v) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology
Plants 2017, 6(1), 7; doi:10.3390/plants6010007 -
Abstract
Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend
[...] Read more.
Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend on cotton phenology from 1980–2015 in 15 selected locations. The results demonstrated that observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological maturity (M) occurred earlier by, on average, 5.35, 5.08, 2.87 and 1.12 days decade−1, respectively. Phenological phases, sowing anthesis (S-A), anthesis to maturity (A-M) and sowing to maturity (S-M) were reduced by, on average, 2.45, 1.76 and 4.23 days decade−1, respectively. Observed sowing, emergence, anthesis and maturity were negatively correlated with air temperature by, on average, −2.03, −1.93, −1.09 and −0.42 days °C−1, respectively. Observed sowing-anthesis, anthesis to maturity and sowing-maturity were also negatively correlated with temperature by, on average, −0.94, −0.67 and −1.61 days °C−1, respectively. Applying the cropping system model CSM-CROPGRO-Cotton model using a standard variety in all locations indicated that the model-predicted phenology accelerated more due to warming trends than field-observed phenology. However, 30.21% of the harmful influence of the thermal trend was compensated as a result of introducing new cotton cultivars with higher growing degree day (thermal time) requirements. Therefore, new cotton cultivars which have higher thermal times and are high temperature tolerant should be evolved. Full article
Figures

Figure 1

Open AccessReview
Multiple Mobile mRNA Signals Regulate Tuber Development in Potato
Plants 2017, 6(1), 8; doi:10.3390/plants6010008 -
Abstract
Included among the many signals that traffic through the sieve element system are full-length mRNAs that function to respond to the environment and to regulate development. In potato, several mRNAs that encode transcription factors from the three-amino-loop-extension (TALE) superfamily move from leaves to
[...] Read more.
Included among the many signals that traffic through the sieve element system are full-length mRNAs that function to respond to the environment and to regulate development. In potato, several mRNAs that encode transcription factors from the three-amino-loop-extension (TALE) superfamily move from leaves to roots and stolons via the phloem to control growth and signal the onset of tuber formation. This RNA transport is enhanced by short-day conditions and is facilitated by RNA-binding proteins from the polypyrimidine tract-binding family of proteins. Regulation of growth is mediated by three mobile mRNAs that arise from vasculature in the leaf. One mRNA, StBEL5, functions to activate growth, whereas two other, sequence-related StBEL’s, StBEL11 and StBEL29, function antagonistically to repress StBEL5 target genes involved in promoting tuber development. This dynamic system utilizes closely-linked phloem-mobile mRNAs to control growth in developing potato tubers. In creating a complex signaling pathway, potato has evolved a long-distance transport system that regulates underground organ development through closely-associated, full-length mRNAs that function as either activators or repressors. Full article
Figures

Open AccessArticle
Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots
Plants 2017, 6(1), 6; doi:10.3390/plants6010006 -
Abstract
Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have
[...] Read more.
Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C/20 °C (day/night) and then transferred some plants for six days to 35 °C /30 °C (moderate heat) or 42 °C/37 °C (severe heat) (maximum root temperature = 32 °C or 39 °C, respectively); plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night). Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay). In general, (1) roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2) negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C–42 °C). Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Plants in 2016
Plants 2017, 6(1), 5; doi:10.3390/plants6010005 -
Abstract The editors of Plants would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016. [...]
Full article
Open AccessCommunication
Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene
Plants 2017, 6(1), 4; doi:10.3390/plants6010004 -
Abstract
An alternative way to increase plant productivity through the use of nitrogen fertilizers is to improve the efficiency of nitrogen utilization via genetic engineering. The effects of overexpression of pine glutamine synthetase (GS) gene and nitrogen availability on growth and leaf pigment levels
[...] Read more.
An alternative way to increase plant productivity through the use of nitrogen fertilizers is to improve the efficiency of nitrogen utilization via genetic engineering. The effects of overexpression of pine glutamine synthetase (GS) gene and nitrogen availability on growth and leaf pigment levels of two Betula species were studied. Untransformed and transgenic plants of downy birch (B. pubescens) and silver birch (B. pendula) were grown under open-air conditions at three nitrogen regimes (0, 1, or 10 mM) for one growing season. The transfer of the GS1a gene led to a significant increase in the height of only two transgenic lines of nine B. pubescens, but three of five B. pendula transgenic lines were higher than the controls. In general, nitrogen supply reduced the positive effect of the GS gene on the growth of transgenic birch plants. No differences in leaf pigment levels between control and transgenic plants were found. Nitrogen fertilization increased leaf chlorophyll content in untransformed plants but its effect on most of the transgenic lines was insignificant. The results suggest that birch plants carrying the GS gene use nitrogen more efficiently, especially when growing in nitrogen deficient soil. Transgenic lines were less responsive to nitrogen supply in comparison to wild-type plants. Full article
Figures

Figure 1

Open AccessArticle
Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes
Plants 2017, 6(1), 3; doi:10.3390/plants6010003 -
Abstract
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion.
[...] Read more.
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. Full article
Figures

Figure 1