Open AccessArticle
Treatment of Anaerobic Digester Effluent Using Acorus calamus: Effects on Plant Growth and Tissue Composition
Plants 2018, 7(2), 36; doi:10.3390/plants7020036 (registering DOI) -
Abstract
The responses of Acorus calamus under greenhouse conditions for 56 days when exposed to three dilutions (25%, 50%, and undiluted) of anaerobic digester effluent from a swine farm were determined. Plant growth, morphology, pigments, and minerals in plant tissues as well as water
[...] Read more.
The responses of Acorus calamus under greenhouse conditions for 56 days when exposed to three dilutions (25%, 50%, and undiluted) of anaerobic digester effluent from a swine farm were determined. Plant growth, morphology, pigments, and minerals in plant tissues as well as water quality were investigated. The plants grew well in all concentrations of anaerobic digester effluent with no statistically significant effects on plant growth and morphology, and without any toxicity symptoms. The NH4+ concentrations in leaves and roots and the NO3 concentrations in leaves as well as the nitrogen, phosphorus, and potassium concentrations in the plant tissues increased with increasing effluent concentration. The nutrients in the anaerobic digester effluent were removed effectively (NH4-N > 99% removal; PO4-P > 80% removal), with highest removal rates in the undiluted digester effluent. The removal of total suspended solids (>80% in 42 days) and chemical oxygen demand (37–53%) were lower. The dissolved oxygen concentration in the anaerobic digester effluent increased overtime, probably because of root oxygen release. It is concluded that Acorus calamus could be a promising species for treating high-strength wastewater with high nutrient concentrations, such as effluents from anaerobic digesters as well as other types of agricultural wastewaters. Full article
Figures

Figure 1

Open AccessArticle
Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition
Plants 2018, 7(2), 35; doi:10.3390/plants7020035 -
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice
[...] Read more.
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation. Full article
Figures

Figure 1

Open AccessCommunication
TUNEL Assay and DAPI Staining Revealed Few Alterations of Cellular Morphology in Naturally and Artificially Aged Seeds of Cultivated Flax
Plants 2018, 7(2), 34; doi:10.3390/plants7020034 -
Abstract
In a search for useful seed aging signals as biomarkers for seed viability prediction, we conducted an experiment using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and 4′,6-diamidino-2-phenylindole (DAPI) staining to analyze morphological and molecular changes in naturally aged (NA)
[...] Read more.
In a search for useful seed aging signals as biomarkers for seed viability prediction, we conducted an experiment using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and 4′,6-diamidino-2-phenylindole (DAPI) staining to analyze morphological and molecular changes in naturally aged (NA) and artificially aged (AA) flax (Linum usitatissimum L.) seeds. A total of 2546 sections were performed from 112 seeds of 12 NA and AA seed samples with variable germination rates. Analyzing 1384 micrographs generated from TUNEL assay and DAPI staining revealed few alterations of the cellular morphology of the NA and AA seeds. Also, the revealed DNA degradations in the aged flax seeds appeared to be associated with seed samples of low germination rates. These results suggest that oily flax seed aging may alter the cellular morphology differently than starchy wheat seed aging. The results also imply that the TUNEL assay and DAPI staining may not yield informative assessments on cellular alterations and DNA degradation after the aging of oily seeds. Full article
Figures

Figure 1

Open AccessReview
Silicon and Mechanisms of Plant Resistance to Insect Pests
Plants 2018, 7(2), 33; doi:10.3390/plants7020033 -
Abstract
This paper reviews the most recent progress in exploring silicon-mediated resistance to herbivorous insects and the mechanisms involved. The aim is to determine whether any mechanism seems more common than the others as well as whether the mechanisms are more pronounced in silicon-accumulating
[...] Read more.
This paper reviews the most recent progress in exploring silicon-mediated resistance to herbivorous insects and the mechanisms involved. The aim is to determine whether any mechanism seems more common than the others as well as whether the mechanisms are more pronounced in silicon-accumulating than non-silicon-accumulating species or in monocots than eudicots. Two types of mechanisms counter insect pest attacks: physical or mechanical barriers and biochemical/molecular mechanisms (in which Si can upregulate and prime plant defence pathways against insects). Although most studies have examined high Si accumulators, both accumulators and non-accumulators of silicon as well as monocots and eudicots display similar Si defence mechanisms against insects. Full article
Figures

Figure 1

Open AccessArticle
Transcriptome and Metabolome Analyses Reveal That Nitrate Strongly Promotes Nitrogen and Carbon Metabolism in Soybean Roots, but Tends to Repress It in Nodules
Plants 2018, 7(2), 32; doi:10.3390/plants7020032 -
Abstract
Leguminous plants form root nodules with rhizobia that fix atmospheric dinitrogen (N2) for the nitrogen (N) nutrient. Combined nitrogen sources, particular nitrate, severely repress nodule growth and nitrogen fixation activity in soybeans (Glycine max [L.] Merr.). A microarray-based transcriptome analysis
[...] Read more.
Leguminous plants form root nodules with rhizobia that fix atmospheric dinitrogen (N2) for the nitrogen (N) nutrient. Combined nitrogen sources, particular nitrate, severely repress nodule growth and nitrogen fixation activity in soybeans (Glycine max [L.] Merr.). A microarray-based transcriptome analysis and the metabolome analysis were carried out for the roots and nodules of hydroponically grown soybean plants treated with 5 mM of nitrate for 24 h and compared with control without nitrate. Gene expression ratios of nitrate vs. the control were highly enhanced for those probesets related to nitrate transport and assimilation and carbon metabolism in the roots, but much less so in the nodules, except for the nitrate transport and asparagine synthetase. From the metabolome analysis, the concentration ratios of metabolites for the nitrate treatment vs. the control indicated that most of the amino acids, phosphorous-compounds and organic acids in roots were increased about twofold in the roots, whereas in the nodules most of the concentrations of the amino acids, P-compounds and organic acids were decreased while asparagine increased exceptionally. These results may support the hypothesis that nitrate primarily promotes nitrogen and carbon metabolism in the roots, but mainly represses this metabolism in the nodules. Full article
Figures

Figure 1

Open AccessArticle
Separation, Identification, and Antidiabetic Activity of Catechin Isolated from Arbutus unedo L. Plant Roots
Plants 2018, 7(2), 31; doi:10.3390/plants7020031 -
Abstract
Phytopharmaceuticals play an essential role in medicine, since the need to investigate highly effective and safe drugs for the treatment of diabetes mellitus disease remains a significant challenge for modern medicine. Arbutus unedo L. root has various therapeutic properties, and has been used
[...] Read more.
Phytopharmaceuticals play an essential role in medicine, since the need to investigate highly effective and safe drugs for the treatment of diabetes mellitus disease remains a significant challenge for modern medicine. Arbutus unedo L. root has various therapeutic properties, and has been used widely in the traditional medicine as an antidiabetic agent. The current study aimed to isolate the pharmacologically active compound from A. unedo roots using accelerated solvent extraction technology, to determine its chemical structure using different instrumental analytical methods, and also to evaluate the α-glucosidase inhibitory activity. The roots of A. unedo were exhaustively extracted by high-pressure static extraction using the Zippertex® technology (Dionex-ASE, Paris, France), and the extract was mixed with XAD-16 resin to reach quantifiable amounts of active compounds which were identified by high-pressure liquid chromatography (HPLC), 1H NMR (300 MHz), and 13C NMR. The antidiabetic activity of the isolated compound was evaluated using the α-glucosidase inhibitory assay. The active compound was isolated, and its structure was identified as catechin using instrumental analysis.The results revealed that the isolated compound has potential α-glucosidase inhibitory activity with an IC50 value of 87.55 ± 2.23 μg/mL greater than acarbose. This was used as a positive control, which has an IC50 value of 199.53 ± 1.12 μg/mL. According to the results achieved, the roots of A. unedo were considered the best source of catechin and the Zippertex® technology method of extraction is the best method for isolation of this therapeutic active compound. In addition, the α-glucosidase inhibitory activity results confirmed the traditional use of A. unedo roots as an antidiabetic agent. Future clinical trials and investigations of antidiabetic and other pharmacological effects such as anticancer are required. Full article
Figures

Open AccessEditorial
Flavonoid Functions in Plants and Their Interactions with Other Organisms
Plants 2018, 7(2), 30; doi:10.3390/plants7020030 -
Abstract
Flavonoids are structurally diverse secondary metabolites in plants, with a multitude of functions. These span from functions in regulating plant development, pigmentation, and UV protection, to an array of roles in defence and signalling between plants and microorganisms. Because of their prevalence in
[...] Read more.
Flavonoids are structurally diverse secondary metabolites in plants, with a multitude of functions. These span from functions in regulating plant development, pigmentation, and UV protection, to an array of roles in defence and signalling between plants and microorganisms. Because of their prevalence in the human diet, many flavonoids constitute important components of medicinal plants and are used in the control of inflammation and cancer prevention. Advances in the elucidation of flavonoid biosynthesis and its regulation have led to an increasing number of studies aimed at engineering the flavonoid pathway for enhancing nutritional value and plant defences against pathogens and herbivores, as well as modifying the feeding value of pastures. Many future opportunities await for the exploitation of this colourful pathway in crops, pastures, and medicinal plants. Full article
Open AccessArticle
Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water
Plants 2018, 7(2), 29; doi:10.3390/plants7020029 -
Abstract
This paper aims to determine the most tolerant growth stage(s) of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk
[...] Read more.
This paper aims to determine the most tolerant growth stage(s) of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk to crop production. Local wheat cv. Gimmiza 11 was germinated and grown in sand cultures. Four different NaCl salinity levels were used as treatments: 0, 60, 90 and 120 mM. This was in the presence of 0 and 0.78 mM Si which added as sodium meta- silicate (Na2SiO3·9H2O). Both the NaCl and Si treatments were carried out using a full strength nutrient solution that was adjusted at pH 6.0 and used for irrigation in four replications. The application of Si with the saline nutrient media significantly enhanced superoxide dismutase (SOD) and catalase (CAT) activities in plant leaves at the booting stage compared to the other stages. This was associated with a marked decline in the H2O2 content. At the booting stage, the Si treatment promoted CAT activity in 120 mM NaCl-stressed leaves compared to the leaves treated with only 120 mM NaCl solution. SOD showed greater prevalence at the booting stage when Si was added into the saline media, and it also revealed maximum activity at the milky stage with salinity stress. This was associated with a smaller reduction in shoot fresh and dry weights, greater reduction in the leaf Na+ content and an increase in the K+ content, which ultimately increased the cytosolic K+/Na+ ratio. Chlorophyll a and b and carotenoid (total photosynthetic pigments) were also higher at the booting stage of salt-stressed plants treated with Si compared to other stages. Accordingly, Si application enhanced the salt tolerance of wheat and reduced the inhibitory effect of Na+ and oxidative stress damage as growth proceeded towards maturity, particularly at the booting stage. This shows that saline water can be used for wheat irrigation at the booting stage (much water is consumed) when good quality water is not available for supplemental irrigation. A field study is needed to confirm the greenhouse results. Full article
Figures

Figure 1

Open AccessArticle
Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses
Plants 2018, 7(2), 28; doi:10.3390/plants7020028 -
Abstract
Climate change will increase drought in many regions of the world. Besides decreasing productivity, drought also decreases the concentration (%) of nitrogen (N) and phosphorous (P) in plants. We investigated if decreases in nutrient status during drought are correlated with decreases in levels
[...] Read more.
Climate change will increase drought in many regions of the world. Besides decreasing productivity, drought also decreases the concentration (%) of nitrogen (N) and phosphorous (P) in plants. We investigated if decreases in nutrient status during drought are correlated with decreases in levels of nutrient-uptake proteins in roots, which has not been quantified. Drought-sensitive (Hordeum vulgare, Zea mays) and -tolerant grasses (Andropogon gerardii) were harvested at mid and late drought, when we measured biomass, plant %N and P, root N- and P-uptake rates, and concentrations of major nutrient-uptake proteins in roots (NRT1 for NO3, AMT1 for NH4, and PHT1 for P). Drought reduced %N and P, indicating that it reduced nutrient acquisition more than growth. Decreases in P uptake with drought were correlated with decreases in both concentration and activity of P-uptake proteins, but decreases in N uptake were weakly correlated with levels of N-uptake proteins. Nutrient-uptake proteins per gram root decreased despite increases per gram total protein, because of the larger decreases in total protein per gram. Thus, drought-related decreases in nutrient concentration, especially %P, were likely caused, at least partly, by decreases in the concentration of root nutrient-uptake proteins in both drought-sensitive and -tolerant species. Full article
Figures

Figure 1

Open AccessArticle
Identification of Leaf Promoters for Use in Transgenic Wheat
Plants 2018, 7(2), 27; doi:10.3390/plants7020027 -
Abstract
Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However,
[...] Read more.
Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase) and the other fructose-1,6-bisphosphate aldolase (FBPA) from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza) showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields. Full article
Figures

Figure 1

Open AccessArticle
Potential of Silicon Amendment for Improved Wheat Production
Plants 2018, 7(2), 26; doi:10.3390/plants7020026 -
Abstract
Many studies throughout the world have shown positive responses of various crops to silicon (Si) application in terms of plant health, nutrient uptake, yield, and quality. Although not considered an essential element for plant growth, Si has been recently recognized as a “beneficial
[...] Read more.
Many studies throughout the world have shown positive responses of various crops to silicon (Si) application in terms of plant health, nutrient uptake, yield, and quality. Although not considered an essential element for plant growth, Si has been recently recognized as a “beneficial substance” or “quasi-essential” due to its important role in plant nutrition, especially notable under stressed conditions. The goal of this study was to evaluate the effect of Si on wheat plant height, grain yield (GY), and grain protein content (GP). The experiment was conducted during two consecutive growing seasons in Idaho. A split-plot experimental design was used with three Si fertilization rates (140, 280, and 560 kg Si ha−1) corresponding to 100, 50, and 25% of manufacturer-recommended rates and two application times—at planting and tillering (Feekes 5). MontanaGrowTM (0-0-5) by MontanaGrow Inc. (Bonner, MT, USA) used in this study is a Si product sourced from a high-energy amorphous (non-crystalized) volcanic tuff. There was no significant effect of Si rate and application time on plant height, nutrient uptake, GY, or GP of irrigated winter wheat grown in non-stressed conditions. These results could be directly related to the Si fertilizer source used in the study. We are planning to further evaluate Si’s effect on growth and grain production of wheat grown in non-stressed vs. stressed conditions utilizing several different Si sources and application methods. Full article
Figures

Figure 1

Open AccessReview
Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants—A Review
Plants 2018, 7(2), 25; doi:10.3390/plants7020025 -
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory
[...] Read more.
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized. Full article
Figures

Figure 1a

Open AccessArticle
Response of Weeping Lantana (Lantana montevidensis) to Compost-Based Growing Media and Electrical Conductivity Level in Soilless Culture: First Evidence
Plants 2018, 7(2), 24; doi:10.3390/plants7020024 -
Abstract
The most common substrate for potted ornamental plants is prepared with Sphagnum peat; however, the cost and declining availability of high-quality peat, due to environmental constraints, make it necessary to investigate for alternative organic materials. The present study aimed to determine the effects
[...] Read more.
The most common substrate for potted ornamental plants is prepared with Sphagnum peat; however, the cost and declining availability of high-quality peat, due to environmental constraints, make it necessary to investigate for alternative organic materials. The present study aimed to determine the effects of partial compost replacement with peat and the optimum electrical conductivity (EC) level of the nutrient solution in potted weeping lantana [L. montevidensis (Spreng.) Briq.] under a recirculating soilless system. Three compost-based substrates were prepared by mixing peat (Pe) with sewage sludge-based compost (Co.) at a rate of 0% (Pe90Co0Pu10, control), 30% (Pe60Co30Pu10), or 60% (Pe30Co60Pu10), respectively. The soilless recirculated closed system was equipped with two different EC levels (high and low) of nutrient solution. Growing media main characteristics and plant bio-morphometric parameters were evaluated. Our first evidence clearly demonstrates that the replacement of peat with compost at doses of 30% and 60% gave the poorest results for plant diameter, shoots, leaves, flowers, and fresh and dry mass, probably indicating that the physical characteristics of the compost based substrates may be the major factor governing plant growth rate. Compost media pH and EC values, too, showed negative effects on plant growth. Considering the effect of EC level, all morphological traits were significantly improved by high EC compared to low EC in weeping lantana. Thus, based on first evidence, further research is needed on organic materials for the establishment of ecological substrates with optimal physicochemical characteristics for the growth of weeping lantana. Full article
Open AccessEditorial
Symplasmic Intercellular Communication through Plasmodesmata
Plants 2018, 7(1), 23; doi:10.3390/plants7010023 -
Abstract
Communication between cells is an essential process for developing and maintaining multicellular collaboration during plant development and physiological adaptation in response to environmental stimuli. The intercellular movement of proteins and RNAs in addition to the movement of small nutrients or signaling molecules such
[...] Read more.
Communication between cells is an essential process for developing and maintaining multicellular collaboration during plant development and physiological adaptation in response to environmental stimuli. The intercellular movement of proteins and RNAs in addition to the movement of small nutrients or signaling molecules such as sugars and phytohormones has emerged as a novel mechanism of cell-to-cell signaling in plants. As a strategy for efficient intercellular communication and long-distance molecule movement, plants have evolved plant-specific symplasmic communication networks via plasmodesmata (PDs) and the phloem. Full article
Open AccessArticle
Influence of Boiling, Steaming and Frying of Selected Leafy Vegetables on the In Vitro Anti-inflammation Associated Biological Activities
Plants 2018, 7(1), 22; doi:10.3390/plants7010022 -
Abstract
The aim of the present study was to evaluate the effect of cooking (boiling, steaming, and frying) on anti-inflammation associated properties in vitro of six popularly consumed green leafy vegetables in Sri Lanka, namely: Centella asiatica, Cassia auriculata, Gymnema lactiferum,
[...] Read more.
The aim of the present study was to evaluate the effect of cooking (boiling, steaming, and frying) on anti-inflammation associated properties in vitro of six popularly consumed green leafy vegetables in Sri Lanka, namely: Centella asiatica, Cassia auriculata, Gymnema lactiferum, Olax zeylanica, Sesbania grnadiflora, and Passiflora edulis. The anti-inflammation associated properties of methanolic extracts of cooked leaves were evaluated using four in vitro biological assays, namely, hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results revealed that the frying of all the tested leafy vegetables had reduced the inhibition abilities of protein denaturation, hemolysis, proteinase, and lipoxygenase activities when compared with other food preparation methods. Steaming significantly increased the protein denaturation and hemolysis inhibition in O. zeylanica and P. edulis. Steaming of leaves increased inhibition activity of protein denaturation in G. lactiferum (by 44.8%) and P. edulis (by 44%); hemolysis in C. asiatica, C. auriculata, and S. grandiflora; lipoxygenase inhibition ability in P. edulis (by 50%), C. asiatica (by 400%), and C. auriculata leaves (by 250%); proteinase inhibition in C. auriculata (100%) when compared with that of raw leaves. In general, steaming and boiling in contrast to frying protect the health-promoting properties of the leafy vegetables. Full article
Figures

Figure 1

Open AccessArticle
Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling
Plants 2018, 7(1), 21; doi:10.3390/plants7010021 -
Abstract
Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in
[...] Read more.
Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in the plant breeding program for cultivar development. Hence, the genetic deviations and relations among 8 Morus alba plants, and one Morus lhou plant, of different cultivars collected from South Korea were investigated using 10 random amplified polymorphic DNA (RAPD) and 10 inter-simple sequence repeat (ISSR) markers in the present study. The ISSR markers exhibited a higher polymorphism (63.42%) among mulberry genotypes in comparison to RAPD markers. Furthermore, the similarity coefficient was estimated for both markers and found to be varying between 0.183 and 0.814 for combined pooled data of ISSR and RAPD. The phenogram drawn using the UPGMA cluster method based on combined pooled data of RAPD and ISSR markers divided the nine mulberry genotypes into two divergent major groups and the two individual independent accessions. The distant relationship between Dae-Saug (SM1) and SangchonJo Sang Saeng (SM5) offers a possibility of utilizing them in mulberry cultivar improvement of Morus species of South Korea. Full article
Figures

Figure 1

Open AccessReview
A Comprehensive Review on the Medicinal Plants from the Genus Asphodelus
Plants 2018, 7(1), 20; doi:10.3390/plants7010020 -
Abstract
Plant-based systems continue to play an essential role in healthcare, and their use by different cultures has been extensively documented. Asphodelus L. (Asphodelaceae) is a genus of 18 species and of a total of 27 species, sub-species and varieties, distributed along
[...] Read more.
Plant-based systems continue to play an essential role in healthcare, and their use by different cultures has been extensively documented. Asphodelus L. (Asphodelaceae) is a genus of 18 species and of a total of 27 species, sub-species and varieties, distributed along the Mediterranean basin, and has been traditionally used for treating several diseases particularly associated with inflammatory and infectious skin disorders. The present study aimed to provide a general review of the available literature on ethnomedical, phytochemical, and biological data related to the genus Asphodelus as a potentialsource of new compounds with biological activity. Considering phytochemical studies, 1,8-dihydroxyanthracene derivatives, flavonoids, phenolic acids and triterpenoids were the main classes of compounds identified in roots, leaf and seeds which were correlated with their biological activities as anti-microbial, anti-fungal, anti-parasitic, cytotoxic, anti-inflammatory or antioxidant agents. Full article
Figures

Open AccessReview
The Genus Conradina (Lamiaceae): A Review
Plants 2018, 7(1), 19; doi:10.3390/plants7010019 -
Abstract
Conradina (Lamiaceae) is a small genus of native United States (US) species limited to Florida, Alabama, Mississippi, Tennessee and Kentucky. Three species of Conradina are federally listed as endangered and one is threatened while two are candidates for listing as endangered. The purpose
[...] Read more.
Conradina (Lamiaceae) is a small genus of native United States (US) species limited to Florida, Alabama, Mississippi, Tennessee and Kentucky. Three species of Conradina are federally listed as endangered and one is threatened while two are candidates for listing as endangered. The purpose of the present review is to highlight the recent advances in current knowledge on Conradina species and to compile reports of chemical constituents that characterize and differentiate between Conradina species. Full article
Figures

Open AccessArticle
Polar Constituents of Salvia willeana (Holmboe) Hedge, Growing Wild in Cyprus
Plants 2018, 7(1), 18; doi:10.3390/plants7010018 -
Abstract
Twenty compounds were isolated from the aerial parts of Salvia willeana (Holmboe) Hedge, growing wild in Cyprus. These compounds comprise one new and one known acetophenone, one megastigmane glucoside, five phenolic derivatives, two caffeic acid oligomers, three flavonoids, two lignans, two triterpene acids,
[...] Read more.
Twenty compounds were isolated from the aerial parts of Salvia willeana (Holmboe) Hedge, growing wild in Cyprus. These compounds comprise one new and one known acetophenone, one megastigmane glucoside, five phenolic derivatives, two caffeic acid oligomers, three flavonoids, two lignans, two triterpene acids, one monoterpene glucoside, and two fatty acids. The structures of the isolated compounds were established by means of NMR [(Rotating-frame OverhauserEffect SpectroscopY) (1H-1H-COSY (COrrelation SpectroscopΥ), 1H-13C-HSQC (Heteronuclear Single Quantum Correlation), HMBC (Heteronuclear Multiple Bond Correlation), NOESY (Nuclear Overhauser Effect SpectroscopY), ROESY (Rotating-frame Overhauser Effect SpectroscopY)] and MS spectral analyses. This is the first report of the natural occurrence of 4-hydroxy-acetophenone 4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-d-glucopyranoside. A chemical review on the non-volatile secondary metabolites has been carried out. Based on the literature data, the analysis revealed that the chemical profile of S. willeana is close to that of S. officinalis L. Full article
Figures

Open AccessArticle
Preliminary Study of the Potential Extracts from Selected Plants to Improve Surface Cleaning
Plants 2018, 7(1), 17; doi:10.3390/plants7010017 -
Abstract
Environment hygiene is important for preventing infection and promoting a healthier environment in which to live or work. The goal of this study was to examine the antimicrobial effects of Citrus aurantifolia (key lime) juice and aqueous extracts of Cinnamomum iners (cinnamon) bark
[...] Read more.
Environment hygiene is important for preventing infection and promoting a healthier environment in which to live or work. The goal of this study was to examine the antimicrobial effects of Citrus aurantifolia (key lime) juice and aqueous extracts of Cinnamomum iners (cinnamon) bark and Citrus hystrix (kaffir lime) leaves on the kinetic growth of Pseudomonas aeruginosa and methicillin resistance Staphylococcus aureus (MRSA). Antimicrobial activity was quantitatively evaluated using spectrophotometry and viable cell counts versus bacterial growth time. The fomite surface samples that were used in the second experiment were chosen randomly from the laboratories. They were assessed both before and after intervention using a mixture of commercial disinfectant detergent and lime juice. In the kinetic growth study, the lime juice effectively eliminated P. aeruginosa and MRSA. The cinnamon bark extract was more effective at inhibiting P. aeruginosa than MRSA. The kaffir lime leaf extract demonstrated bacteriostatic activity for the first 60 min, which then weakened after 90 min for both bacteria. The lime juice extract and commercial disinfectant mixture effectively disinfected the fomites. Further studies of the use of key lime juice as a disinfectant in the hospital environment should be conducted, as C. aurantifolia exhibits antibacterial activities against endemic microbes. Full article
Figures

Figure 1