Open AccessArticle
Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots
Plants 2017, 6(1), 6; doi:10.3390/plants6010006 -
Abstract
Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have
[...] Read more.
Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C/20 °C (day/night) and then transferred some plants for six days to 35 °C /30 °C (moderate heat) or 42 °C/37 °C (severe heat) (maximum root temperature = 32 °C or 39 °C, respectively); plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night). Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay). In general, (1) roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2) negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C–42 °C). Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Plants in 2016
Plants 2017, 6(1), 5; doi:10.3390/plants6010005 -
Abstract The editors of Plants would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016. [...]
Full article
Open AccessCommunication
Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene
Plants 2017, 6(1), 4; doi:10.3390/plants6010004 -
Abstract
An alternative way to increase plant productivity through the use of nitrogen fertilizers is to improve the efficiency of nitrogen utilization via genetic engineering. The effects of overexpression of pine glutamine synthetase (GS) gene and nitrogen availability on growth and leaf pigment levels
[...] Read more.
An alternative way to increase plant productivity through the use of nitrogen fertilizers is to improve the efficiency of nitrogen utilization via genetic engineering. The effects of overexpression of pine glutamine synthetase (GS) gene and nitrogen availability on growth and leaf pigment levels of two Betula species were studied. Untransformed and transgenic plants of downy birch (B. pubescens) and silver birch (B. pendula) were grown under open-air conditions at three nitrogen regimes (0, 1, or 10 mM) for one growing season. The transfer of the GS1a gene led to a significant increase in the height of only two transgenic lines of nine B. pubescens, but three of five B. pendula transgenic lines were higher than the controls. In general, nitrogen supply reduced the positive effect of the GS gene on the growth of transgenic birch plants. No differences in leaf pigment levels between control and transgenic plants were found. Nitrogen fertilization increased leaf chlorophyll content in untransformed plants but its effect on most of the transgenic lines was insignificant. The results suggest that birch plants carrying the GS gene use nitrogen more efficiently, especially when growing in nitrogen deficient soil. Transgenic lines were less responsive to nitrogen supply in comparison to wild-type plants. Full article
Figures

Figure 1

Open AccessArticle
Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes
Plants 2017, 6(1), 3; doi:10.3390/plants6010003 -
Abstract
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion.
[...] Read more.
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time
Plants 2017, 6(1), 2; doi:10.3390/plants6010002 -
Abstract
In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question
[...] Read more.
In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. Full article
Figures

Figure 1

Open AccessArticle
A High-Throughput RNA Extraction for Sprouted Single-Seed Barley (Hordeum vulgare L.) Rich in Polysaccharides
Plants 2017, 6(1), 1; doi:10.3390/plants6010001 -
Abstract
Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not
[...] Read more.
Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not suitable to handle the excess polysaccharides. Here, we compare the current methods for RNA extraction applicable to germinated barley tissue. We found that although some of these standard methods produced high-quality RNA, the process of extraction was drastically slow, mostly because the frozen seed tissue powder from liquid N2 grinding became recalcitrant to buffer mixing. Our suggested modifications to the protocols removed the need for liquid N2 grinding and significantly increased the output efficiency of RNA extraction. Our modified protocol has applications in other cereal tissues rich in polysaccharides, including oat. Full article
Figures

Figure 1

Open AccessArticle
Variation among Soybean Cultivars in Mesophyll Conductance and Leaf Water Use Efficiency
Plants 2016, 5(4), 44; doi:10.3390/plants5040044 -
Abstract
Improving water use efficiency (WUE) may prove a useful way to adapt crop species to drought. Since the recognition of the importance of mesophyll conductance to CO2 movement from inside stomatal pores to the sites of photosynthetic carboxylation, there has been interest
[...] Read more.
Improving water use efficiency (WUE) may prove a useful way to adapt crop species to drought. Since the recognition of the importance of mesophyll conductance to CO2 movement from inside stomatal pores to the sites of photosynthetic carboxylation, there has been interest in how much intraspecific variation in mesophyll conductance (gm) exists, and how such variation may impact leaf WUE within C3 species. In this study, the gm and leaf WUE of fifteen cultivars of soybeans grown under controlled conditions were measured under standardized environmental conditions. Leaf WUE varied by a factor of 2.6 among the cultivars, and gm varied by a factor of 8.6. However, there was no significant correlation (r = −0.047) between gm and leaf WUE. Leaf WUE was linearly related to the sub-stomatal CO2 concentration. The value of gm affected the ratio of maximum Rubisco carboxylation capacity calculated from the sub-stomatal CO2 concentration to that calculated from the CO2 concentration at the site of carboxylation. That is, variation in gm affected the efficiency of Rubisco carboxylation, but not leaf WUE. Nevertheless, there is considerable scope for genetically improving soybean leaf water use efficiency. Full article
Figures

Figure 1

Open AccessArticle
Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta–Momordica versus Cassytha–Ipomoea
Plants 2016, 5(4), 43; doi:10.3390/plants5040043 -
Abstract
Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their
[...] Read more.
Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies. Full article
Figures

Figure 1

Open AccessArticle
Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)
Plants 2016, 5(4), 42; doi:10.3390/plants5040042 -
Abstract
Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern
[...] Read more.
Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. Full article
Figures

Figure 1

Open AccessReview
Synthesis and Functions of Jasmonates in Maize
Plants 2016, 5(4), 41; doi:10.3390/plants5040041 -
Abstract
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other
[...] Read more.
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize. Full article
Figures

Figure 1

Open AccessArticle
An In Vitro Procedure for Phenotypic Screening of Growth Parameters and Symbiotic Performances in Lotus corniculatus Cultivars Maintained in Different Nutritional Conditions
Plants 2016, 5(4), 40; doi:10.3390/plants5040040 -
Abstract
The establishment of legumes crops with phenotypic traits that favour their persistence and competitiveness in mixed swards is a pressing task in sustainable agriculture. However, to fully exploit the potential benefits of introducing pasture-based grass-legume systems, an increased scientific knowledge of legume agronomy
[...] Read more.
The establishment of legumes crops with phenotypic traits that favour their persistence and competitiveness in mixed swards is a pressing task in sustainable agriculture. However, to fully exploit the potential benefits of introducing pasture-based grass-legume systems, an increased scientific knowledge of legume agronomy for screening of favourable traits is needed. We exploited a short-cut phenotypic screening as a preliminary step to characterize the growth capacity of three different Lotus corniculatus cvs cultivated in different nutritional conditions as well as the evaluation of their nodulation capacities. This experimental scheme, developed for legume species amenable to grow on agar plates conditions, may represent a very preliminary step to achieve phenotypic discrimination on different cultivars. Full article
Figures

Figure 1

Open AccessReview
Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches
Plants 2016, 5(4), 39; doi:10.3390/plants5040039 -
Abstract
A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that
[...] Read more.
A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields. Full article
Figures

Figure 1

Open AccessArticle
Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature
Plants 2016, 5(3), 36; doi:10.3390/plants5030036 -
Abstract
The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing
[...] Read more.
The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0) and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary. Full article
Figures

Figure 1

Open AccessArticle
Interaction Effect between Elevated CO2 and Fertilization on Biomass, Gas Exchange and C/N Ratio of European Beech (Fagus sylvatica L.)
Plants 2016, 5(3), 38; doi:10.3390/plants5030038 -
Abstract
The effects of elevated CO2 and interaction effects between elevated CO2 and nutrient supplies on growth and the C/N ratio of European beech (Fagus sylvatica L.) saplings were studied. One-year-old beech saplings were grown in a greenhouse at ambient (385
[...] Read more.
The effects of elevated CO2 and interaction effects between elevated CO2 and nutrient supplies on growth and the C/N ratio of European beech (Fagus sylvatica L.) saplings were studied. One-year-old beech saplings were grown in a greenhouse at ambient (385 ppm) and elevated CO2 (770 ppm/950 ppm), with or without fertilization for two growing seasons. In this study, emphasis is placed on the combined fertilization including phosphorus, potassium and nitrogen with two level of elevated CO2. The fertilized plants grown under elevated CO2 had the highest net leaf photosynthesis rate (Ac). The saplings grown under elevated CO2 had a significantly lower stomatal conductance (gs) than saplings grown under ambient air. No interaction effect was found between elevated CO2 and fertilization on Ac. A interaction effect between CO2 and fertilization, as well as between date and fertilization and between date and CO2 was detected on gs. Leaf chlorophyll content index (CCI) and leaf nitrogen content were strongly positively correlated to each other and both of them decreased under elevated CO2. At the end of both growing seasons, stem dry weight was greater under elevated CO2 and root dry weight was not affected by different treatments. No interaction effect was detected between elevated CO2 and nutrient supplies on the dry weight of different plant tissues (stems and roots). However, elevated CO2 caused a significant decrease in the nitrogen content of plant tissues. Nitrogen reduction in the leaves under elevated CO2 was about 10% and distinctly higher than in the stem and root. The interaction effect of elevated CO2 and fertilization on C/N ratio in plants tissues was significant. The results led to the conclusion that photosynthesis and the C/N ratio increased while stomatal conductance and leaf nitrogen content decreased under elevated CO2 and nutrient-limited conditions. In general, under nutrient-limited conditions, the plant responses to elevated CO2 were decreased. Full article
Figures

Figure 1

Open AccessArticle
Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40
Plants 2016, 5(3), 37; doi:10.3390/plants5030037 -
Abstract
The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown
[...] Read more.
The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under normal and drought stress conditions. The course of leaf senescence in these lines was monitored by physiological parameters and studies on the expression of senescence- and drought stress-related genes. Drought treatment accelerated leaf senescence in WT plants, whereas WHIRLY 1 knockdown lines (RNAi-W1) showed a stay-green phenotype. Expression of both senescence-associated and drought stress-responsive genes, was delayed in the transgenic plants. Notably, expression of transcription factors of the WRKY and NAC families, which are known to function in senescence- and stress-related signaling pathways, was affected in plants with impaired accumulation of WHIRLY1, indicating that WHIRLY1 acts as an upstream regulator of drought stress-induced senescence. To reveal the epigenetic indexing of HvS40 at the onset of drought-induced senescence in WT and RNAi-W1 lines, stress-responsive loading with histone modifications of promoter and coding sequences of HvS40 was analyzed by chromatin immunoprecipitation and quantified by qRT-PCR. In the wildtype, the euchromatic mark H3K9ac of the HvS40 gene was low under control conditions and was established in response to drought treatment, indicating the action of epigenetic mechanisms in response to drought stress. However, drought stress caused no significant increase in H3K9ac in plants impaired in accumulation of WHIRLY1. The results show that WHIRLY1 knockdown sets in motion a delay in senescence that involves all aspects of gene expression, including changes in chromatin structure. Full article
Figures

Figure 1

Open AccessCorrection
Correction: Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. Plants 2015, 4, 691–709
Plants 2016, 5(3), 35; doi:10.3390/plants5030035 -
Abstract The authors wish to make the following corrections to their paper [1].[...] Full article
Open AccessArticle
Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil
Plants 2016, 5(3), 34; doi:10.3390/plants5030034 -
Abstract
Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem
[...] Read more.
Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils. Full article
Figures

Open AccessReview
The Role of Flavonoids in Nodulation Host-Range Specificity: An Update
Plants 2016, 5(3), 33; doi:10.3390/plants5030033 -
Abstract
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are
[...] Read more.
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key “infection” flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role. Full article
Figures

Open AccessMeeting Report
Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity
Plants 2016, 5(3), 32; doi:10.3390/plants5030032 -
Abstract
The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in
[...] Read more.
The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. Full article
Figures

Open AccessArticle
Comparison between Canadian Canola Harvest and Export Surveys
Plants 2016, 5(3), 30; doi:10.3390/plants5030030 -
Abstract
Parameters, such as oil, protein, glucosinolates, chlorophyll content and fatty acid composition, were determined using reference methods for both harvest survey samples and Canadian Canola exports. Canola harvest survey and export data were assessed to evaluate if canola harvest survey data can be
[...] Read more.
Parameters, such as oil, protein, glucosinolates, chlorophyll content and fatty acid composition, were determined using reference methods for both harvest survey samples and Canadian Canola exports. Canola harvest survey and export data were assessed to evaluate if canola harvest survey data can be extrapolated to predict the quality of the Canadian canola exports. There were some differences in some measured parameters between harvest and export data, while other parameters showed little difference. Protein content and fatty acid composition showed very similar data for harvest and export averages. Canadian export data showed lower oil content when compared to the oil content of harvest survey was mainly due to a diluting effect of dockage in the export cargoes which remained constant over the years (1.7% to 1.9%). Chlorophyll was the least predictable parameter; dockage quality as well as commingling of the other grades in Canola No. 1 Canada affected the chlorophyll content of the exports. Free fatty acids (FFA) were also different for the export and harvest survey. FFA levels are affected by storage conditions; they increase during the shipping season and, therefore, are difficult to predict from their harvest survey averages. Full article
Figures