Open AccessArticle
Broadband Terahertz Light–Matter Interaction Enhancement for Precise Spectroscopy of Thin Films and Micro-Samples
Photonics 2018, 5(2), 11; https://doi.org/10.3390/photonics5020011 -
Abstract
In biology, molecules and macromolecules such as sugars, proteins, DNA, RNA, etc., are of utmost importance. Detecting their presence as well as getting information on their actual structure is still a challenge in many cases. The vibrational states of such molecules correspond to
[...] Read more.
In biology, molecules and macromolecules such as sugars, proteins, DNA, RNA, etc., are of utmost importance. Detecting their presence as well as getting information on their actual structure is still a challenge in many cases. The vibrational states of such molecules correspond to a spectral range extending from infrared to terahertz. Spectroscopy is used for the detection and the identification of such compounds and their structure. Terahertz spectroscopy of a biosample is challenging for two main reasons: the high terahertz absorption by water molecules in the sample; and the small size of the sample—its volume is usually smaller than the cube of the terahertz wavelength, thus the light–matter interaction is extremely reduced. In this paper, we present the design, fabrication, characterization, and first typical use of a biophotonic device that aims to increase the light–matter interaction to enable terahertz spectroscopy of very small samples over a broad band (0.2–2 THz). Finally, we demonstrate the validity of our approach by time-domain spectroscopy of samples of a few µL. Full article
Figures

Figure 1

Open AccessReview
Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities
Photonics 2018, 5(2), 10; https://doi.org/10.3390/photonics5020010 -
Abstract
We review an innovative approach for the fabrication of site-controlled quantum emitters (i.e., single-photon emitting quantum dots) based on the spatially selective incorporation and/or removal of hydrogen in dilute nitride semiconductors (e.g., GaAsN). In such systems, the formation of stable N-H complexes removes
[...] Read more.
We review an innovative approach for the fabrication of site-controlled quantum emitters (i.e., single-photon emitting quantum dots) based on the spatially selective incorporation and/or removal of hydrogen in dilute nitride semiconductors (e.g., GaAsN). In such systems, the formation of stable N-H complexes removes the effects that nitrogen has on the alloy properties, thus enabling the in-plane engineering of the band bap energy of the system. Both a lithographic approach and/or a near-field optical illumination—coupled to the ultra-sharp diffusion profile of H in dilute nitrides—allow us to control the hydrogen implantation and/or removal on a nanometer scale. This, eventually, makes it possible to fabricate site-controlled quantum dots that are able to emit single photons on demand. The strategy for a deterministic spatial and spectral coupling of such quantum emitters with photonic crystal cavities is also presented. Full article
Figures

Figure 1

Open AccessReview
Advances in Retinal Optical Imaging
Photonics 2018, 5(2), 9; https://doi.org/10.3390/photonics5020009 -
Abstract
Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging
[...] Read more.
Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT), OCT angiography (OCTA), photoacoustic microscopy (PAM), scanning laser ophthalmoscopy (SLO), adaptive optics (AO), fundus autofluorescence (FAF), and molecular imaging (MI). These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Shaping Light in Backward-Wave Nonlinear Hyperbolic Metamaterials
Photonics 2018, 5(2), 8; https://doi.org/10.3390/photonics5020008 -
Abstract
Backward electromagnetic waves are extraordinary waves with contra-directed phase velocity and energy flux. Unusual properties of the coherent nonlinear optical coupling of the phase-matched ordinary and backward electromagnetic waves with contra-directed energy fluxes are described that enable greatly-enhanced frequency and propagation direction conversion,
[...] Read more.
Backward electromagnetic waves are extraordinary waves with contra-directed phase velocity and energy flux. Unusual properties of the coherent nonlinear optical coupling of the phase-matched ordinary and backward electromagnetic waves with contra-directed energy fluxes are described that enable greatly-enhanced frequency and propagation direction conversion, parametrical amplification, as well as control of shape of the light pulses. Extraordinary transient processes that emerge in such metamaterials in pulsed regimes are described. The results of the numerical simulation of particular plasmonic metamaterials with hyperbolic dispersion are presented, which prove the possibility to match phases of such coupled guided ordinary and backward electromagnetic waves. Particular properties of the outlined processes in the proposed metamaterial are demonstrated through numerical simulations. Potential applications include ultra-miniature amplifiers, frequency changing reflectors, modulators, pulse shapers, and remotely actuated sensors. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Impedance-Matched, Double-Zero Optical Metamaterials Based on Weakly Resonant Metal Oxide Nanowires
Photonics 2018, 5(2), 7; https://doi.org/10.3390/photonics5020007 -
Abstract
Artificial optical metamaterial with a zero index of refraction holds promise for many diverse phenomena and applications, which can be achieved with vacuum (or related) surface impedance and materials in the optical domain. Here, we propose simple metal-oxide nanorods as meta-atoms on the
[...] Read more.
Artificial optical metamaterial with a zero index of refraction holds promise for many diverse phenomena and applications, which can be achieved with vacuum (or related) surface impedance and materials in the optical domain. Here, we propose simple metal-oxide nanorods as meta-atoms on the basis of an effective medium approach, based on their weak overlapping (electric/magnetic) resonances. We thus studied the optical properties of TiO2 nanowire arrays with a high-filling fraction through their photonic band structure, which exhibits a double-degeneracy point without a band gap at the center of the Brillouin zone. Various configurations are considered that reveal their performance over a reasonable range of incident wave vectors as impedance-matched, double-zero, bulk (low-loss) metamaterials. Full article
Figures

Figure 1

Open AccessReview
Photonics-Based Microwave Image-Reject Mixer
Photonics 2018, 5(2), 6; https://doi.org/10.3390/photonics5020006 -
Abstract
Recent developments in photonics-based microwave image-reject mixers (IRMs) are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to
[...] Read more.
Recent developments in photonics-based microwave image-reject mixers (IRMs) are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF) system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed. Full article
Figures

Figure 1

Open AccessArticle
Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms
Photonics 2018, 5(1), 5; https://doi.org/10.3390/photonics5010005 -
Abstract
Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS) systems. A semiclassical computational model is used to simulate the
[...] Read more.
Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS) systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values). White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials
Photonics 2018, 5(1), 4; https://doi.org/10.3390/photonics5010004 -
Abstract
We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The
[...] Read more.
We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE) through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows. Full article
Figures

Graphical abstract

Open AccessArticle
High Throughput AOTF Hyperspectral Imager for Randomly Polarized Light
Photonics 2018, 5(1), 3; https://doi.org/10.3390/photonics5010003 -
Abstract
The acousto-optic tunable filter (AOTF) is one of the most used techniques for hyperspectral imaging (HSI), and is capable of fast and random wavelength access, high diffraction efficiency, and good spectral resolution. Typical AOTF-HSI works with linearly polarized light; hence, its throughput is
[...] Read more.
The acousto-optic tunable filter (AOTF) is one of the most used techniques for hyperspectral imaging (HSI), and is capable of fast and random wavelength access, high diffraction efficiency, and good spectral resolution. Typical AOTF-HSI works with linearly polarized light; hence, its throughput is limited for randomly polarized applications such as fluorescence imaging. We report an AOTF-based imager design using both polarized components of the input light. The imager is designed to operate in the 450 to 800 nm region with resolutions in the range of 1.5–4 nm. The performance characterization results show that this design leads to 68% improvement in throughput for randomly polarized light. We also compared its performance against a liquid crystal tunable filter (LCTF)-based imager. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Photonics in 2017
Photonics 2018, 5(1), 2; https://doi.org/10.3390/photonics5010002 -
Abstract
Peer review is an essential part in the publication process, ensuring that Photonics maintains high quality standards for its published papers.[...] Full article
Open AccessArticle
Terahertz Radome Inspection
Photonics 2018, 5(1), 1; https://doi.org/10.3390/photonics5010001 -
Abstract
Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize
[...] Read more.
Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D) terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system. Full article
Figures

Figure 1

Open AccessArticle
Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals
Photonics 2017, 4(4), 50; https://doi.org/10.3390/photonics4040050 -
Abstract
Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs) with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by
[...] Read more.
Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs) with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Microwave Signal Processing over Multicore Fiber
Photonics 2017, 4(4), 49; https://doi.org/10.3390/photonics4040049 -
Abstract
We review the introduction of the space dimension into fiber-based technologies to implement compact and versatile signal processing solutions for microwave and millimeter wave signals. Built upon multicore fiber links and devices, this approach allows the realization of fiber-distributed signal processing in the
[...] Read more.
We review the introduction of the space dimension into fiber-based technologies to implement compact and versatile signal processing solutions for microwave and millimeter wave signals. Built upon multicore fiber links and devices, this approach allows the realization of fiber-distributed signal processing in the context of fiber-wireless communications, providing both radiofrequency access distribution and signal processing in the same fiber medium. We present different space-division multiplexing architectures to implement tunable true time delay lines that can be applied to a variety of microwave photonics functionalities, such as signal filtering, radio beamsteering in phased array antennas or optoelectronic oscillation. In particular, this paper gathers our latest work on the following multicore fiber technologies: dispersion-engineered heterogeneous multicore fiber links for distributed tunable true time delay line operation; multicavity devices built upon the selective inscription of gratings in homogenous multicore fibers for compact true time delay line operation; and multicavity optoelectronic oscillation over both homogeneous and heterogeneous multicore fibers. Full article
Figures

Figure 1

Open AccessArticle
Higher-Order Interactions in Quantum Optomechanics: Analytical Solution of Nonlinearity
Photonics 2017, 4(4), 48; https://doi.org/10.3390/photonics4040048 -
Abstract
A method is described to solve the nonlinear Langevin equations arising from quadratic interactions in quantum mechanics. While the zeroth order linearization approximation to the operators is normally used, here, first and second order truncation perturbation schemes are proposed. These schemes employ higher-order
[...] Read more.
A method is described to solve the nonlinear Langevin equations arising from quadratic interactions in quantum mechanics. While the zeroth order linearization approximation to the operators is normally used, here, first and second order truncation perturbation schemes are proposed. These schemes employ higher-order system operators, and then approximate number operators with their corresponding mean boson numbers only where needed. Spectral densities of higher-order operators are derived, and an expression for the second-order correlation function at zero time-delay has been found, which reveals that the cavity photon occupation of an ideal laser at threshold reaches 62, in good agreement with extensive numerical calculations. As further applications, analysis of the quantum anharmonic oscillator, calculation of Q-functions, analysis of quantum limited amplifiers, and nondemoliton measurements are provided. Full article
Open AccessArticle
Heat Dissipation Schemes in AlInAs/InGaAs/InP Quantum Cascade Lasers Monitored by CCD Thermoreflectance
Photonics 2017, 4(4), 47; https://doi.org/10.3390/photonics4040047 -
Abstract
In this paper, we report on the experimental investigation of the thermal performance of lattice matched AlInAs/InGaAs/InP quantum cascade lasers. Investigated designs include double trench, single mesa, and buried heterostructures, which were grown by combined Molecular Beam Epitaxy (MBE) and Metal Organic Vapor
[...] Read more.
In this paper, we report on the experimental investigation of the thermal performance of lattice matched AlInAs/InGaAs/InP quantum cascade lasers. Investigated designs include double trench, single mesa, and buried heterostructures, which were grown by combined Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) techniques. The thermal characteristics of lasers are investigated by Charge-Coupled Device CCD thermoreflectance. This method allows for the fast and accurate registration of high-resolution temperature maps of the whole device. We observe different heat dissipation mechanisms for investigated geometries of Quantum Cascade Lasers (QCLs). From the thermal point of view, the preferred design is the buried heterostructure. The buried heterostructures structure and epi-layer down mounting help dissipate the heat generated from active core of the QCL. The experimental results are in very good agreement with theoretical predictions of heat dissipation in various device constructions. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Integrated Microwave Photonics for Wideband Signal Processing
Photonics 2017, 4(4), 46; https://doi.org/10.3390/photonics4040046 -
Abstract
We describe recent progress in integrated microwave photonics in wideband signal processing applications with a focus on the key signal processing building blocks, the realization of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF) photonic links. New developments in
[...] Read more.
We describe recent progress in integrated microwave photonics in wideband signal processing applications with a focus on the key signal processing building blocks, the realization of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF) photonic links. New developments in integration-based microwave photonic techniques, that have high potentialities to be used in a variety of sensing applications for enhanced resolution and speed are also presented. Full article
Figures

Figure 1

Open AccessReview
Tunable Multiband Microwave Photonic Filters
Photonics 2017, 4(4), 45; https://doi.org/10.3390/photonics4040045 -
Abstract
The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter
[...] Read more.
The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Simultaneous Multi-Channel Microwave Photonic Signal Processing
Photonics 2017, 4(4), 44; https://doi.org/10.3390/photonics4040044 -
Abstract
Microwave photonic (MWP) systems exploit the advantages of photonics, especially with regards to ultrabroad bandwidth and adaptability, features that are significantly more challenging to obtain in the electronic domain. Thus, MWP systems can be used to realize a number of microwave signal processing
[...] Read more.
Microwave photonic (MWP) systems exploit the advantages of photonics, especially with regards to ultrabroad bandwidth and adaptability, features that are significantly more challenging to obtain in the electronic domain. Thus, MWP systems can be used to realize a number of microwave signal processing functions including, amongst others, waveform generation and radio-frequency spectrum analysis (RFSA). In this paper, we review recent results on fiber and integrated approaches for simultaneous generation of multiple chirped microwave waveforms as well as multi-channel RFSA of ultrahigh repetition optical rate pulse trains. Full article
Figures

Figure 1

Open AccessArticle
Design Rules For a Nano-Opto-Mechanical Actuator Based on Suspended Slot Waveguides
Photonics 2017, 4(3), 43; https://doi.org/10.3390/photonics4030043 -
Abstract
In this paper, physical modeling including optical and Casimir forces is adopted in order to analyze a nano-opto-mechanical actuator based on silicon-on-insulator suspended slot waveguides. Numerical simulations based on the finite element method and systematic design rules are presented. Moreover, parametric investigations on
[...] Read more.
In this paper, physical modeling including optical and Casimir forces is adopted in order to analyze a nano-opto-mechanical actuator based on silicon-on-insulator suspended slot waveguides. Numerical simulations based on the finite element method and systematic design rules are presented. Moreover, parametric investigations on slot waveguide sizes and optical properties are presented, and their influence on the actuator’s features are discussed. Full article
Figures

Figure 1

Open AccessArticle
Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency
Photonics 2017, 4(3), 42; https://doi.org/10.3390/photonics4030042 -
Abstract
In this work, we introduce a totally vacuum-free cost-efficient crystalline silicon solar cells. Solar cells were fabricated based on low-cost techniques including spin coating, spray pyrolysis, and screen-printing. A best efficiency of 17.51% was achieved by non-vacuum process with a basic structure of
[...] Read more.
In this work, we introduce a totally vacuum-free cost-efficient crystalline silicon solar cells. Solar cells were fabricated based on low-cost techniques including spin coating, spray pyrolysis, and screen-printing. A best efficiency of 17.51% was achieved by non-vacuum process with a basic structure of <AI/p+/p−Si/n+/SiO2/TiO2/Ag> CZ-Si p-type solar cells. Short circuit current density (JSC) and open circuit voltage (VOC) of the best cell were measured as 38.1 mA·cm−2 and 596.2 mV, respectively with fill factor (FF) of 77.1%. Suns-Voc measurements were carried out and the detrimental effect of the series resistance on the performance was revealed. It is concluded that higher efficiencies are achievable by the improvements of the contacts and by utilizing good quality starting wafers. Full article
Figures

Figure 1