**Abstract: **Several applications in material science and magnetic holography using extreme ultraviolet (EUV) radiation require the measurement of the degree and state of polarization. In this work, an instrument to measure simultaneously both parameters from EUV pulses is presented. The instrument determines the Stokes parameters after a reflection on an array of multilayer mirrors at the Brewster angle. The Stokesmeter was tested at Swiss Light Source at different EUV wavelengths. The experimental Stokes patterns of the source were compared with the simulated pattern.

**Abstract: **The birth of objective properties from the subjective quantum world has been one of the key questions in the quantum-to-classical transition. Based on recent results in the field, we study it in a quantum mechanical model of a boson-boson interaction—quantum Brownian motion. Using various simplifications, we prove a formation for thermal environments of, so called, spectrum broadcast structures, responsible for perceived objectivity. In the quantum measurement limit we prove that this structure is always formed, providing the characteristic timescales. Including self-Hamiltonians of the environment, we show the exponential scaling of the effect with the size of the environment. Finally, in the full model we numerically study the influence of squeezing in the initial state of the environment, showing broader regions of formation than for non-squeezed thermal states.

**Abstract: **In solid-state physics, the quantized lattice vibrations, i.e., the phonons, play a vital role. Phonons, much like photons, satisfy bosonic commutation relations, and therefore, various concepts well-known in quantum optics can be transferred to the emerging field of phononics. Examples are non-classical states and, in particular, squeezed states. We discuss the generation of phonon squeezing by optically exciting a quantum dot and show that by excitation with detuned continuous wave laser fields, sequences of squeezed phonon wave packets are created, which are emitted from the quantum dot region into the surrounding material.

**Abstract: **Four Wave Mixing (FWM) based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.

Open Access
*Article:*
**Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy**
by

Antoine Camper,

Amélie Ferré,

Nan Lin,

Emmanouil Skantzakis,

David Staedter,

Elizabeth English,

Bastian Manschwetus,

Frédéric Burgy,

Stéphane Petit,

Dominique Descamps,

Thierry Auguste,

Olivier Gobert,

Bertrand Carré,

Pascal Salières,

Yann Mairesse and

Thierry Ruchon
*Photonics* **2015**,

*2*(1), 184-199; doi:

10.3390/photonics2010184 - published 10 February 2015

Show/Hide Abstract
**Abstract: **We report on high-order harmonic (HHG) two-source interferometry (TSI) in molecular gases. We used a 0-\(\pi\) phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \(_{01}\) Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \(\frac{\lambda_{XUV}}{100}\) precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

**Abstract: **In plasma-driven X-ray lasers, it is critical to optimize the duration and time delay between pump pulses. In this study, we have done parametric simulations in order to systematically investigate the optimum time configuration of pump pulses. Here, we are mainly interested in soft X-ray lasers created using a Ar target irradiated with laser pulses, which operate at a wavelength \(\lambda=46.9\) nm in the \(2p^5 3p^1(J=0)\rightarrow 2p^5 3s^1(J=1)\) laser transition. It is shown that the optimum time scale required to achieve Ne-like ions, as well as the time required to generate a population inversion depend on the combined effect of the electron temperature and electron density. The electron density and temperature are respectively a factor of \(\approx\)\(2.1\)- and \(\approx\)\(5\)-times higher in the case of a short pulse of \(0.1\) ps in comparison to a long pulse of 1,000 ps (at a constant fluence). The most effective lasing happens with short pulses with a pulse duration comparable to the total relaxation time from the upper level, namely \(\Delta\tau_p\leq35\) ps. Power laws to predict the optimum laser intensity to achieve Ne-like \(Ar^{+8}\) are obtained.