Open AccessReview
A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers
Pharmaceutics 2018, 10(1), 16; doi:10.3390/pharmaceutics10010016 -
Abstract
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels
[...] Read more.
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications. Full article
Figures

Open AccessArticle
Development of a Region-Specific Physiologically Based Pharmacokinetic Brain Model to Assess Hippocampus and Frontal Cortex Pharmacokinetics
Pharmaceutics 2018, 10(1), 14; doi:10.3390/pharmaceutics10010014 -
Abstract
Central nervous system drug discovery and development is hindered by the impermeable nature of the blood–brain barrier. Pharmacokinetic modeling can provide a novel approach to estimate CNS drug exposure; however, existing models do not predict temporal drug concentrations in distinct brain regions. A
[...] Read more.
Central nervous system drug discovery and development is hindered by the impermeable nature of the blood–brain barrier. Pharmacokinetic modeling can provide a novel approach to estimate CNS drug exposure; however, existing models do not predict temporal drug concentrations in distinct brain regions. A rat CNS physiologically based pharmacokinetic (PBPK) model was developed, incorporating brain compartments for the frontal cortex (FC), hippocampus (HC), “rest-of-brain” (ROB), and cerebrospinal fluid (CSF). Model predictions of FC and HC Cmax, tmax and AUC were within 2-fold of that reported for carbamazepine and phenytoin. The inclusion of a 30% coefficient of variation on regional brain tissue volumes, to assess the uncertainty of regional brain compartments volumes on predicted concentrations, resulted in a minimal level of sensitivity of model predictions. This model was subsequently extended to predict human brain morphine concentrations, and predicted a ROB Cmax of 21.7 ± 6.41 ng/mL when compared to “better” (10.1 ng/mL) or “worse” (29.8 ng/mL) brain tissue regions with a FC Cmax of 62.12 ± 17.32 ng/mL and a HC Cmax of 182.2 ± 51.2 ng/mL. These results indicate that this simplified regional brain PBPK model is useful for forward prediction approaches in humans for estimating regional brain drug concentrations. Full article
Figures

Open AccessArticle
Chitosan Gel to Treat Pressure Ulcers: A Clinical Pilot Study
Pharmaceutics 2018, 10(1), 15; doi:10.3390/pharmaceutics10010015 -
Abstract
Chitosan is biopolymer with promising properties in wound healing. Chronic wounds represent a significant burden to both the patient and the medical system. Among chronic wounds, pressure ulcers are one of the most common types of complex wound. The efficacy and the tolerability
[...] Read more.
Chitosan is biopolymer with promising properties in wound healing. Chronic wounds represent a significant burden to both the patient and the medical system. Among chronic wounds, pressure ulcers are one of the most common types of complex wound. The efficacy and the tolerability of chitosan gel formulation, prepared into the hospital pharmacy, in the treatment of pressure ulcers of moderate severity were evaluated. The endpoint of this phase II study was the reduction of the area of the lesion by at least 20% after four weeks of treatment. Thus, 20 adult volunteers with pressure ulcers within predetermined parameters were involved in a 30 days study. Dressing change was performed twice a week at outpatient clinic upon chronic wounds management. In the 90% of patients involved in the study, the treatment was effective, with a reduction of the area of the lesion and wound healing progress. The study demonstrated the efficacy of the gel formulation for treatment of pressure ulcers, also providing a strong reduction of patient management costs. Full article
Figures

Open AccessEditorial
Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape—A Summary of This Indispensable Special Issue
Pharmaceutics 2018, 10(1), 13; doi:10.3390/pharmaceutics10010013 -
Abstract
Canadian Pharmaceutical Scientists have a rich history of groundbreaking research in pharmacokinetics and drug metabolism undertaken primarily throughout its Pharmacy Faculties and within the Pharmaceutical and Biotechnology industry.[...] Full article
Open AccessReview
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
Pharmaceutics 2018, 10(1), 11; doi:10.3390/pharmaceutics10010011 -
Abstract
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these
[...] Read more.
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance. Full article
Figures

Open AccessReview
Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review
Pharmaceutics 2018, 10(1), 10; doi:10.3390/pharmaceutics10010010 -
Abstract
The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients,
[...] Read more.
The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. Full article
Figures

Open AccessArticle
Is the Skin Absorption of Hydrocortisone Modified by the Variability in Dosing Topical Products?
Pharmaceutics 2018, 10(1), 9; doi:10.3390/pharmaceutics10010009 -
Abstract
Fingertip units have been proposed as a tool to standardize topical therapy with semisolid formulations. However, no studies to date have characterized the variability in dosing by patients using this concept and whether this variability ultimately affects the topical absorption of drugs. This
[...] Read more.
Fingertip units have been proposed as a tool to standardize topical therapy with semisolid formulations. However, no studies to date have characterized the variability in dosing by patients using this concept and whether this variability ultimately affects the topical absorption of drugs. This work aimed to answer these two questions. A first study determined the dose measured, the area of spread and the area-normalized dose for a 1% hydrocortisone cream and ointment applied by members of the public using this dosing approach before and after brief counselling. Then, in vivo tape-stripping and in vitro permeation studies investigated whether the variability in the area-normalized dose altered the skin absorption of hydrocortisone. Participants applied greater doses and spread them over larger areas after a short counselling intervention leading to smaller area-normalized doses. In vivo hydrocortisone uptake by the stratum corneum was significantly greater for the higher normalized dose and the differences were further supported by the in vitro permeation studies. However, these differences were relatively small and not proportional to the increase in normalized dose. This work shows that, following brief advice, patients and carers can apply consistent and sufficient doses of corticosteroids whilst minimizing risks and variability in hydrocortisone absorption. Full article
Figures

Open AccessEditorial
Acknowledgement to Reviewers of Pharmaceutics in 2017
Pharmaceutics 2018, 10(1), 8; doi:10.3390/pharmaceutics10010008 -
Abstract
Peer review is an essential part in the publication process, ensuring that Pharmaceutics maintains high quality standards for its published papers [...]
Full article
Open AccessArticle
Curcumin-Artemisinin Coamorphous Solid: Xenograft Model Preclinical Study
Pharmaceutics 2018, 10(1), 7; doi:10.3390/pharmaceutics10010007 -
Abstract
Curcumin is a natural compound present in Indian spice turmeric. It has diverse pharmacological action but low oral solubility and bioavailability continue to limit its use as a drug. With the aim of improving the bioavailability of Curcumin (CUR), we evaluated Curcumin-Pyrogallol (CUR-PYR)
[...] Read more.
Curcumin is a natural compound present in Indian spice turmeric. It has diverse pharmacological action but low oral solubility and bioavailability continue to limit its use as a drug. With the aim of improving the bioavailability of Curcumin (CUR), we evaluated Curcumin-Pyrogallol (CUR-PYR) cocrystal and Curcumin-Artemisinin (CUR-ART) coamorphous solid. Both of these solid forms exhibited superior dissolution and pharmacokinetic behavior compared to pure CUR, which is practically insoluble in water. CUR-ART coamorphous solid showed two fold higher bioavailability than CUR-PYR cocrystal (at 200 mg/kg oral dose). Moreover, in simulated gastric and intestinal fluids (SGF and SIF), CUR-ART is stable up to 3 and 12 h, respectively. In addition, CUR-PYR and CUR-ART showed no adverse effects in toxicology studies (10 times higher dose at 2000 mg/kg). CUR-ART showed higher therapeutic effect and inhibited approximately 62% of tumor growth at 100 mg/kg oral dosage of CUR in xenograft models, which is equal to the positive control drug, doxorubicin (2 mg/kg) by i.v. administration. Full article
Figures

Open AccessArticle
Regulation of Hepatic UGT2B15 by Methylation in Adults of Asian Descent
Pharmaceutics 2018, 10(1), 6; doi:10.3390/pharmaceutics10010006 -
Abstract
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex.
[...] Read more.
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex. The methylation status of UGT isoforms was determined with Illumina Methylation 450 BeadChip arrays, with genotyping confirmed by sequencing and gene expression confirmed with quantitative reverse transcriptase polymerase chain reaction (q-RT-PCR). The UGT1A3 mRNA was 2-fold higher in females than males (p < 0.05), while UGT1A1 and UGT2B7 mRNA were significantly higher in Pacific Islanders than Caucasians (both p < 0.05). Differential mRNA or methylation did not occur with obesity. The methylation of the UGT2B15 locus cg09189601 in Caucasians was significantly lower than the highly methylated locus in Asians (p < 0.001). Three intergenic loci between UGT2B15 and 2B17 (cg07973162, cg10632656, and cg07952421) showed higher rates of methylation in Caucasians than in Asians (p < 0.001). Levels of UGT2B15 and UGT2B17 mRNA were significantly lower in Asians than Caucasians (p = 0.01 and p < 0.001, respectively). Genotyping and sequencing indicated that only UGT2B15 is regulated by methylation, and low UGT2B17 mRNA is due to a deletion genotype common to Asians. Epigenetic regulation of UGT2B15 may predispose Asians to altered drug and hormone metabolism and begin to explain the increased risks for adverse drug reactions and some cancers in this population. Full article
Figures

Open AccessArticle
Development of a Parenteral Formulation of NTS-Polyplex Nanoparticles for Clinical Purpose
Pharmaceutics 2018, 10(1), 5; doi:10.3390/pharmaceutics10010005 -
Abstract
Neurotensin (NTS)-polyplex is a nanoparticle system for targeted gene delivery that holds great promise for treatment of Parkinson’s disease and various types of cancer. However, the high instability in aqueous suspension of NTS-polyplex nanoparticles is a major limitation for their widespread clinical use.
[...] Read more.
Neurotensin (NTS)-polyplex is a nanoparticle system for targeted gene delivery that holds great promise for treatment of Parkinson’s disease and various types of cancer. However, the high instability in aqueous suspension of NTS-polyplex nanoparticles is a major limitation for their widespread clinical use. To overcome this obstacle, we developed a clinical formulation and a lyophilization process for NTS-polyplex nanoparticles. The reconstituted samples were compared with fresh preparations by using transmission electron microscopy, dynamic light scattering, electrophoretic mobility, circular dichroism and transfection assays in vitro and in vivo. Our formulation was able to confer lyoprotection and stability to these nanoparticles. In addition, transmission electron microscopy (TEM) and size exclusion-high performance liquid chromatography (SEC-HPLC) using a radioactive tag revealed that the interaction of reconstituted nanoparticles with fetal bovine or human serum did not alter their biophysical features. Furthermore, the formulation and the lyophilization procedure guaranteed functional NTS-polyplex nanoparticles for at least six months of storage at 25 °C and 60% relative humidity. Our results offer a pharmaceutical guide for formulation and long-term storage of NTS-polyplex nanoparticles that could be applied to other polyplexes. Full article
Figures

Open AccessArticle
Determination of Tangeretin in Rat Plasma: Assessment of Its Clearance and Absolute Oral Bioavailability
Pharmaceutics 2018, 10(1), 3; doi:10.3390/pharmaceutics10010003 -
Abstract
Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ)
[...] Read more.
Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ) was 15 ng/mL; the intra- and inter-day assay variations expressed in the form of relative standard deviation (RSD) were all less than 10%; and the assay accuracy was within 100 ± 15%. Subsequently, pharmacokinetic profiles of TAN were explored and established. Upon single intravenous administration (10 mg/kg), TAN had rapid clearance (Cl = 94.1 ± 20.2 mL/min/kg) and moderate terminal elimination half-life (t1/2 λz = 166 ± 42 min). When TAN was given as a suspension (50 mg/kg), poor but erratic absolute oral bioavailability (mean value < 3.05%) was observed; however, when TAN was given in a solution prepared with randomly methylated-β-cyclodextrin (50 mg/kg), its plasma exposure was at least doubled (mean bioavailability: 6.02%). It was obvious that aqueous solubility hindered the oral absorption of TAN and acted as a barrier to its oral bioavailability. This study will facilitate further investigations on the medicinal potentials of TAN. Full article
Figures

Open AccessArticle
Development and Validation of an UPLC-MS/MS Method for Pharmacokinetic Comparison of Five Alkaloids from JinQi Jiangtang Tablets and Its Monarch Drug Coptidis Rhizoma
Pharmaceutics 2018, 10(1), 4; doi:10.3390/pharmaceutics10010004 -
Abstract
JinQi Jiangtang (JQJT) tablets, a Chinese patent medicine approved by the State Food and Drug Administration, are composed of Coptidis Rhizoma, Astragali Radix, and Lonicerae Japonicae Flos, and have a significant effect on diabetes. Coptidis Rhizoma is monarch drug in the prescription. The
[...] Read more.
JinQi Jiangtang (JQJT) tablets, a Chinese patent medicine approved by the State Food and Drug Administration, are composed of Coptidis Rhizoma, Astragali Radix, and Lonicerae Japonicae Flos, and have a significant effect on diabetes. Coptidis Rhizoma is monarch drug in the prescription. The aim of the present study was to investigate and compare the pharmacokinetics of multiple ingredients from JQJT tablets and Coptidis Rhizoma extract (CRE) following oral administration in rats. Five alkaloids: coptisine chloride, epiberberine chloride, berberine chloride, jatrorrhizine chloride, and palmatine chloride, were simultaneously determined in rat plasma using established and validated ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS). Significant pharmacokinetic differences were observed for the five alkaloids after a single administration of CRE and JQJT tablets. Compared with CRE, the Cmax values of palmatine chloride and jatrorrhizine chloride were decreased significantly, the AUC0–t values of four alkaloids (all except jatrorrhizine chloride) were notably decreased, and the mean residence times of all five alkaloids were significantly decreased after administration of JQJT tablets. The results indicated that the absorption characteristics of the five alkaloids from Coptidis Rhizoma would be influenced by the compatibility of Astragali Radix or Lonicerae Japonicae Flos from JQJT tablets, such that absorption was inhibited and elimination was accelerated. In conclusion, the developed strategy was suitable for the comparison of five alkaloids from JinQi Jiangtang tablets and its monarch drug, which could be valuable for compatibility studies of traditional Chinese medicines. Full article
Figures

Open AccessReview
GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview
Pharmaceutics 2018, 10(1), 2; doi:10.3390/pharmaceutics10010002 -
Abstract
A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting
[...] Read more.
A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i) Epidermal growth factor receptor (EGFR) structures and functions; (ii) GE11 structure and biologic activity; (iii) examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles. Full article
Figures

Open AccessFeature PaperArticle
Prediction of Drug-Drug Interactions with Bupropion and Its Metabolites as CYP2D6 Inhibitors Using a Physiologically-Based Pharmacokinetic Model
Pharmaceutics 2018, 10(1), 1; doi:10.3390/pharmaceutics10010001 -
Abstract
The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a
[...] Read more.
The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary metabolites—hydroxybupropion, threohydrobupropion and erythrohydrobupropion—based on a mixed “bottom-up” and “top-down” approach and to contribute to the understanding of the involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles from clinical researches of different dosages were used to verify the bupropion model. Reasonable PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be maximized. The predicted maximum concentration (Cmax) area under the concentration-time curve (AUC) values and Cmax and AUC ratios were consistent with clinically observed data. The addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction of DDIs (AUC and Cmax ratio) than that which only considered parent drug (bupropion) P450 inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This study highlights the need for caution and dosage adjustment when combining bupropion with medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the DDI involving inhibitory metabolites. Full article
Figures

Open AccessCorrection
Correction: Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery. Pharmaceutics, 2017, 9(3), 27
Pharmaceutics 2017, 9(4), 59; doi:10.3390/pharmaceutics9040059 -
Abstract
The authors wish to make a change to their published paper [1].[...] Full article
Figures

Figure 1a

Open AccessArticle
Resveratrol-Loaded Lipid Nanocarriers: Correlation between In Vitro Occlusion Factor and In Vivo Skin Hydrating Effect
Pharmaceutics 2017, 9(4), 58; doi:10.3390/pharmaceutics9040058 -
Abstract
Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions
[...] Read more.
Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions (NEs), solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These lipid nanocarriers were loaded with trans-resveratrol (RSV) and incorporated in gel vehicles. In vitro occlusion factor was in the order SLNs > NLCs > NEs. Gels containing unloaded or RSV loaded lipid nanocarriers were applied on the back of a hand of 12 healthy volunteers twice a day for one week, recording skin hydration changes using the instrument Soft Plus. An increase of skin hydration was observed for all lipid nanocarriers (SLNs > NLCs > NEs). RSV loading into these nanocarriers did not affect in vitro and in vivo lipid nanocarriers effects. A linear relationship (r2 = 0.969) was observed between occlusion factor and in vivo increase of skin hydration. Therefore, the results of this study showed the feasibility of using the occlusion factor to predict in vivo skin hydration resulting from topical application of different lipid nanocarriers loading an active ingredient with no inherent hydrating activity. Full article
Figures

Open AccessArticle
Application of Pharmacokinetics Modelling to Predict Human Exposure of a Cationic Liposomal Subunit Antigen Vaccine System
Pharmaceutics 2017, 9(4), 57; doi:10.3390/pharmaceutics9040057 -
Abstract
The pharmacokinetics of a liposomal subunit antigen vaccine system composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory agent trehalose 6,6-dibehenate (TDB) (8:1 molar ratio) combined with the Ag85B-ESAT-6 (H1) antigen were modelled using mouse in-vivo data. Compartment modelling and physiologically
[...] Read more.
The pharmacokinetics of a liposomal subunit antigen vaccine system composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory agent trehalose 6,6-dibehenate (TDB) (8:1 molar ratio) combined with the Ag85B-ESAT-6 (H1) antigen were modelled using mouse in-vivo data. Compartment modelling and physiologically based pharmacokinetics (PBPK) were used to predict the administration site (muscle) and target site (lymph) temporal concentration profiles and factors governing these. Initial estimates using compartmental modelling established that quadriceps pharmacokinetics for the liposome demonstrated a long half-life (22.6 days) compared to the associated antigen (2.62 days). A mouse minimal-PBPK model was developed and successfully predicted quadriceps liposome and antigen pharmacokinetics. Predictions for the popliteal lymph node (PLN) aligned well at earlier time-points. A local sensitivity analysis highlighted that the predicted AUCmuscle was sensitive to the antigen degradation constant kdeg (resulting in a 3-log change) more so than the fraction escaping the quadriceps (fe) (resulting in a 10-fold change), and the predicted AUCPLN was highly sensitive to fe. A global sensitivity analysis of the antigen in the muscle demonstrated that model predictions were within the 50th percentile for predictions and showed acceptable fits. To further translate in-vitro data previously generated by our group, the mouse minimal-PBPK model was extrapolated to humans and predictions made for antigen pharmacokinetics in muscle and PLN. Global analysis demonstrated that both kdeg and fe had a minimal impact on the resulting simulations in the muscle but a greater impact in the PLN. In summary, this study has predicted the in-vivo fate of DDA:TDB:H1 in humans and demonstrated the roles that formulation degradation and fraction escaping the depot site can play upon the overall depot effect within the site of administration. Full article
Figures

Open AccessArticle
A Chitosan—Based Liposome Formulation Enhances the In Vitro Wound Healing Efficacy of Substance P Neuropeptide
Pharmaceutics 2017, 9(4), 56; doi:10.3390/pharmaceutics9040056 -
Abstract
Currently, there is considerable interest in developing innovative biodegradable nanoformulations for controlled administration of therapeutic proteins and peptides. Substance P (SP) is a neuropeptide of 11 amino acids that belongs to the tachykinins family and it plays an important role in wound healing.
[...] Read more.
Currently, there is considerable interest in developing innovative biodegradable nanoformulations for controlled administration of therapeutic proteins and peptides. Substance P (SP) is a neuropeptide of 11 amino acids that belongs to the tachykinins family and it plays an important role in wound healing. However, SP is easily degradable in vivo and has a very short half-life, so the use of chitosan-based nanocarriers could enhance its pharmaceutical properties. In light of the above, the aim of this work was to produce and characterize chitosan-coated liposomes loaded with SP (SP-CH-LP) as novel biomaterials with potential application in mucosal wound healing. The loaded system’s biophysical properties were characterized by dynamic light scattering with non-invasive back scattering (DLS-NIBS), mixed mode measurements and phase analysis light scattering (M3-PALS) and high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS). Then, the efficacy of the obtained nanoformulations was examined via proof-of-principle experiments using in vitro cell assays. These assays showed an increment on cell motility and proliferation after treatment with free and encapsulated neuropeptides. Additionally, the effect of SP on wound healing was enhanced by the entrapment on CH-LP. Overall, the amenability of chitosan-based nanomaterials to encapsulate peptides and proteins constitutes a promising approach towards potential novel therapies to treat difficult wounds. Full article
Figures

Open AccessArticle
A Comparative Study of Coupled Preferential Crystallizers for the Efficient Resolution of Conglomerate-Forming Enantiomers
Pharmaceutics 2017, 9(4), 55; doi:10.3390/pharmaceutics9040055 -
Abstract
The separation of enantiomers is of great importance due to their possible differences in therapeutic properties. Preferential crystallization in various configurations of coupled batch crystallizers is used as an attractive means to separate the conglomerate-forming enantiomers from racemic mixtures. However, the productivity of
[...] Read more.
The separation of enantiomers is of great importance due to their possible differences in therapeutic properties. Preferential crystallization in various configurations of coupled batch crystallizers is used as an attractive means to separate the conglomerate-forming enantiomers from racemic mixtures. However, the productivity of such batch processes can be limited by the nucleation of the counter enantiomer and consumption of the supersaturation. In this work, a recently proposed process configuration, which uses coupled mixed suspension mixed product removal (MSMPR) with liquid phase exchange, is investigated by simulation studies. A detailed study on the effect of process parameters (e.g., feed flow rate, seed mass, and liquid phase exchange) on the productivity and yield of the coupled MSMPR has been presented. Moreover, a comparison of various coupled crystallizer configurations is carried out. It is shown through simulation studies that the productivity of the enantiomeric separation can be significantly improved compared to the previously proposed batch modes when the continuous configuration is used. The effect of nucleation kinetic parameters on the performances of various crystallizer configurations is studied as well. A set of coupled population balance equations (PBEs) was used to describe the evolution of the crystal phase of the both enantiomers in each vessel. These equations were solved numerically using the quadrature method of moments. The insights obtained in this study will be useful in the process design of coupled crystallizer systems. Full article
Figures