Open AccessReview
Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota
Pharmaceuticals 2016, 9(4), 62; doi:10.3390/ph9040062 -
Abstract
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated [...] Read more.
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules. Full article
Figures

Figure 1

Open AccessReview
Lactoferrin from Milk: Nutraceutical and Pharmacological Properties
Pharmaceuticals 2016, 9(4), 61; doi:10.3390/ph9040061 -
Abstract
Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin’s main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: [...] Read more.
Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin’s main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: (i) antimicrobial activity, which has been presumed due to iron deprivation, but more recently attributed also to a specific interaction with the bacterial cell wall and extended to viruses and parasites; (ii) immunomodulatory activity, with a direct effect on the development of the immune system in the newborn, together with a specific antinflammatory effects; (iii) a more recently discovered anticancer activity. It is worth noting that most of the protective activities of lactoferrin have been found, sometimes to a greater extent, also in peptides derived from limited proteolysis of lactoferrin that could be generated after lactoferrin ingestion. Lactoferrin could therefore be considered an ideal nutraceutic product because of its relatively cheap production from bovine milk and of its widely recognized tolerance after ingestion, along with its well demonstrated protective activities. The most important protective activities shown by orally administered bovine lactoferrin are reviewed in this article. Full article
Figures

Figure 1

Open AccessReview
Antimicrobial Peptides Targeting Gram-Positive Bacteria
Pharmaceuticals 2016, 9(3), 59; doi:10.3390/ph9030059 -
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is [...] Read more.
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. Full article
Figures

Figure 1

Open AccessReview
TRPV3 in Drug Development
Pharmaceuticals 2016, 9(3), 55; doi:10.3390/ph9030055 -
Abstract
Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP (Transient Receptor Potential) super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure 1), however, genetic mutations and use of gene knock-outs and selective pharmacological tools [...] Read more.
Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP (Transient Receptor Potential) super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure 1), however, genetic mutations and use of gene knock-outs and selective pharmacological tools are helping to provide insights into its role and therapeutic potential. TRPV3 is highly expressed in skin, where it is implicated in skin physiology and pathophysiology, thermo-sensing and nociception. Gain of function TRPV3 mutations in rodent and man have enabled the role of TRPV3 in skin health and disease to be particularly well defined. Pre-clinical studies provide some rationale to support development of TRPV3 antagonists for therapeutic application for the treatment of inflammatory skin conditions, itch and pain. However, to date, only one compound directed towards block of the TRPV3 receptor (GRC15300) has progressed into clinical trials. Currently, there are no known clinical trials in progress employing a TRPV3 antagonist. Full article
Figures

Figure 1

Open AccessArticle
Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting—Ideal Versus Reality
Pharmaceuticals 2016, 9(3), 54; doi:10.3390/ph9030054 -
Abstract
Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles [...] Read more.
Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach. Full article
Figures

Figure 1

Open AccessArticle
Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections
Pharmaceuticals 2016, 9(3), 56; doi:10.3390/ph9030056 -
Abstract
An intrinsic clindamycin-resistant Enterococcus faecalis, the most common single species present in teeth after failed root canal therapy, often possesses acquired tetracycline resistance. In these cases, root canal infections are commonly treated with Ledermix® paste, which contains demeclocycline, or the [...] Read more.
An intrinsic clindamycin-resistant Enterococcus faecalis, the most common single species present in teeth after failed root canal therapy, often possesses acquired tetracycline resistance. In these cases, root canal infections are commonly treated with Ledermix® paste, which contains demeclocycline, or the new alternative endodontic paste Odontopaste, which contains clindamycin; however, these treatments are often ineffective. We studied the killing activity of the cyclic antimicrobial peptide gramicidin S (GS) against planktonic and biofilm cells of tetracycline-resistant clinical isolates of E. faecalis. The high therapeutic potential of GS for the topical treatment of problematic teeth is based on the rapid bactericidal effect toward the biofilm-forming, tetracycline-resistant E. faecalis. GS reduces the cell number of planktonic cells within 20–40 min at a concentration of 40–80 μg/mL. It kills the cells of pre-grown biofilms at concentrations of 100–200 μg/mL, such that no re-growth is possible. The translocation of the peptide into the cell interior and its complexation with intracellular nucleotides, including the alarmon ppGpp, can explain its anti-biofilm effect. The successful treatment of persistently infected root canals of two volunteers confirms the high effectiveness of GS. The broad GS activity towards resistant, biofilm-forming E. faecalis suggests its applications for approval in root canal medication. Full article
Figures

Figure 1

Open AccessArticle
1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton
Pharmaceuticals 2016, 9(3), 58; doi:10.3390/ph9030058 -
Abstract
Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed [...] Read more.
Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. Full article
Figures

Figure 1

Open AccessReview
Targeting TRPM2 in ROS-Coupled Diseases
Pharmaceuticals 2016, 9(3), 57; doi:10.3390/ph9030057 -
Abstract
Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is [...] Read more.
Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca2+-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca2+ signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca2+ through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca2+ signaling in ROS-coupled diseases. Full article
Figures

Figure 1

Open AccessReview
The Role of Antimicrobial Peptides in Influenza Virus Infection and Their Potential as Antiviral and Immunomodulatory Therapy
Pharmaceuticals 2016, 9(3), 53; doi:10.3390/ph9030053 -
Abstract
Influenza A virus (IAV) remains a major threat that can cause severe morbidity and mortality due to rapid genomic variation. Resistance of IAVs to current anti-IAV drugs has been emerging, and antimicrobial peptides (AMPs) have been considered to be potential candidates for [...] Read more.
Influenza A virus (IAV) remains a major threat that can cause severe morbidity and mortality due to rapid genomic variation. Resistance of IAVs to current anti-IAV drugs has been emerging, and antimicrobial peptides (AMPs) have been considered to be potential candidates for novel treatment against IAV infection. AMPs are endogenous proteins playing important roles in host defense through direct antimicrobial and antiviral activities and through immunomodulatory effects. In this review, we will discuss the anti-IAV and immunomodulatory effects of classical AMPs (defensins and cathelicidins), and proteins more recently discovered to have AMP-like activity (histones and Alzheimer’s associated β-amyloid). We will discuss the interactions between AMPs and other host defense proteins. Major emphasis will be placed on novel synthetic AMPs derived from modification of natural proteins, and on potential methods of increasing expression of endogenous AMPs, since these approaches may lead to novel antiviral therapeutics. Full article
Open AccessReview
TRPV1: A Target for Rational Drug Design
Pharmaceuticals 2016, 9(3), 52; doi:10.3390/ph9030052 -
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX). Many compounds have been developed that either activate or inhibit TRPV1, but none of them [...] Read more.
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX). Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures. Full article
Figures

Figure 1

Open AccessArticle
Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects: A Randomized, Double-Blind, Placebo-Controlled Study
Pharmaceuticals 2016, 9(3), 49; doi:10.3390/ph9030049 -
Abstract
The plant maca, grown at 4000 m altitude in the Peruvian Central Andes, contains hypocotyls that have been used as food and in traditional medicine for centuries. The aim of this research was to provide results on some health effects of oral [...] Read more.
The plant maca, grown at 4000 m altitude in the Peruvian Central Andes, contains hypocotyls that have been used as food and in traditional medicine for centuries. The aim of this research was to provide results on some health effects of oral administration of spray-dried extracts of black or red maca (Lepidium meyenii) in adult human subjects living at low (LA) and high altitude (HA). A total of 175 participants were given 3 g of either placebo, black, or red maca extract daily for 12 weeks. Primary outcomes were changes in sexual desire, mood, energy, health-related quality of life score (HRQL), and chronic mountain sickness (CMS) score, or in glycaemia, blood pressure, and hemoglobin levels. Secondary outcomes were acceptability and safety, assessed using the Likert test and side effect self-recording, respectively, and the effect of altitude. At low altitude, 32, 30, and 32 participants started the study receiving placebo, red maca, or black maca, respectively. At high altitudes, 33, 35, and 31 participants started the study receiving placebo, red maca, and black maca, respectively. Consumption of spray-dried extracts of red and black maca resulted in improvement in mood, energy, and health status, and reduced CMS score. Fatty acids and macamides were higher in spray-dried extracts of black maca than in red maca. GABA predominated in spray-dried extracts of red maca. Effects on mood, energy, and CMS score were better with red maca. Black maca and, in smaller proportions, red maca reduced hemoglobin levels only in highlanders with abnormally high hemoglobin levels; neither variety of maca reduced hemoglobin levels in lowlanders. Black maca reduced blood glucose levels. Both varieties produced similar responses in mood, and HRQL score. Maca extracts consumed at LA or HA had good acceptability and did not show serious adverse effects. In conclusion, maca extract consumption relative to the placebo improved quality of life parameters. Differences in the level of improvement between red and black maca are probably due to differences in the composition of these two plant varieties. Both maca extracts were well tolerated and safe. Full article
Figures

Figure 1

Open AccessReview
TRP Channels as Therapeutic Targets in Diabetes and Obesity
Pharmaceuticals 2016, 9(3), 50; doi:10.3390/ph9030050 -
Abstract
During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions [...] Read more.
During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP) channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms. Full article
Open AccessCommunication
Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis
Pharmaceuticals 2016, 9(3), 51; doi:10.3390/ph9030051 -
Abstract
Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report [...] Read more.
Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer. Full article
Figures

Figure 1

Open AccessArticle
Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation
Pharmaceuticals 2016, 9(3), 48; doi:10.3390/ph9030048 -
Abstract
Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. [...] Read more.
Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sprouts’ juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor α under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids. Full article
Figures

Open AccessReview
Resiniferatoxin: The Evolution of the “Molecular Scalpel” for Chronic Pain Relief
Pharmaceuticals 2016, 9(3), 47; doi:10.3390/ph9030047 -
Abstract
Control of chronic pain is frequently inadequate or can be associated with debilitating side effects. Ablation of certain nociceptive neurons, while retaining all other sensory modalities and motor function, represents a new therapeutic approach to controlling severe pain while avoiding off-target side [...] Read more.
Control of chronic pain is frequently inadequate or can be associated with debilitating side effects. Ablation of certain nociceptive neurons, while retaining all other sensory modalities and motor function, represents a new therapeutic approach to controlling severe pain while avoiding off-target side effects. transient receptor potential cation channel subfamily V member 1 (TRPV1) is a calcium permeable nonselective cation channel expressed on the peripheral and central terminals of small-diameter sensory neurons. Highly selective chemoablation of TRPV1-containing peripheral nerve endings, or the entire TRPV1-expressing neuron itself, can be used to control chronic pain. Administration of the potent TRPV1 agonist resiniferatoxin (RTX) to neuronal perikarya or nerve terminals induces calcium cytotoxicity and selective lesioning of the TRPV1-expressing nociceptive primary afferent population. This selective neuroablation has been coined “molecular neurosurgery” and has the advantage of sparing motor, proprioceptive, and other somatosensory functions that are so important for coordinated movement, performing activities of daily living, and maintaining quality of life. This review examines the mechanisms and preclinical data underlying the therapeutic use of RTX and examples of such use for the management of chronic pain in clinical veterinary and human pain states. Full article
Figures

Figure 1

Open AccessReview
TRPV1 and TRPM8 in Treatment of Chronic Cough
Pharmaceuticals 2016, 9(3), 45; doi:10.3390/ph9030045 -
Abstract
Chronic cough is common in the population, and among some there is no evident medical explanation for the symptoms. Such a refractory or idiopathic cough is now often regarded as a neuropathic disease due to dysfunctional airway ion channels, though the knowledge [...] Read more.
Chronic cough is common in the population, and among some there is no evident medical explanation for the symptoms. Such a refractory or idiopathic cough is now often regarded as a neuropathic disease due to dysfunctional airway ion channels, though the knowledge in this field is still limited. Persistent coughing and a cough reflex easily triggered by irritating stimuli, often in combination with perceived dyspnea, are characteristics of this disease. The patients have impaired quality of life and often reduced work capacity, followed by social and economic consequences. Despite the large number of individuals suffering from such a persisting cough, there is an unmet clinical need for effective cough medicines. The cough treatment available today often has little or no effect. Adverse effects mostly follow centrally acting cough drugs comprised of morphine and codeine, which demands the physician’s awareness. The possibilities of modulating airway transient receptor potential (TRP) ion channels may indicate new ways to treat the persistent cough “without a reason”. The TRP ion channel vanilloid 1 (TRPV1) and the TRP melastin 8 (TRPM8) appear as two candidates in the search for cough therapy, both as single targets and in reciprocal interaction. Full article
Open AccessReview
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals
Pharmaceuticals 2016, 9(3), 46; doi:10.3390/ph9030046 -
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating [...] Read more.
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (−)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain. Full article
Figures

Figure 1

Open AccessReview
TRPM8 Puts the Chill on Prostate Cancer
Pharmaceuticals 2016, 9(3), 44; doi:10.3390/ph9030044 -
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in developed countries. Several studies suggest that variations in calcium homeostasis are involved in carcinogenesis. Interestingly, (Transient Receptor Potential Melastatin member 8) TRPM8 calcium permeable channel expression is differentially regulated during [...] Read more.
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in developed countries. Several studies suggest that variations in calcium homeostasis are involved in carcinogenesis. Interestingly, (Transient Receptor Potential Melastatin member 8) TRPM8 calcium permeable channel expression is differentially regulated during prostate carcinogenesis, thereby suggesting a potential functional role for this channel in those cell processes, which are important for PCa evolution. Indeed, several studies have shown that TRPM8 plays a key role in processes such as the proliferation, viability and cell migration of PCa cells. Where cell migration is concerned, TRPM8 seems to have a protective anti-invasive effect and could be a particularly promising therapeutic target. The goal of this review is to inventory advances in understanding of the role of TRPM8 in the installation and progression of PCa. Full article
Open AccessCommunication
Convergent Synthesis of Two Fluorescent Ebselen-Coumarin Heterodimers
Pharmaceuticals 2016, 9(3), 43; doi:10.3390/ph9030043 -
Abstract
The organo-seleniumdrug ebselen exhibits a wide range of pharmacological effects that are predominantly due to its interference with redox systems catalyzed by seleno enzymes, e.g., glutathione peroxidase and thioredoxin reductase. Moreover, ebselen can covalently interact with thiol groups of several enzymes. According [...] Read more.
The organo-seleniumdrug ebselen exhibits a wide range of pharmacological effects that are predominantly due to its interference with redox systems catalyzed by seleno enzymes, e.g., glutathione peroxidase and thioredoxin reductase. Moreover, ebselen can covalently interact with thiol groups of several enzymes. According to its pleiotropic mode of action, ebselen has been investigated in clinical trials for the prevention and treatment of different ailments. Fluorescence-labeled probes containing ebselen are expected to be suitable for further biological and medicinal studies. We therefore designed and synthesized two coumarin-tagged activity-based probes bearing the ebselen warhead. The heterodimers differ by the nature of the spacer structure, for which—in the second compound—a PEG/two-amide spacer was introduced. The interaction of this probe and of ebselen with two cysteine proteases was investigated. Full article
Figures

Open AccessArticle
Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties
Pharmaceuticals 2016, 9(3), 42; doi:10.3390/ph9030042 -
Abstract
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. [...] Read more.
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. Full article
Figures