Open AccessEditorial
An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2
Pharmaceuticals 2017, 10(2), 33; doi:10.3390/ph10020033 -
Open AccessEditorial
Aptamers: Biomedical Interest and Applications
Pharmaceuticals 2017, 10(1), 32; doi:10.3390/ph10010032 -
Abstract
Aptamers are short DNA or RNA oligonucleotides specialized in the specific and efficient bindingto a target molecule. They are obtained by in vitro selection or evolution processes. It was in 1990 that two independent research groups described the bases of a new
[...] Read more.
Aptamers are short DNA or RNA oligonucleotides specialized in the specific and efficient bindingto a target molecule. They are obtained by in vitro selection or evolution processes. It was in 1990 that two independent research groups described the bases of a new in vitrotechnology for the identificationof RNA molecules able to specifically bind to a target [1,2]. Tuerk and Gold established the principals of the in vitro selection process that was named SELEX (Systematic Evolution of Ligands by Exponential enrichment), which is based on iterative cycles of binding, partitioning, and amplification of oligonucleotides from a pool of variant sequences [2]. Ellington and Szostak coined the term aptamerto define the selected molecules by the application of this method [1]. To date, numerous reports have described the isolation of aptamers directed against a great variety of targets covering a wide diversity of molecules varying in nature, size, and complexity ranging from ions to whole cells, including small molecules (e.g., aminoacids, nucleotides, antibiotics), peptides, proteins, nucleic acids, and viruses, among others (for example, see [3–6]). Modifications and optimization of the SELEX procedure aimed to get newly modified aptamers has also attracted much interest (examples can be found in [7,8]). These advances along with the parallel progresses in the nucleic acids chemistry and cellular delivery fields have allowed for the rise of a new hope in developing aptamers as efficient molecular tools for diagnostics and therapeutics (for recent comprehensive reviews, see [9–11]).
Full article
Open AccessArticle
Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities
Pharmaceuticals 2017, 10(1), 31; doi:10.3390/ph10010031 -
Abstract
Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL
[...] Read more.
Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL are the anacardic acids, salicylic acid derivatives presenting a side chain of fifteen carbon atoms with different degrees of unsaturation (monoene–15:1, diene–15:2, and triene–15:3). Each constituent was isolated by column chromatography using silica gel impregnated with silver nitrate. The structures of the compounds were characterized by nuclear magnetic resonance through complete and unequivocal proton and carbon assignments. The effect of the side chain unsaturation was also evaluated in relation to antioxidant, antifungal and anticholinesterase activities, and toxicity against Artemia salina. The triene anacardic acid provided better results in antioxidant activity assessed by the inhibition of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), higher cytotoxicity against A. salina, and acetylcholinesterase (AChE) inhibition. Thus, increasing the unsaturation of the side chain of anacardic acid increases its action against free radicals, AChE enzyme, and A. salina nauplii. In relation to antifungal activity, an inverse result was obtained, and the linearity of the molecule plays an important role, with monoene being the most active. In conclusion, the changes in structure of anacardic acids, which cause differences in polarity, contribute to the increase or decrease in the biological activity assessed. Full article
Figures

Figure 1

Open AccessReview
Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms
Pharmaceuticals 2017, 10(1), 30; doi:10.3390/ph10010030 -
Abstract
Abstract: Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as
[...] Read more.
Abstract: Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors. Full article
Figures

Figure 1

Open AccessReview
Targeted Drugs as Maintenance Therapy after Autologous Stem Cell Transplantation in Patients with Mantle Cell Lymphoma
Pharmaceuticals 2017, 10(1), 28; doi:10.3390/ph10010028 -
Abstract
The treatment landscape for mantle cell lymphoma (MCL) is rapidly evolving toward the incorporation of novel and biologically targeted pharmaceuticals with improved disease activity and gentler toxicity profiles compared with conventional chemotherapeutics. Upfront intensive treatment of MCL includes autologous stem cell transplantation (SCT)
[...] Read more.
The treatment landscape for mantle cell lymphoma (MCL) is rapidly evolving toward the incorporation of novel and biologically targeted pharmaceuticals with improved disease activity and gentler toxicity profiles compared with conventional chemotherapeutics. Upfront intensive treatment of MCL includes autologous stem cell transplantation (SCT) consolidation aimed at deepening and lengthening disease remission, but subsequent relapse occurs. Maintenance therapy after autologous SCT in patients with MCL in remission features lower-intensity treatments given over extended periods to improve disease outcomes. Targeted drugs are a natural fit for this space, and are the focus of considerable clinical investigation. This review summarizes recent advances in the field and their potential impact on treatment practices for MCL. Full article
Open AccessArticle
Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors
Pharmaceuticals 2017, 10(1), 29; doi:10.3390/ph10010029 -
Abstract Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET) [...] Full article
Figures

Figure 1

Open AccessReview
Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks
Pharmaceuticals 2017, 10(1), 27; doi:10.3390/ph10010027 -
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered
[...] Read more.
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks. Full article
Figures

Figure 1a

Open AccessReview
CK2 Molecular Targeting—Tumor Cell-Specific Delivery of RNAi in Various Models of Cancer
Pharmaceuticals 2017, 10(1), 25; doi:10.3390/ph10010025 -
Abstract
Protein kinase CK2 demonstrates increased protein expression relative to non-transformed cells in the majority of cancers that have been examined. The elevated levels of CK2 are involved in promoting not only continued proliferation of cancer cells but also their resistance to cell death;
[...] Read more.
Protein kinase CK2 demonstrates increased protein expression relative to non-transformed cells in the majority of cancers that have been examined. The elevated levels of CK2 are involved in promoting not only continued proliferation of cancer cells but also their resistance to cell death; thus, CK2 has emerged as a plausible target for cancer therapy. Our focus has been to target CK2 catalytic subunits at the molecular level using RNA interference (RNAi) strategies to achieve their downregulation. The delivery of oligonucleotide therapeutic agents warrants that they are protected and are delivered specifically to cancer cells. The latter is particularly important since CK2 is a ubiquitous signal that is essential for survival. To achieve these goals, we have developed a nanocapsule that has the properties of delivering an anti-CK2 RNAi therapeutic cargo, in a protected manner, specifically to cancer cells. Tenfibgen (TBG) is used as the ligand to target tenascin-C receptors, which are elevated in cancer cells. This strategy is effective for inhibiting growth and inducing death in several types of xenograft tumors, and the nanocapsule elicits no safety concerns in animals. Further investigation of this therapeutic approach for its translation is warranted. Full article
Figures

Figure 1

Open AccessReview
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design
Pharmaceuticals 2017, 10(1), 26; doi:10.3390/ph10010026 -
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown
[...] Read more.
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. Full article
Figures

Figure 1

Open AccessArticle
Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice
Pharmaceuticals 2017, 10(1), 24; doi:10.3390/ph10010024 -
Abstract
Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human
[...] Read more.
Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model.Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response.Full article
Figures

Figure 1

Open AccessArticle
RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept
Pharmaceuticals 2017, 10(1), 23; doi:10.3390/ph10010023 -
Abstract
Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular
[...] Read more.
Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis. Full article
Figures

Figure 1

Open AccessArticle
Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells
Pharmaceuticals 2017, 10(1), 22; doi:10.3390/ph10010022 -
Abstract
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α’-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells.
[...] Read more.
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α’-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells. Mesenchymal stem cells (MSCs) are multipotent cells which can be differentiated into adipocytes in vitro. Thus, MSCs and in particular C3H/10T1/2 cells are excellent tools to study a possible role of CK2 in adipogenesis. We found downregulation of the CK2 catalytic subunits as well as a decrease in CK2 kinase activity with progression of differentiation. Inhibition of CK2 using the potent inhibitor CX-4945 impeded differentiation of C3H/10T1/2 cells into adipocytes. The inhibited cells lacked the observed decrease in CK2 expression, but showed a constant expression of all three CK2 subunits. Furthermore, inhibition of CK2 resulted in decreased cell proliferation in the early differentiation phase. Analysis of the main signaling cascade revealed an elevated expression of C/EBPβ and C/EBPδ and reduced expression of the adipogenic master regulators C/EBPα and PPARγ2. Thus, CK2 seems to be implicated in the regulation of different steps early in the adipogenic differentiation of MSC. Full article
Figures

Figure 1

Open AccessReview
The Link between Protein Kinase CK2 and Atypical Kinase Rio1
Pharmaceuticals 2017, 10(1), 21; doi:10.3390/ph10010021 -
Abstract
The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the
[...] Read more.
The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors. Full article
Figures

Figure 1

Open AccessArticle
In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface
Pharmaceuticals 2017, 10(1), 16; doi:10.3390/ph10010016 -
Abstract
Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α’) subunits and two regulatory (β) subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process.
[...] Read more.
Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α’) subunits and two regulatory (β) subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process. Although the monomeric CK2α subunit is endowed with a constitutive catalytic activity, many of the plethora of CK2 substrates are exclusively phosphorylated by the CK2 holoenzyme. This means that the spatial and high affinity interaction between CK2α and CK2β subunits is critically important and that its disruption may provide a powerful and selective way to block the phosphorylation of substrates requiring the presence of CK2β. In search of compounds inhibiting this critical protein–protein interaction, we previously designed an active cyclic peptide (Pc) derived from the CK2β carboxy-terminal domain that can efficiently antagonize the CK2 subunit interaction. To understand the functional significance of this interaction, we generated cell-permeable versions of Pc, exploring its molecular mechanisms of action and the perturbations of the signaling pathways that it induces in intact cells. The identification of small molecules inhibitors of this critical interaction may represent the first-choice approach to manipulate CK2 in an unconventional way. Full article
Figures

Figure 1

Open AccessMeeting Report
Second International Electronic Conference on Medicinal Chemistry (ECMC-2)
Pharmaceuticals 2017, 10(1), 20; doi:10.3390/ph10010020 -
Abstract
The second International Electronic Conference on Medicinal Chemistry, organized and sponsored by the publisher MDPI AG and the Journal Pharmaceuticals, took place in November 2016 on the SciForum website (www.sciforum.net/conference/ecmc-12). More than 150 authors from 22 countries participated in the event. Selected works
[...] Read more.
The second International Electronic Conference on Medicinal Chemistry, organized and sponsored by the publisher MDPI AG and the Journal Pharmaceuticals, took place in November 2016 on the SciForum website (www.sciforum.net/conference/ecmc-12). More than 150 authors from 22 countries participated in the event. Selected works presented during the scientific meeting are disclosed in this report. Full article
Open AccessMeeting Report
“The 24th Conference” of the Groupement des Pharmacochimistes de l’Arc Atlantique (GP2A)
Pharmaceuticals 2017, 10(1), 17; doi:10.3390/ph10010017 -
Abstract
The GP2A European Conference is a two-day meeting focused on medicinal chemistry and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, MS studies, in vitro in vivo assays, and structure activity
[...] Read more.
The GP2A European Conference is a two-day meeting focused on medicinal chemistry and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, MS studies, in vitro in vivo assays, and structure activity relationships. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collated in this report. Full article
Open AccessReview
CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target
Pharmaceuticals 2017, 10(1), 18; doi:10.3390/ph10010018 -
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer
[...] Read more.
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors. Full article
Figures

Figure 1

Open AccessArticle
Barriers to the Access of Bevacizumab in Patients with Solid Tumors and the Potential Impact of Biosimilars: A Physician Survey
Pharmaceuticals 2017, 10(1), 19; doi:10.3390/ph10010019 -
Abstract
Access to bevacizumab, an important component of oncology treatment regimens, may be limited. This survey of oncologists in the US (n = 150), Europe (n = 230), and emerging markets (EM: Brazil, Mexico, and Turkey; n = 130) examined use of
[...] Read more.
Access to bevacizumab, an important component of oncology treatment regimens, may be limited. This survey of oncologists in the US (n = 150), Europe (n = 230), and emerging markets (EM: Brazil, Mexico, and Turkey; n = 130) examined use of and barriers to accessing bevacizumab as treatment of advanced solid tumors. We also assessed the likelihood that physicians would prescribe a bevacizumab biosimilar, if available. Bevacizumab was frequently used as early-line therapy in metastatic colorectal cancer, metastatic non-squamous non–small-cell lung cancer, and metastatic ovarian cancer (all markets), and as a second-line therapy in glioblastoma multiforme (US, EM). A greater percentage of EM-based physicians cited access-related issues as a barrier to prescribing bevacizumab versus US and EU physicians. Lack of reimbursement and high out-of-pocket costs were cited as predominant barriers to prescribing and common reasons for reducing the number of planned cycles. Overall, ~50% of physicians reported they “definitely” or “probably” would prescribe a bevacizumab biosimilar, if available. Efficacy and safety data in specific tumor types and lower cost were factors cited that would increase likelihood to prescribe a bevacizumab biosimilar. A lower cost bevacizumab biosimilar could address the unmet needs of patients and physicians worldwide, and may have the greatest impact on patient outcomes in EM. Full article
Figures

Figure 1

Open AccessArticle
Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees
Pharmaceuticals 2017, 10(1), 15; doi:10.3390/ph10010015 -
Abstract
This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be
[...] Read more.
This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid) (hydrophilic), sodium salt of poly(maleic acid-alt-octadecene) (amphiphilic), poly(maleic anhydride-alt-octadecene) (hydrophobic) and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC). Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE) using the semi-empirical models of Young–Dupré and Owens-Wendt-Rabel-Käelbe (OWRK), respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism. Full article
Figures

Figure 1

Open AccessReview
Exploring the CK2 Paradox: Restless, Dangerous, Dispensable
Pharmaceuticals 2017, 10(1), 11; doi:10.3390/ph10010011 -
Abstract
The history of protein kinase CK2 is crowded with paradoxes and unanticipated findings. Named after a protein (casein) that is not among its physiological substrates, CK2 remained in search of its targets for more than two decades after its discovery in 1954, but
[...] Read more.
The history of protein kinase CK2 is crowded with paradoxes and unanticipated findings. Named after a protein (casein) that is not among its physiological substrates, CK2 remained in search of its targets for more than two decades after its discovery in 1954, but it later came to be one of the most pleiotropic protein kinases. Being active in the absence of phosphorylation and/or specific stimuli, it looks unsuitable to participate in signaling cascades, but its “lateral” implication in a variety of signaling pathways is now soundly documented. At variance with many “onco-kinases”, CK2 is constitutively active, and no oncogenic CK2 mutant is known; still high CK2 activity correlates to neoplasia. Its pleiotropy and essential role may cast doubts on the actual “druggability” of CK2; however, a CK2 inhibitor is now in Phase II clinical trials for the treatment of cancer, and cell clones viable in the absence of CK2 are providing information about the mechanism by which cancer becomes addicted to high CK2 levels. A phosphoproteomics analysis of these CK2 null cells suggests that CK2 pleiotropy may be less pronounced than expected and supports the idea that the phosphoproteome generated by this kinase is flexible and not rigidly pre-determined. Full article
Figures

Figure 1