Open AccessRetraction
Retraction: Yu et al. Low Iron Diet Increases Susceptibility to Noise-Induced Hearing Loss in Young Rats. Nutrients 2016, 8, 456
Nutrients 2017, 9(4), 422; doi:10.3390/nu9040422 -
Abstract The Nutrients Editorial Office has recently been made aware that the figures in the title paper [1] are taken from the same micrographs as those of other papers by the same authors [...] Full article
Open AccessArticle
A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages
Nutrients 2017, 9(5), 424; doi:10.3390/nu9050424 -
Abstract
Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim
[...] Read more.
Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent. Full article
Figures

Figure 1

Open AccessArticle
Comparison of a Web-Based 24-h Dietary Recall Tool (Foodbook24) to an Interviewer-Led 24-h Dietary Recall
Nutrients 2017, 9(5), 425; doi:10.3390/nu9050425 -
Abstract
Web-based tools have the potential to reduce the cost of dietary assessment; however, it is necessary to establish their performance compared to traditional dietary assessment methods. This study aims to compare nutrient and food intakes derived from Foodbook24 to those obtained from an
[...] Read more.
Web-based tools have the potential to reduce the cost of dietary assessment; however, it is necessary to establish their performance compared to traditional dietary assessment methods. This study aims to compare nutrient and food intakes derived from Foodbook24 to those obtained from an interview-led 24-h dietary recall (24HDR). Seventy-nine adult participants completed one self-administered 24HDR using Foodbook24 and one interviewer-led 24HDR on the same day. Following a 10 days wash-out period the same process was completed again in opposite order to the previous study visit. Statistical analysis including Spearman’s rank order correlation, Mann-Whitney U tests, cross-classification analysis, and “Match”, “Omission”, and “Intrusion” rates were used to investigate the relationship between both methods. Strong, positive correlations of nutrient intake estimated using both methods was observed (rs = 0.6–1.0; p < 0.001). The percentage of participants classified into the same tertile of nutrient intake distribution using both methods ranged from 58% (energy) to 82% (vitamin D). The overall match rate for food intake between both methods was 85%, while rates for omissions and intrusions were 11.5% and 3.5%, respectively. These results, alongside the reduced cost and participant burden associated with Foodbook24, highlight the tool’s potential as a viable alternative to the interviewer-led 24HDR. Full article
Open AccessArticle
Supplementation with a Polyphenol-Rich Extract, PerfLoad®, Improves Physical Performance during High-Intensity Exercise: A Randomized, Double Blind, Crossover Trial
Nutrients 2017, 9(4), 421; doi:10.3390/nu9040421 -
Abstract
Workout capacity is energy-production driven. To produce peak metabolic power outputs, the organism predominantly relies more on anaerobic metabolism, but this undoubtedly has a negative and limiting impact on muscle function and performance. The aim of the study was to evaluate if an
[...] Read more.
Workout capacity is energy-production driven. To produce peak metabolic power outputs, the organism predominantly relies more on anaerobic metabolism, but this undoubtedly has a negative and limiting impact on muscle function and performance. The aim of the study was to evaluate if an innovative polyphenol-based food supplement, PerfLoad®, was able to improve metabolic homeostasis and physical performance during high-intensity exercises under anaerobic conditions. The effect of a supplementation has been investigated on fifteen recreationally-active male athletes during a randomized, double-blind and crossover clinical investigation. The Wingate test, an inducer of an unbalanced metabolism associated to oxidative stress, was used to assess maximum anaerobic power during a high-intensity exercise on a cycle ergometer. Supplementation with PerfLoad® correlated with a significant increase in total power output (5%), maximal peak power output (3.7%), and average power developed (5%), without inducing more fatigue or greater heart rate. Instead, oxidative homeostasis was stabilized in supplemented subjects. Such results demonstrated that PerfLoad® is a natural and efficient solution capable of, similarly to training benefits, helping athletes to improve their physical performance, while balancing their metabolism and reducing exercise-induced oxidative stress. Full article
Figures

Figure 1

Open AccessArticle
The Reliability of the Mediterranean Diet Quality Index (KIDMED) Questionnaire
Nutrients 2017, 9(4), 419; doi:10.3390/nu9040419 -
Abstract
The purpose of the present study was to determine the test–retest reliability of the Mediterranean Diet Quality Index (KIDMED) questionnaire in college students. Two hundred and seventy-six college students (127 men, 46%; 149 women, 54%; mean age 19.70 ± 1.32 years; mean height
[...] Read more.
The purpose of the present study was to determine the test–retest reliability of the Mediterranean Diet Quality Index (KIDMED) questionnaire in college students. Two hundred and seventy-six college students (127 men, 46%; 149 women, 54%; mean age 19.70 ± 1.32 years; mean height 1.75 ± 0.09 m; mean weight 69.28 ± 13.84 kg; mean body-mas index 22.41 ± 3.19 kg/m2) participated in the study. To investigate the reliability of the KIDMED questionnaire, the participants were asked to complete the questionnaire on two occasions two weeks apart, stratified by gender. Kappa statistics showed moderate to excellent agreement (ranging from 0.504 to 0.849) in the total sample and moderate to excellent agreement in both men (ranging from 0.467 to 0.803) and women (ranging from 0.435 to 0.927). Results in the total KIDMED score showed a moderate correlation between two occasions inthe total sample (κ = 0.597, p < 0.001) and in women (κ = 0.586, p < 0.001) and a good correlation in men (κ = 0.611, p < 0.001). Our study shows that the KIDMED questionnaire is a reliable instrument for assessing adherence to the Mediterranean diet in college students. Future studies should focus on investigating the reliability of the questionnaire in other countries and in different age groups for generating comparable data. Full article
Open AccessArticle
Associations between Diet and Toenail Arsenic Concentration among Pregnant Women in Bangladesh: A Prospective Study
Nutrients 2017, 9(4), 420; doi:10.3390/nu9040420 -
Abstract
This prospective study evaluated the relationship between long-term dietary habits and total arsenic (As) concentration in toenail clippings in a cohort of 1616 pregnant women in the Bangladeshi administrative regions of Sirajdikhan and Pabna Sadar. Diet was assessed at Gestation Week 28 and
[...] Read more.
This prospective study evaluated the relationship between long-term dietary habits and total arsenic (As) concentration in toenail clippings in a cohort of 1616 pregnant women in the Bangladeshi administrative regions of Sirajdikhan and Pabna Sadar. Diet was assessed at Gestation Week 28 and at Postpartum Month 1, using a locally-validated dish-based semi-quantitative food-frequency questionnaire. Toenail As concentration was analyzed by microwave-assisted acid digestion and inductively coupled plasma mass spectrometry. Associations between natural log-transformed consumption of individual food items and temporally matched natural log-transformed toenail As concentration were quantified using general linear models that accounted for As concentration in the primary drinking water source and other potential confounders. The analysis was stratified by As in drinking water (≤50 μg/L versus >50 μg/L) and the time of dietary assessment (Gestation Week 28 versus Postpartum Week 1). Interestingly, toenail As was not significantly associated with consumption of plain rice as hypothesized. However, toenail As was positively associated with consumption of several vegetable, fish and meat items and was negatively associated with consumption of rice, cereal, fruits, and milk based food items. Further studies in pregnant women are needed to compare As metabolism at different levels of As exposure and the interaction between dietary composition and As absorption. Full article
Figures

Figure 1

Open AccessArticle
Suppression of Oxidative Stress and NFκB/MAPK Signaling by Lyophilized Black Raspberries for Esophageal Cancer Prevention in Rats
Nutrients 2017, 9(4), 413; doi:10.3390/nu9040413 -
Abstract
Research in the laboratory has shown that lyophilized black raspberries (BRB) significantly inhibit N-nitrosomethylbenzylamine (NMBA)-induced esophageal squamous cell carcinogenesis in rats. The objective of the present study is to characterize the underlying mechanism(s) of anti-cancer action of BRB in this preclinical animal
[...] Read more.
Research in the laboratory has shown that lyophilized black raspberries (BRB) significantly inhibit N-nitrosomethylbenzylamine (NMBA)-induced esophageal squamous cell carcinogenesis in rats. The objective of the present study is to characterize the underlying mechanism(s) of anti-cancer action of BRB in this preclinical animal model focusing on oxidative stress and its related oncogenic signaling pathways. Esophageal epithelial tissues were collected and assessed for markers of oxidative stress and nuclear factor κB (NFκB) and mitogen-activated protein kinase (MAPK). BRB reduced the incidence of esophageal cancer from 100% in NMBA-treated rats to 81.5% in rats treated with NMBA plus BRB (p < 0.05). Tumor multiplicity was reduced from 4.73 ± 0.45 tumors per esophagus in NMBA-treated rats to 1.44 ± 0.26 in rats treated with NMBA plus BRB (p < 0.001). The data indicated that NMBA treatment increased production of hydrogen peroxide and lipid hydroperoxide, reduced expression and activity of glutathione peroxidase and superoxide dismutase 2, and activated NFκB/MAPK signaling in rat esophagus. The study’s results show that BRB reverses oxidative stress and suppresses NFκB/MAPK pathways, which could be the mechanisms for esophageal cancer chemopreventive action of BRB in rats. Full article
Figures

Figure 1

Open AccessReview
Association of Polyphenol Biomarkers with Cardiovascular Disease and Mortality Risk: A Systematic Review and Meta-Analysis of Observational Studies
Nutrients 2017, 9(4), 415; doi:10.3390/nu9040415 -
Abstract
Epidemiologic studies have suggested an inverse association between flavonoids and cardiovascular disease (CVD). However, the results might have been influenced by the use of dietary assessment methods, which are error prone. The aim of this paper was to systematically review and analyse the
[...] Read more.
Epidemiologic studies have suggested an inverse association between flavonoids and cardiovascular disease (CVD). However, the results might have been influenced by the use of dietary assessment methods, which are error prone. The aim of this paper was to systematically review and analyse the literature for evidence of associations between polyphenol biomarkers and CVD and mortality risk in observational studies. Eligible studies were identified through PubMed, Web of Science, and reference lists. Multivariable adjusted associations were extracted. Data were log-transformed and pooled using the random effects model. In total, eight studies were included, investigating 16 different polyphenol biomarkers in association with CVD and mortality. Blood and urine were used as biospecimens, and enterolactone, a lignan metabolite, was most often investigated. Three meta-analyses were conducted investigating the association between enterolactone, and all-cause and CVD mortality, and non-fatal myocardial infarction. A 30% and 45% reduced all-cause and CVD mortality risk were revealed at higher enterolactone concentrations. Furthermore, inverse associations were observed between polyphenol biomarkers and all-cause mortality, kaempferol, and acute coronary syndrome. There is evidence to suggest that enterolactone is associated with a lower CVD mortality risk. This emphasises the importance of the role of the microbiota in disease prevention. To strengthen the evidence, more studies are warranted. Full article
Figures

Figure 1

Open AccessArticle
Sweet Taste Receptor Activation in the Gut Is of Limited Importance for Glucose-Stimulated GLP-1 and GIP Secretion
Nutrients 2017, 9(4), 418; doi:10.3390/nu9040418 -
Abstract
Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor (STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated incretin secretion from an isolated perfused
[...] Read more.
Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor (STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated incretin secretion from an isolated perfused rat small intestine and whether selective STR activation by artificial sweeteners stimulates secretion. Intra-luminal administration of the STR agonists, acesulfame K (3.85% w/v), but not sucralose (1.25% w/v) and stevioside (2.5% w/v), stimulated GLP-1 secretion (acesulfame K: 31 ± 3 pmol/L vs. 21 ± 2 pmol/L, p < 0.05, n = 6). In contrast, intra-arterial administration of sucralose (10 mM) and stevioside (10 mM), but not acesulfame K, stimulated GLP-1 secretion (sucralose: 51 ± 6 pmol/L vs. 34 ± 4 pmol/L, p < 0.05; stevioside: 54 ± 6 pmol/L vs. 32 ± 2 pmol/L, p < 0.05, n = 6), while 0.1 mM and 1 mM sucralose did not affect the secretion. Luminal glucose (20% w/v) doubled GLP-1 and GIP secretion, but basolateral STR inhibition by gurmarin (2.5 µg/mL) or the inhibition of the transient receptor potential cation channel 5 (TRPM5) by triphenylphosphine oxide (TPPO) (100 µM) did not attenuate the responses. In conclusion, STR activation does not drive GIP/GLP-1 secretion itself, nor does it have a role for glucose-stimulated GLP-1 or GIP secretion. Full article
Figures

Figure 1

Open AccessArticle
Sodium and Potassium Intake in Healthy Adults in Thessaloniki Greater Metropolitan Area—The Salt Intake in Northern Greece (SING) Study
Nutrients 2017, 9(4), 417; doi:10.3390/nu9040417 -
Abstract
A reduction in population sodium (as salt) consumption is a global health priority, as well as one of the most cost-effective strategies to reduce the burden of cardiovascular disease. High potassium intake is also recommended to reduce cardiovascular disease. To establish effective policies
[...] Read more.
A reduction in population sodium (as salt) consumption is a global health priority, as well as one of the most cost-effective strategies to reduce the burden of cardiovascular disease. High potassium intake is also recommended to reduce cardiovascular disease. To establish effective policies for setting targets and monitoring effectiveness within each country, the current level of consumption should be known. Greece lacks data on actual sodium and potassium intake. The aim of the present study was therefore to assess dietary salt (using sodium as biomarker) and potassium intakes in a sample of healthy adults in northern Greece, and to determine whether adherence to a Mediterranean diet is related to different sodium intakes or sodium-to-potassium ratio. A cross-sectional survey was carried out in the Thessaloniki greater metropolitan area (northern Greece) (n = 252, aged 18–75 years, 45.2% males). Participants’ dietary sodium and potassium intakes were determined by 24-hour urinary sodium and potassium excretions. In addition, we estimated their adherence to Mediterranean diet by the use of an 11-item MedDietScore (range 0–55). The mean sodium excretion was 175 (SD 72) mmol/day, equivalent to 4220 (1745) mg of sodium or 10.7 (4.4) g of salt per day, and the potassium excretion was 65 (25) mmol/day, equivalent to 3303 (1247) mg per day. Men had higher sodium and potassium excretions compared to women. Only 5.6% of the sample had salt intake <5 g/day, which is the target intake recommended by the World Health Organization. Mean sodium-to-potassium excretion ratio was 2.82 (1.07). There was no significant difference in salt or potassium intake or their ratio across MedDietScore quartiles. No significant relationships were found between salt intake and adherence to a Mediterranean diet, suggesting that the perception of the health benefits of the Mediterranean diet does not hold when referring to salt consumption. These results suggest the need for a larger, nation-wide survey on salt intake in Greece and underline the importance of continuation of salt reduction initiatives in Greece. Full article
Figures

Figure 1

Open AccessArticle
Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases
Nutrients 2017, 9(4), 406; doi:10.3390/nu9040406 -
Abstract
Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets
[...] Read more.
Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France). Products (n = 7183) were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS) and were then classified as NNPS ‘Pass’ if all nutrient targets were met (energy (E), total fat (TF), saturated fat (SFA), sodium (Na), added sugars (AS), protein, calcium). In a modelling scenario, all NNPS Fail products were ‘reformulated’ to meet NNPS standards. Overall, a third (36%) of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%–40%; 5%–72%, respectively), with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%–44%) and TF (23%–42%). Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively) at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases. Full article
Figures

Figure 1

Open AccessArticle
Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy
Nutrients 2017, 9(4), 414; doi:10.3390/nu9040414 -
Abstract
Osteoarthritis (OA) is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel,
[...] Read more.
Osteoarthritis (OA) is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β)-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL)-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2), autophagy marker light chain 3 (LC3)-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals. Full article
Figures

Figure 1

Open AccessFeature PaperConcept Paper
“Eat as If You Could Save the Planet and Win!” Sustainability Integration into Nutrition for Exercise and Sport
Nutrients 2017, 9(4), 412; doi:10.3390/nu9040412 -
Abstract
Today’s industrial food production contributes significantly to environmental degradation. Meat production accounts for the largest impact, including greenhouse gas emissions, land and water use. While food production and consumption are important aspects when addressing climate change, this article focuses predominantly on dietary change
[...] Read more.
Today’s industrial food production contributes significantly to environmental degradation. Meat production accounts for the largest impact, including greenhouse gas emissions, land and water use. While food production and consumption are important aspects when addressing climate change, this article focuses predominantly on dietary change that promotes both health for planet and people with focus on athletes. Healthy, sustainable eating recommendations begin to appear in various governmental guidelines. However, there remains resistance to the suggested reductions in meat consumption. While food citizens are likely to choose what is good for them and the planet, others may not, unless healthy eating initiatives integrate creative food literacy approaches with experiential learning as a potential vehicle for change. This concept paper is organized in three sections: (1) Environmental impact of food; (2) health and sustainability connections; and (3) application in sports and exercise. For active individuals, this article focuses on the quantity of protein, highlighting meat and dairy, and quality of food, with topics such as organic production and biodiversity. Finally, the timing of when to integrate sustainability principles in sport nutrition is discussed, followed by practical applications for education and inclusion in team, institutional, and event operations. Full article
Open AccessArticle
The Association of Ankle Brachial Index, Protein-Energy Wasting, and Inflammation Status with Cardiovascular Mortality in Patients on Chronic Hemodialysis
Nutrients 2017, 9(4), 416; doi:10.3390/nu9040416 -
Abstract
Protein-energy wasting (PEW) is highly prevalent in hemodialysis (HD) patients. We investigated the association of abnormal ankle brachial index (ABI), PEW, and chronic inflammation status with clinical prognosis in HD patients. A total of 973 HD patients were enrolled and were followed-up for
[...] Read more.
Protein-energy wasting (PEW) is highly prevalent in hemodialysis (HD) patients. We investigated the association of abnormal ankle brachial index (ABI), PEW, and chronic inflammation status with clinical prognosis in HD patients. A total of 973 HD patients were enrolled and were followed-up for 8 years. As a marker of the PEW, geriatric nutritional risk index (GNRI) was used. Cut-off levels were 91.2 for GNRI defined from previous studies and 1.9 mg/L for C-reactive protein (CRP) as median value, respectively. Abnormal ABI was seen in 332 (34.1%) patients. Declined GNRI and elevated CRP levels were independently associated with abnormal ABI (odds ratio (OR) 0.97, 95% confidence interval (CI) 0.96–0.99, p = 0.0009 and OR 1.40, 95% CI 1.07–1.83, p = 0.013, respectively). GNRI levels were also independently correlated with CRP levels (β = −0.126, p < 0.0001). During follow-up period, 283 (29.1%) patients died, including 123 (12.6%) due to cardiovascular disease (CVD). Abnormal ABI (adjusted hazard ratio (HR) 1.62, 95% CI 1.13–2.32, p = 0.0096), GNRI < 91.2 (adjusted HR 1.57, 95% CI 1.06–2.33, p = 0.023) and CRP > 1.9 mg/L (adjusted HR 1.89, 95% CI 1.31–2.77, p = 0.0007) independently predicted mortality due to CVD, respectively. In conclusion, abnormal ABI, GNRI, and CRP levels were closely associated with each other, and the combination of these variables increase their predictive values for the risk of mortality due to CVD and all-cause mortality in HD patients. Full article
Figures

Figure 1

Open AccessArticle
Chocolate Consumption and Risk of Heart Failure: A Meta-Analysis of Prospective Studies
Nutrients 2017, 9(4), 402; doi:10.3390/nu9040402 -
Abstract
Epidemiological studies have shown inconsistent findings on the association between chocolate consumption and risk of heart failure (HF). We, therefore, performed a meta-analysis of prospective studies to determine the role of chocolate intake in the prevention of HF. We searched databases of PubMed,
[...] Read more.
Epidemiological studies have shown inconsistent findings on the association between chocolate consumption and risk of heart failure (HF). We, therefore, performed a meta-analysis of prospective studies to determine the role of chocolate intake in the prevention of HF. We searched databases of PubMed, Web of Science, and Scopus through December 2016 and scrutinized the reference lists of relevant literatures to identify eligible studies. Study-specific hazard ratios (HRs) and 95% confidence intervals (CIs) were aggregated using random effect models. The dose–response relationship between chocolate consumption and incident HF was also assessed. This meta-analysis is registered with PROSPERO, number CRD42017054230. Five prospective studies with 106,109 participants were finally included. Compared to no consumption of chocolate, the pooled HRs (95% CIs) of HF were 0.86 (0.82–0.91) for low-to-moderate consumption (<7 servings/week) and 0.94 (0.80–1.09) for high consumption (≥7 servings/week). In dose–response meta-analysis, we detected a curve linear relationship between chocolate consumption and risk of HF (p for nonlinearity = 0.005). Compared with non-consumption, the HRs (95% CIs) of HF across chocolate consumption levels were 0.92 (0.88–0.97), 0.86 (0.78–0.94), 0.93 (0.85–1.03), and 1.07 (0.92–1.23) for 1, 3, 7, and 10 servings/week, respectively. In conclusion, chocolate consumption in moderation may be associated with a decreased risk of HF. Full article
Figures

Figure 1

Open AccessArticle
Genistein Ameliorates Ischemia/Reperfusion-Induced Renal Injury in a SIRT1-Dependent Manner
Nutrients 2017, 9(4), 403; doi:10.3390/nu9040403 -
Abstract
Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury
[...] Read more.
Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury has not been well investigated. In the current study, we explore whether genistein exhibits its renal-protective effects through SIRT1 (Sirtuin 1) in I/R-induced mice model. We found the treatment of genistein significantly reduced renal I/R-induced cell death, simultaneously stimulating renal cell proliferation. Meanwhile, SIRT1 expression was up-regulated following the administration of genistein in renal region. Furthermore, pharmacological inhibition or shRNA-mediated depletion of SIRT1 significantly reversed the protective effect of genistein on renal dysfunction, cellular damage, apoptosis, and proliferation following I/R injury, suggesting an indispensible role of the increased SIRT1 expression and activity in this process. Meanwhile, the reduced p53 and p21 expression and increased PCNA (Proliferating Cell Nuclear Antigen) expression were blocked after the depletion of SIRT1 compared with the genistein treatment group in the renal I/R process. Hence, our results provided further experimental basis for the potential use of genistein for the treatment of kidney disease with deficiency of SIRT1 activity. Full article
Figures

Figure 1

Open AccessArticle
The Sodium Content of Processed Foods in South Africa during the Introduction of Mandatory Sodium Limits
Nutrients 2017, 9(4), 404; doi:10.3390/nu9040404 -
Abstract
Background: In June 2016, the Republic of South Africa introduced legislation for mandatory limits for the upper sodium content permitted in a wide range of processed foods. We assessed the sodium levels of packaged foods in South Africa during the one-year period leading
[...] Read more.
Background: In June 2016, the Republic of South Africa introduced legislation for mandatory limits for the upper sodium content permitted in a wide range of processed foods. We assessed the sodium levels of packaged foods in South Africa during the one-year period leading up to the mandatory implementation date of the legislation. Methods: Data on the nutritional composition of packaged foods was obtained from nutrition information panels on food labels through both in-store surveys and crowdsourcing by users of the HealthyFood Switch mobile phone app between June 2015 and August 2016. Summary sodium levels were calculated for 15 food categories, including the 13 categories covered by the sodium legislation. The percentage of foods that met the government’s 2016 sodium limits was also calculated. Results: 11,065 processed food items were included in the analyses; 1851 of these were subject to the sodium legislation. Overall, 67% of targeted foods had a sodium level at or below the legislated limit. Categories with the lowest percentage of foods that met legislated limits were bread (27%), potato crisps (41%), salt and vinegar flavoured snacks (42%), and raw processed sausages (45%). About half (49%) of targeted foods not meeting the legislated limits were less than 25% above the maximum sodium level. Conclusion: Sodium levels in two-thirds of foods covered by the South African sodium legislation were at or below the permitted upper levels at the mandatory implementation date of the legislation and many more were close to the limit. The South African food industry has an excellent opportunity to rapidly meet the legislated requirements. Full article
Figures

Figure 1

Open AccessReview
Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism
Nutrients 2017, 9(4), 405; doi:10.3390/nu9040405 -
Abstract
Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context,
[...] Read more.
Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context, the liver seems to be a key organ for understanding the deleterious health effects promoted by fructose consumption. Fructose promotes complications in glucose metabolism, accumulation of triacylglycerol in the hepatocytes, and alterations in the lipid profile, which, associated with an inflammatory response and alterations in the redox state, will imply a systemic picture of insulin resistance. However, physical exercise has been indicated for the treatment of several chronic diseases. In this review, we show how each exercise protocol (aerobic, strength, or a combination of both) promote improvements in the obesogenic state created by fructose consumption as an improvement in the serum and liver lipid profile (high-density lipoprotein (HDL) increase and decrease triglyceride (TG) and low-density lipoprotein (LDL) levels) and a reduction of markers of inflammation caused by an excess of fructose. Therefore, it is concluded that the practice of aerobic physical exercise, strength training, or a combination of both is essential for attenuating the complications developed by the consumption of fructose. Full article
Figures

Figure 1

Open AccessReply
Response to Comments by Vuksan V. et al., Nutrients 2017, 9, 398, Regarding an Article by Solah V.A. et al., Nutrients 2017, 9, 149
Nutrients 2017, 9(4), 408; doi:10.3390/nu9040408 -
Open AccessArticle
Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers
Nutrients 2017, 9(4), 410; doi:10.3390/nu9040410 -
Abstract
Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and
[...] Read more.
Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice (p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin. Full article
Figures

Figure 1