Open AccessArticle
Thermal Transformation of NH4-Clinoptilolite to Mullite and Silica Polymorphs
Minerals 2017, 7(1), 11; doi:10.3390/min7010011 -
Abstract
Clinoptilolite is a natural zeolite used for the abatement of ammonium in the treatment of urban wastewater. By considering that mullite was obtained through thermal treatment of NH4-exchanged synthetic zeolites, this work aimed to evaluate if this phase can be obtained
[...] Read more.
Clinoptilolite is a natural zeolite used for the abatement of ammonium in the treatment of urban wastewater. By considering that mullite was obtained through thermal treatment of NH4-exchanged synthetic zeolites, this work aimed to evaluate if this phase can be obtained from NH4-clinoptilolite. A material containing about 90 wt % of clinoptilolite, prepared using a Sardinian zeolite-rich rock, was NH4-exchanged and subjected to treatments up to 1200 °C. After dehydration, de-ammoniation, and dehydroxylation processes, the clinoptilolite structure collapsed at 600 °C. An association of mullite, silica polymorphs, and glass, whitish in color, was obtained for treatments between 1000 and 1200 °C. The higher degree of crystallinity was reached after a 32 h heating at 1100 °C: mullite 22 wt %, cristobalite 59 wt %, tridymite 10 wt %, glass 9 wt %. It is possible to speed up the kinetics of the transformation by increasing the temperature to 1200 °C, obtaining the same amount of mullite in 2 h, but increasing the residual amorphous fraction (16 wt %). These results indicate that NH4-clinoptilolite could represent a raw material of potential interest in the ceramic field, in particular in the production of acid refractory, opening scenarios for a possible reuse of clinoptilolite-based exchangers employed in ammonium decontamination. Full article
Figures

Figure 1

Open AccessArticle
Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III) Removal Efficiency
Minerals 2017, 7(1), 9; doi:10.3390/min7010009 -
Abstract
Schwertmannite (Sch) is an efficient adsorbent for arsenic(III) removal from arsenic(III)-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC), morphology,
[...] Read more.
Schwertmannite (Sch) is an efficient adsorbent for arsenic(III) removal from arsenic(III)-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC), morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III) removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III) removal efficiency from an initial 1 mg/L arsenic(III) solution (pH 7.5) was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III) removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA) obtained for this sample. Full article
Figures

Open AccessArticle
Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction
Minerals 2017, 7(1), 10; doi:10.3390/min7010010 -
Abstract
The sodium leaching ratio (ηN) of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or
[...] Read more.
The sodium leaching ratio (ηN) of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or restricted by increasing the heating temperature and time. However, the restriction effect of heating temperature is 16.67 times larger than that of heating time, and the restriction effect decreases 47.03 times faster when heating temperature increases than that process of heating time. These imply that ηN improves with the increasing sodium carbonate dosage and the decreasing heating temperature. Full article
Figures

Figure 1

Open AccessArticle
Pore Structure Evolution and Its Effect on Strength Development of Sulfate-Containing Cemented Paste Backfill
Minerals 2017, 7(1), 8; doi:10.3390/min7010008 -
Abstract
In this study, the effects of the initial sulfate content on the properties of cemented paste backfill (CPB) made from coarse tailings has been investigated via mercury intrusion porosimetry. The combined effects of the sulfate content and curing time on the total porosity,
[...] Read more.
In this study, the effects of the initial sulfate content on the properties of cemented paste backfill (CPB) made from coarse tailings has been investigated via mercury intrusion porosimetry. The combined effects of the sulfate content and curing time on the total porosity, pore size distribution, and unconfined compressive strength of the produced material were discussed. It was found that the specimens with an initial sulfate content of 5000 and 35,000 ppm exhibited higher unconfined compressive strength, while the resulting fine porous structures characterized by pore radii of 10–400 and 1–10 μm significantly improved the mechanical properties of the CPB. In addition, an increase in the curing time decreased the overall pore volume in the radius range of 1–400 μm but increased the pore volume at pore radii less than 1 μm. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Minerals in 2016
Minerals 2017, 7(1), 7; doi:10.3390/min7010007 -
Open AccessArticle
Particle Flow Characteristics and Transportation Optimization of Superfine Unclassified Backfilling
Minerals 2017, 7(1), 6; doi:10.3390/min7010006 -
Abstract
In order to investigate the high volume fraction problem of the solid phase in superfine unclassified backfilling pipeline transportation, characteristic parameters were obtained by fitting to test data with an R–R particle size distribution function; then, a Euler dense-phase DPM (Discrete phase model)
[...] Read more.
In order to investigate the high volume fraction problem of the solid phase in superfine unclassified backfilling pipeline transportation, characteristic parameters were obtained by fitting to test data with an R–R particle size distribution function; then, a Euler dense-phase DPM (Discrete phase model) model was established by applying solid–liquid two-phase flow theory and the kinetic theory of granular flow (KTGF). The collision and friction of particles were imported by the UDF (User-define function) function, and the pipeline fluidization system, dominated by interphase drag forces, was analyzed. The best concentration and flow rate were finally obtained by comparing the results of the stress conditions, flow field characteristics, and the discrete phase distributions. It is revealed that reducing the concentration and flow rate could control pressure loss and pipe damage to a certain degree, while lower parameters show negative effects on the transportation integrity and backfilling strength. Indoor tests and field industrial tests verify the reliability of the results of the numerical simulations. Research shows that the model optimization method is versatile and practical for other, similar, complex flow field working conditions. Full article
Figures

Figure 1

Open AccessArticle
Characterization of a Fine-Grained Interstratification of Turbostratic Talc and Saponite
Minerals 2017, 7(1), 5; doi:10.3390/min7010005 -
Abstract
Interstratifications of talc and trioctahedral smectites from different provenances are used as indicators for geological environments and for geotechnical and technical applications. However, comprehensive layer characterization of these interstratifications is rare. Sample EX M 1694, a clay with red-beige appearance from the Madrid
[...] Read more.
Interstratifications of talc and trioctahedral smectites from different provenances are used as indicators for geological environments and for geotechnical and technical applications. However, comprehensive layer characterization of these interstratifications is rare. Sample EX M 1694, a clay with red-beige appearance from the Madrid basin was studied by X-ray diffraction analysis, X-ray fluorescence analysis, Fourier transformation infrared spectroscopy, simultaneous thermal analysis, gas adsorption measurements, cation exchange capacity, and environmental scanning electron microscopy. More than 95% of particles in EX M 1964 belong to the clay fraction <2 µm. It contains 75% interstratification of 30% turbostratic talc, and 70% saponite type III and 25% turbostratic talc. The turbostratic talc(0.3)/saponite interstratification is characterized by a low number of layers per stack (3), small lateral dimension of layers (60–80 nm) and, accordingly, a high specific surface area (283 m2/g) with nearly equal surface area of micro- and mesopores. Thus, the studied material can be used as mined for adsorption, in contrast to acid-treated clays that produce hazardous waste during production. Low particle size of the interstratification drastically reduced thermal stability and dehydroxylation was superimposed by recrystallization of high temperature phases already at 816 °C, which is low for trioctahedral 2:1 layer minerals. Full article
Figures

Figure 1

Open AccessArticle
An Investigation of the Uniaxial Compressive Strength of a Cemented Hydraulic Backfill Made of Alluvial Sand
Minerals 2017, 7(1), 4; doi:10.3390/min7010004 -
Abstract
Backfill is commonly used in underground mines. The quality control of the backfill is a key step to ensure it meets the designed strength requirement. This is done through sample collection from the underground environment, followed by uniaxial compression tests to obtain the
[...] Read more.
Backfill is commonly used in underground mines. The quality control of the backfill is a key step to ensure it meets the designed strength requirement. This is done through sample collection from the underground environment, followed by uniaxial compression tests to obtain the Uniaxial Compressive Strength (UCS) in the laboratory. When the cylindrical cemented backfill samples are axially loaded to failure, several failure modes can be observed and mainly classified into diagonal shear failure and axial split failure. To date, the UCS obtained by these two failure modes are considered to be the same with no distinction between them. In this paper, an analysis of the UCS results obtained on a cemented hydraulic backfill made of alluvial sand at a Canadian underground mine over the course of more than three years is presented. The results show that the UCS values obtained by diagonal shear failure are generally higher than those obtained by axial split failure for samples with the same recipe and curing time. This highlights the importance of making a distinction between the UCS values obtained by the two different modes of failure. Their difference in failure mechanism is explained. Further investigations on the sources of the data dispersion tend to indicate that the UCS obtained by laboratory tests following the current practice may not be representative of the in-situ strength distribution in the underground stopes due to segregation in cemented hydraulic backfill. Full article
Figures

Figure 1

Open AccessArticle
A Comparative Study on the Effect of Flotation Reagents on Growth and Iron Oxidation Activities of Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans
Minerals 2017, 7(1), 2; doi:10.3390/min7010002 -
Abstract
Recently, extraction of metals from different resources using a simple, efficient, and low-cost technique-known as bioleaching-has been widely considered, and has turned out to be an important global technology. Leptospirillum ferrooxidans and Acidithiobacillus (Thiobacillus) ferrooxidans are ubiquitous bacteria in the biomining industry. To
[...] Read more.
Recently, extraction of metals from different resources using a simple, efficient, and low-cost technique-known as bioleaching-has been widely considered, and has turned out to be an important global technology. Leptospirillum ferrooxidans and Acidithiobacillus (Thiobacillus) ferrooxidans are ubiquitous bacteria in the biomining industry. To date, the effects of commercial flotation reagents on the biooxidation activities of these bacteria have not been thoroughly studied. This investigation, by using various systematic measurement methods, studied the effects of various collectors and frothers (collectors: potassium amylxanthate, potassium isobutyl-xanthate, sodium ethylxanthate, potassium isopropylxanthate, and dithiophosphate; and frothers: pine oil and methyl isobutyl carbinol) on L. ferrooxidans and A. ferrooxidans activities. In general, results indicate that in the presence of these collectors and frothers, L. ferrooxidans is less sensitive than T. ferrooxidans. In addition, the inhibition effect of collectors on both bacteria is recommended in the following order: for the collectors, potassium isobutyl-xanthate > dithiophosphate > sodium ethylxanthate > potassium isobutyl-xanthate > potassium amylxanthate; and for the frothers, methyl isobutyl carbinol > pine oil. These results can be used for the optimization of biometallurgical processes or in the early stage of a process design for selection of flotation reagents. Full article
Figures

Figure 1

Open AccessArticle
Reflectance Spectroscopy Characteristics of Turquoise
Minerals 2017, 7(1), 3; doi:10.3390/min7010003 -
Abstract
In this study, we determined the reflectance spectra of four types of turquoise with different hardness (porcelain, hard turquoise, soft turquoise, and loose turquoise) using an ASDTM TerraSpec spectrometer (spectral range 350–2500 nm, Visible-Near Infrared, and Short-wave Infrared). Several absorption features, including
[...] Read more.
In this study, we determined the reflectance spectra of four types of turquoise with different hardness (porcelain, hard turquoise, soft turquoise, and loose turquoise) using an ASDTM TerraSpec spectrometer (spectral range 350–2500 nm, Visible-Near Infrared, and Short-wave Infrared). Several absorption features, including six narrow absorption peaks at 425 nm, 1480 nm, 2160 nm, 2218 nm, 2253 nm, and 2347 nm, and three wide peaks between 625–756 nm, 756–915 nm, and 1885–2133 nm have been identified. The strength of the absorption of turquoise increased with decreasing hardness. The absorption peaks at 2160 nm, 2218 nm, 2253 nm, 2347 nm, and 1885–2133 nm on some turquoise spectra (porcelain spectra, for example) were relatively weak, while those at 425 nm, 1480 nm, 625–756 nm, and 756–915 nm were always observed on all turquoise spectra, which could be the diagnostic absorption features for turquoise. Additionally, the hyper-spectral imaging (spectral range 1000–2500 nm, Short-wave Infrared) of the four types of turquoise were obtained using a HySpexTM imager. The Spectral Angle Mapper (SAM) method was successfully used to recognize turquoises, suggesting that hyper-spectral imaging may serve as a useful tool for fast turquoise identification and separation, especially for massive turquoise samples. Full article
Figures

Figure 1

Open AccessArticle
Measuring Transport Time of Mine Equipment in an Underground Mine Using a Bluetooth Beacon System
Minerals 2017, 7(1), 1; doi:10.3390/min7010001 -
Abstract
In this study, the time taken for mine haulage equipment to travel between destinations in an underground mine was measured and analyzed using a Bluetooth beacon system. In this system, Bluetooth beacons are attached to multiple points in an underground mine environment, and
[...] Read more.
In this study, the time taken for mine haulage equipment to travel between destinations in an underground mine was measured and analyzed using a Bluetooth beacon system. In this system, Bluetooth beacons are attached to multiple points in an underground mine environment, and smartphones are mounted on mine equipment, such as haulage trucks, to collect transport time data. An underground limestone mine in Korea was selected to test the Bluetooth beacon system. The field experiments indicated that smartphones mounted on haulage trucks can recognize all Bluetooth beacons installed in the vicinity. The results also revealed that the Bluetooth beacon system can be used successfully in underground mines to quantitatively analyze transport times of haulage trucks going back and forth between loading and dumping points. Full article
Figures

Figure 1

Open AccessArticle
Cemented Backfilling Technology of Paste-Like Based on Aeolian Sand and Tailings
Minerals 2016, 6(4), 132; doi:10.3390/min6040132 -
Abstract
Aeolian sand, tailings, and #32.5 Portland cement were used to produce backfilling aggregate, and physicochemical evaluations and proportioning tests were conducted. It is revealed that a mixture of aeolian sand and tailings can be used as a backfilling aggregate for the complementarities
[...] Read more.
Aeolian sand, tailings, and #32.5 Portland cement were used to produce backfilling aggregate, and physicochemical evaluations and proportioning tests were conducted. It is revealed that a mixture of aeolian sand and tailings can be used as a backfilling aggregate for the complementarities of their physicochemical properties; e.g., high Al2O3 content in the aeolian sand and CaO content in the tailings, coarse particles of aeolian sand and fine particles of tailings, etc. In addition, the optimal backfilling aggregate was shown to have a mass fraction of 72%–74%, a cement–sand ratio of 1:8, and an aeolian sand proportion of 25%. Furthermore, viscometer tests were used to analyze the rheological characteristics, and the slurry in these optimized proportions exhibited shear thinning phenomena with an initial yield stress, which belongs to paste-like—a cemented backfilling slurry with a higher mass fraction than a two-phase flow and better flowability than a paste slurry. Finally, the application of this backfilling technology shows that it can not only realize safe mining, but also bring huge economic benefits, and has some constructive guidance for environmental protection. Full article
Figures

Figure 1

Open AccessArticle
Mineralogical Composition of Urinary Stones and Their Frequency in Patients: Relationship to Gender and Age
Minerals 2016, 6(4), 131; doi:10.3390/min6040131 -
Abstract
This investigation reports the mineralogy and possible pathological significance of urinary stones removed from patients in Fars province, Iran. X-ray diffraction (XRD), scanning electron microscopy (SEM) and polarizing microscope (PM) techniques were used to investigate the mineralogical compositions of urinary stones. The identified
[...] Read more.
This investigation reports the mineralogy and possible pathological significance of urinary stones removed from patients in Fars province, Iran. X-ray diffraction (XRD), scanning electron microscopy (SEM) and polarizing microscope (PM) techniques were used to investigate the mineralogical compositions of urinary stones. The identified mineral components include whewellite, weddellite, hydroxyapatite, uricite and cystine. These techniques revealed that the whewellite and uricite were the most common mineral phases. Platy-like/monoclinic whewellite, prismatic/monoclinic uric acid and hexagonal cystine crystals were revealed by SEM. Biominerals (calcium carbonate) and quartz were also identified in PM images. Of the variables determining the type of precipitated minerals, the effects of pH on depositional conditions proved to be the most apparent parameter, as shown by occurrences and relationships among the studied minerals. Our results revealed the importance of detailed knowledge of mineralogical composition in assessing the effects of age and sex. The highest incidence of urinary stones was observed in the 40–60 age group. Calcium oxalate and uric acid stones are more frequent in men than women. Finally, the study concluded that knowledge of the mineralogical composition of urinary stones is important as it helps the scientific community to explain the chemistry and the etiology of the calculi in the urinary system. Full article
Figures

Figure 1

Open AccessArticle
Pressure–Temperature–Fluid Constraints for the Poona Emerald Deposits, Western Australia: Fluid Inclusion and Stable Isotope Studies
Minerals 2016, 6(4), 130; doi:10.3390/min6040130 -
Abstract
Emerald from the deposits at Poona shows micrometre-scale chemical, optical, and cathodoluminescence zonation. This zonation, combined with fluid inclusion and isotope studies, indicates early emerald precipitation from a single-phase saline fluid of approximately 12 weight percent NaCl equivalent, over the temperature range of
[...] Read more.
Emerald from the deposits at Poona shows micrometre-scale chemical, optical, and cathodoluminescence zonation. This zonation, combined with fluid inclusion and isotope studies, indicates early emerald precipitation from a single-phase saline fluid of approximately 12 weight percent NaCl equivalent, over the temperature range of 335–525 °C and pressures ranging from 70 to 400 MPa. The large range in pressure and temperature likely reflects some post entrapment changes and re-equilibration of oxygen isotopes. Secondary emerald-hosted fluid inclusions indicate subsequent emerald precipitation from higher salinity fluids. Likewise, the δ18O-δD of channel fluids extracted from Poona emerald is consistent with multiple origins yielding both igneous and metamorphic signatures. The combined multiple generations of emerald precipitation, different fluid compositions, and the presence of both metamorphic and igneous fluids trapped in emerald, likely indicate a protracted history of emerald precipitation at Poona conforming to both an igneous and a metamorphic origin at various times during regional lower amphibolite to greenschist facies metamorphism over the period ~2710–2660 Ma. Full article
Figures

Figure 1

Open AccessArticle
Adsorption Behavior of Cd2+ and Zn2+ onto Natural Egyptian Bentonitic Clay
Minerals 2016, 6(4), 129; doi:10.3390/min6040129 -
Abstract
In the present work, an Egyptian bentonitic clay sample has been structurally characterized using different techniques such as XRD, IR, SEM, and EDX analyses then evaluated as a sorbent for heavy metal ions removal. The characterization results showed that the clay sample is
[...] Read more.
In the present work, an Egyptian bentonitic clay sample has been structurally characterized using different techniques such as XRD, IR, SEM, and EDX analyses then evaluated as a sorbent for heavy metal ions removal. The characterization results showed that the clay sample is in the bentonite form with montmorillonite and kaolinite as mixed-clay minerals. The specific surface area (SSA) and cation exchange capacity (CEC) were determined using methylene blue test and they were found to be 367 m2/g and of 85 meq/100 g, respectively. The applicability of this clay sample for Cd (II) and Zn (II) removal from aqueous media was tested using batch procedures. Experimental parameters affecting the removal process were analyzed to get optimum conditions for the process. The experimental kinetic data were fitted very well to pseudo-second order with very high correlation coefficients. The Freundlich model appeared to correlate the adsorption data much better than Langmuir model with maximum adsorption capacities of 8.2 and 9.45 mg/g for Cd2+ and Zn2+, respectively. Successful application of the studied adsorbent for the removal of Cd2+ and Zn2+ ions from natural water samples greatly supports its potential for practical application. Full article
Figures

Open AccessArticle
Optimizing Performance of SABC Comminution Circuit of the Wushan Porphyry Copper Mine—A Practical Approach
Minerals 2016, 6(4), 127; doi:10.3390/min6040127 -
Abstract
This research is focused on the Phase I SABC milling circuit of the Wushan porphyry copper mine. Improvements to the existing circuit were targeted without any significant alterations to existing equipment or the SABC circuit. JKSimMet simulations were used to test various operating
[...] Read more.
This research is focused on the Phase I SABC milling circuit of the Wushan porphyry copper mine. Improvements to the existing circuit were targeted without any significant alterations to existing equipment or the SABC circuit. JKSimMet simulations were used to test various operating and design conditions to improve the comminution process. Modifications to the SABC comminution circuit included an increase in the SAG mill ball charge from 8% to 10% v/v; an increase in the mill ball charge from 23% v/v to 27% v/v; an increase in the maximum operating power draw in the ball mill to 5800 kW; the replacement of the HP Series pebble crusher with a TC84 crusher; and the addition of a pebble bin. Following these improvements, an increase in circuit throughput, a reduction in energy consumption, and an increase in profitability were obtained. Full article
Figures

Figure 1

Open AccessReview
Experiences and Future Challenges of Bioleaching Research in South Korea
Minerals 2016, 6(4), 128; doi:10.3390/min6040128 -
Abstract
This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the
[...] Read more.
This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials. Molecular studies were also addressed in this review. The classification provided in the present manuscript details information about microbial species, parameters of operation (e.g., temperature, particle size, pH, and process length), and target metals to compare recoveries among the bioleaching processes. The findings show an increasing interest in the technology from research institutes and mineral processing-related companies over the last decade. The current research trends demonstrate that investigations are mainly focused on determining the optimum parameters of operations for different techniques and minor applications at the industrial scale, which opens the opportunity for greater technological developments. An overview of bioleaching of each metal substrate and opportunities for future research development are also included. Full article
Figures

Figure 1

Open AccessArticle
Fibrous Platinum-Group Minerals in “Floating Chromitites” from the Loma Larga Ni-Laterite Deposit, Dominican Republic
Minerals 2016, 6(4), 126; doi:10.3390/min6040126 -
Abstract
This contribution reports on the observation of enigmatic fibrous platinum-group minerals (PGM) found within a chromitite body included in limonite (“floating chromitite”) from Ni-laterites in the Dominican Republic. Fibrous PGM have a Ru-Os-Ir-Fe dominated composition and are characterized by fibrous textures explained by
[...] Read more.
This contribution reports on the observation of enigmatic fibrous platinum-group minerals (PGM) found within a chromitite body included in limonite (“floating chromitite”) from Ni-laterites in the Dominican Republic. Fibrous PGM have a Ru-Os-Ir-Fe dominated composition and are characterized by fibrous textures explained by grain-forming fibers which are significantly longer (1–5 µm) than they are wide (~100 nm). Back-scattered electron (BSE) images suggest that these nanofibers are platinum-group elements (PGE)-bearing and form <5 µm thick layers of bundles which are oriented orthogonal to grains’ surfaces. Trace amounts of Si are most likely associated with PGE-bearing nanofibers. One characteristic fibrous PGM was studied in detail: XRD analyses point to ruthenian hexaferrum. However, the unpolished fibrous PGM shows numerous complex textures on its surface which are suggestive for neoformation processes: (i) features suggesting growth of PGE-bearing nanofibers; (ii) occurrence of PGM nanoparticles within film material (biofilm?) associated with PGE-bearing nanofibers; (iii) a Si-rich and crater-like texture hosting PGM nanoparticles and an Ir-rich accumulation of irregular shape; (iv) complex PGM nanoparticles with ragged morphologies, resembling sponge spicules and (v) oval forms (<1 µm in diameter) with included PGM nanoparticles, similar to those observed in experiments with PGE-reducing bacteria. Fibrous PGM found in the limonite may have formed due to supergene (bio-)weathering of fibrous Mg-silicates which were incorporated into desulphurized laurite during stages of serpentinization. Full article
Figures

Figure 1

Open AccessReview
Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review)
Minerals 2016, 6(4), 125; doi:10.3390/min6040125 -
Abstract
The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of
[...] Read more.
The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment) hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent. The eastern part of the study area (Eastern Transbaikalia) hosts molybdenum-dominated Mo and Mo–Cu porphyry deposits that formed in the Jurassic. The regional geodynamic setting during this mineralizing process is related to the collision of the Siberian and North China–Mongolia continents during the closure of the central part of the Mongol–Okhotsk Ocean in the Jurassic. Available isotopic data show that the magmas related to porphyritic Cu–Mo and Mo–Cu mineralization during the Early Paleozoic and Late Paleozoic–Early Mesozoic were mainly derived from mantle materials. The generation of fertile melts, related to porphyritic Mo and Mo–Cu mineralization during the Jurassic involved variable amounts of metasomatized mantle source component, the ancient Precambrian crust, and the juvenile crust, contributed by mantle-derived magmatic underplating. Full article
Figures

Figure 1

Open AccessArticle
Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites
Minerals 2016, 6(4), 124; doi:10.3390/min6040124 -
Abstract
Several small chromium (Cr) ore bodies are hosted within a unit of tectonically thinned dunite in the retired Ayios Stefanos mine of the western Othris ophiolite complex in Greece. Chromium ores consist of tectonically imprinted bodies of semi-massive to massive, podiform and lenticular
[...] Read more.
Several small chromium (Cr) ore bodies are hosted within a unit of tectonically thinned dunite in the retired Ayios Stefanos mine of the western Othris ophiolite complex in Greece. Chromium ores consist of tectonically imprinted bodies of semi-massive to massive, podiform and lenticular chromitites composed of chromian spinel [Cr-spinel] with high Cr# [Cr/(Cr + Al) = 0.51–0.66] and Mg# [Mg/(Mg + Fe2+) = 0.58–0.76], low Fe3+# [Fe3+/(Fe3+ + Fe2+) ≤ 0.43] and low TiO2 (≤0.21 wt %) content. This composition is characteristic of Cr-spinels in equilibrium with melts of intermediate affinity between island-arc tholeiites (IATs) and mid-ocean ridge basalts (MORBs). Several Cr-spinel crystals in these ores exhibit imperfect zones made up of spinel hosting oriented lamellae of Mg-silicates (mostly chlorite) locally overgrown by porous domains along grain boundaries and fractures. From the Cr-spinel core to the lamellae-rich rim Cr#, Mg# and Fe3+# generally increase (0.68–0.87, 0.78–0.88 and 0.55–0.80, respectively), whereas from the core or the spinel zones with oriented lamellae to the porous domains Mg# and Fe3+# generally decrease (0.45–0.74 and ≤0.51, correspondingly). The lamellae-rich rims formed at oxidizing conditions, whereas the porous rims resulted from a later reducing event. Several tiny (≤30 μm), subhedral to anhedral and elongated Zr-bearing silicate mineral grains were discovered mainly along open and healed fractures cutting Cr-spinel. Most of the Zr-bearing silicate minerals (30 out of 35 grains) were found in a chromitite boulder vastly intruded by a complex network of gabbroic dykes. The dominant Zr-bearing silicate phase is by far zircon displaying a homogeneous internal texture in cathodoluminescence (CL) images. Raman spectroscopy data indicate that zircons have experienced structural damage due to self-irradiation. Their trace-element contents suggest derivation from a plagioclase-bearing, low-SiO2 intermediate to mafic source. Combined micro-textural and minerochemical data repeat the possibility of zircon derivation from limited volumes of high-T fluids emanating from the gabbroic intrusions. Once zircon is precipitated in cracks, it may be altered to Ca-rich Zr-bearing silicate phases (i.e., armstrongite, calciocatapleiite). Almost all zircons in these samples show evidence of gains in solvent compounds (CaO, Al2O3 and FeO) possibly due to re-equilibration with late deuteric fluids. Full article
Figures

Figure 1