Open AccessReview
Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments
Microorganisms 2017, 5(3), 38; doi:10.3390/microorganisms5030038 -
Abstract
The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence
[...] Read more.
The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed. Full article
Open AccessReview
Antifungal Microbial Agents for Food Biopreservation—A Review
Microorganisms 2017, 5(3), 37; doi:10.3390/microorganisms5030037 -
Abstract
Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g.,
[...] Read more.
Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments—including fungicides and chemical preservatives—are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for ‘clean label’ food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation. Full article
Figures

Figure 1

Open AccessReply
Reply to the Comment on “Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture? Microorganisms 2017, 5, 22”
Microorganisms 2017, 5(3), 36; doi:10.3390/microorganisms5030036 -
Open AccessArticle
Free and Nanoencapsulated Tobramycin: Effects on Planktonic and Biofilm Forms of Pseudomonas
Microorganisms 2017, 5(3), 35; doi:10.3390/microorganisms5030035 -
Abstract
Cystic fibrosis (CF) is a genetic disorder in which frequent pulmonary infections develop secondarily. One of the major pulmonary pathogens colonizing the respiratory tract of CF patients and causing chronic airway infections is Pseudomonasaeruginosa. Although tobramycin was initially effective against P.
[...] Read more.
Cystic fibrosis (CF) is a genetic disorder in which frequent pulmonary infections develop secondarily. One of the major pulmonary pathogens colonizing the respiratory tract of CF patients and causing chronic airway infections is Pseudomonasaeruginosa. Although tobramycin was initially effective against P. aeruginosa, tobramycin-resistant strains have emerged. Among the strategies for overcoming resistance to tobramycin and other antibiotics is encapsulation of the drugs in nanoparticles. In this study, we explored the antimicrobial activity of nanoencapsulated tobramycin, both in solid lipid nanoparticles (SLN) and in nanostructured lipid carriers (NLC), against clinical isolates of P. aeruginosa obtained from CF patients. We also investigated the efficacy of these formulations in biofilm eradication. In both experiments, the activities of SLN and NLC were compared with that of free tobramycin. The susceptibility of planktonic bacteria was determined using the broth microdilution method and by plotting bacterial growth. The minimal biofilm eradication concentration (MBEC) was determined to assess the efficacy of the different tobramycin formulations against biofilms. The activity of tobramycin-loaded SLN was less than that of either tobramycin-loaded NLC or free tobramycin. The minimum inhibitory concentration (MIC) and MBEC of nanoencapsulated tobramycin were slightly lower (1–2 logs) than the corresponding values of the free drug when determined in tobramycin-susceptible isolates. However, in tobramycin-resistant strains, the MIC and MBEC did not differ between either encapsulated form and free tobramycin. Our results demonstrate the efficacy of nanoencapsulated formulations in killing susceptible P. aeruginosa from CF and from other patients. Full article
Figures

Figure 1

Open AccessComment
Comment on: “Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture? Microorganisms 2017, 5, 22”
Microorganisms 2017, 5(2), 34; doi:10.3390/microorganisms5020034 -
Abstract
A recent article by Palonen et al. describes the effect of butyrolactone I on the expression of a secondary metabolite biosynthesis gene cluster from Aspergillus terreus that shows similarities to fusarubin biosynthesis gene clusters from Fusarium species. The authors claim that two different
[...] Read more.
A recent article by Palonen et al. describes the effect of butyrolactone I on the expression of a secondary metabolite biosynthesis gene cluster from Aspergillus terreus that shows similarities to fusarubin biosynthesis gene clusters from Fusarium species. The authors claim that two different types of pigments are formed in Aspergillus terreus conidia, whereby one pigment is termed a DOPA-type melanin and the second a DHN-type melanin. Unfortunately, the terminology of the classification of melanin-types requires revision as Asp-melanin present in A. terreus conidia is clearly distinct from DOPA-melanins. In addition, some hypotheses in this manuscript are based on questionable data published previously, resulting in incorrect conclusions. Finally, as biochemical data are lacking and metabolite production is only deduced from bioinformatics and transcriptomic data, the production of a second pigment type in A. terreus conidia appears highly speculative. Full article
Figures

Figure 1

Open AccessReview
Purine Acquisition and Synthesis by Human Fungal Pathogens
Microorganisms 2017, 5(2), 33; doi:10.3390/microorganisms5020033 -
Abstract
While members of the Kingdom Fungi are found across many of the world’s most hostile environments, only a limited number of species can thrive within the human host. The causative agents of the most common invasive fungal infections are Candida albicans, Aspergillus
[...] Read more.
While members of the Kingdom Fungi are found across many of the world’s most hostile environments, only a limited number of species can thrive within the human host. The causative agents of the most common invasive fungal infections are Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. During the infection process, these fungi must not only combat the host immune system while adapting to dramatic changes in temperature and pH, but also acquire sufficient nutrients to enable growth and dissemination in the host. One class of nutrients required by fungi, which is found in varying concentrations in their environmental niches and the human host, is the purines. These nitrogen-containing heterocycles are one of the most abundant organic molecules in nature and are required for roles as diverse as signal transduction, energy metabolism and DNA synthesis. The most common life-threatening fungal pathogens can degrade, salvage and synthesize de novo purines through a number of enzymatic steps that are conserved. While these enable them to adapt to the changing purine availability in the environment, only de novo purine biosynthesis is essential during infection and therefore an attractive antimycotic target. Full article
Figures

Figure 1

Open AccessReview
Interaction of Candida Species with the Skin
Microorganisms 2017, 5(2), 32; doi:10.3390/microorganisms5020032 -
Abstract
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin
[...] Read more.
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems. Full article
Figures

Figure 1

Open AccessArticle
Changes in Microbial (Bacteria and Archaea) Plankton Community Structure after Artificial Dispersal in Grazer-Free Microcosms
Microorganisms 2017, 5(2), 31; doi:10.3390/microorganisms5020031 -
Abstract
Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because
[...] Read more.
Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions. Full article
Figures

Figure 1

Open AccessReview
Table Olive Fermentation Using Starter Cultures with Multifunctional Potential
Microorganisms 2017, 5(2), 30; doi:10.3390/microorganisms5020030 -
Abstract
Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive
[...] Read more.
Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food. Full article
Open AccessArticle
Toxin Variability Estimations of 68 Alexandrium ostenfeldii (Dinophyceae) Strains from The Netherlands Reveal a Novel Abundant Gymnodimine
Microorganisms 2017, 5(2), 29; doi:10.3390/microorganisms5020029 -
Abstract
Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing
[...] Read more.
Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing the toxin profiles of the Dutch A. ostenfeldii in consideration of recent reports of novel toxins. Alexandrium ostenfeldii is known as a causative species of paralytic shellfish poisoning, and consistently in the Dutch population we determined the presence of several paralytic shellfish toxins (PST) including saxitoxin (STX), GTX2/3 (gonyautoxins), B1 and C1/C2. We also examined the production of spiroimine toxins by the Dutch A. ostenfeldii strains. An extensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a high intraspecific variability of spirolides (SPX) and gymnodimines (GYM). Spirolides included 13-desMethyl-spirolide C generally as the major compound and several other mostly unknown SPX-like compounds that were detected and characterized. Besides spirolides, the presence of gymnodimine A and 12-Methyl-gymnodimine A was confirmed, together with two new gymnodimines. One of these was tentatively identified as an analogue of gymnodimine D and was the most abundant gymnodimine (calculated cell quota up to 274 pg cell−1, expressed as GYM A equivalents). Our multi-clonal approach adds new analogues to the increasing number of compounds in these toxin classes and revealed a high strain variability in cell quota and in toxin profile of toxic compounds within a single population. Full article
Figures

Figure 1

Open AccessReview
Regulatory and Safety Requirements for Food Cultures
Microorganisms 2017, 5(2), 28; doi:10.3390/microorganisms5020028 -
Abstract
The increased use of food cultures to ferment perishable raw materials has potentiated the need for regulations to assess and assure the safety of food cultures and their uses. These regulations differ from country to country, all aimed at assuring the safe use
[...] Read more.
The increased use of food cultures to ferment perishable raw materials has potentiated the need for regulations to assess and assure the safety of food cultures and their uses. These regulations differ from country to country, all aimed at assuring the safe use of food cultures which has to be guaranteed by the food culture supplier. Here we highlight national differences in regulations and review a list of methods and methodologies to assess the safety of food cultures at strain level, at production, and in the final product. Full article
Figures

Figure 1

Open AccessReview
From Genome to Phenotype: An Integrative Approach to Evaluate the Biodiversity of Lactococcus lactis
Microorganisms 2017, 5(2), 27; doi:10.3390/microorganisms5020027 -
Abstract
Lactococcus lactis is one of the most extensively used lactic acid bacteria for the manufacture of dairy products. Exploring the biodiversity of L. lactis is extremely promising both to acquire new knowledge and for food and health-driven applications. L. lactis is divided into
[...] Read more.
Lactococcus lactis is one of the most extensively used lactic acid bacteria for the manufacture of dairy products. Exploring the biodiversity of L. lactis is extremely promising both to acquire new knowledge and for food and health-driven applications. L. lactis is divided into four subspecies: lactis, cremoris, hordniae and tructae, but only subsp. lactis and subsp. cremoris are of industrial interest. Due to its various biotopes, Lactococcus subsp. lactis is considered the most diverse. The diversity of L. lactis subsp. lactis has been assessed at genetic, genomic and phenotypic levels. Multi-Locus Sequence Type (MLST) analysis of strains from different origins revealed that the subsp. lactis can be classified in two groups: “domesticated” strains with low genetic diversity, and “environmental” strains that are the main contributors of the genetic diversity of the subsp. lactis. As expected, the phenotype investigation of L. lactis strains reported here revealed highly diverse carbohydrate metabolism, especially in plant- and gut-derived carbohydrates, diacetyl production and stress survival. The integration of genotypic and phenotypic studies could improve the relevance of screening culture collections for the selection of strains dedicated to specific functions and applications. Full article
Figures

Open AccessArticle
Adding Value to Goat Meat: Biochemical and Technological Characterization of Autochthonous Lactic Acid Bacteria to Achieve High-Quality Fermented Sausages
Microorganisms 2017, 5(2), 26; doi:10.3390/microorganisms5020026 -
Abstract
Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical
[...] Read more.
Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product. Full article
Figures

Open AccessReview
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules
Microorganisms 2017, 5(2), 25; doi:10.3390/microorganisms5020025 -
Abstract
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have
[...] Read more.
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. Full article
Figures

Figure 1

Open AccessReview
Dairy Propionibacteria: Versatile Probiotics
Microorganisms 2017, 5(2), 24; doi:10.3390/microorganisms5020024 -
Abstract
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are
[...] Read more.
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes. Full article
Figures

Figure 1

Open AccessArticle
Lactic Fermentation as an Efficient Tool to Enhance the Antioxidant Activity of Tropical Fruit Juices and Teas
Microorganisms 2017, 5(2), 23; doi:10.3390/microorganisms5020023 -
Abstract
Tropical fruits like pineapple, papaya, mango, and beverages such as green or black teas, represent an underestimated source of antioxidants that could exert health-promoting properties. Most food processing technologies applied to fruit beverages or teas result in an impairment of inherent nutritional properties.
[...] Read more.
Tropical fruits like pineapple, papaya, mango, and beverages such as green or black teas, represent an underestimated source of antioxidants that could exert health-promoting properties. Most food processing technologies applied to fruit beverages or teas result in an impairment of inherent nutritional properties. Conversely, we hypothesise that lactic acid fermentation may constitute a promising route to maintain and even improve the nutritional qualities of processed fruits. Using specific growth media, lactic acid bacteria were selected from the fruit phyllosphere diversity and fruit juice, with the latter undergoing acidification kinetics analyses and characterised for exopolysaccharide production. Strains able to ferment tropical fruit juices or teas into pleasant beverages, within a short time, were of particular interest. Strains Weissella cibaria 64 and Leuconostoc mesenteroides 12b, able to increase antioxidant activity, were specifically studied as potential starters for lactic fermented pineapple juice. Full article
Figures

Figure 1

Open AccessArticle
Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture?
Microorganisms 2017, 5(2), 22; doi:10.3390/microorganisms5020022 -
Abstract
Pigments and melanins of fungal spores have been investigated for decades, revealing important roles in the survival of the fungus in hostile environments. The key genes and the encoded enzymes for pigment and melanin biosynthesis have recently been found in Ascomycota, including Aspergillus
[...] Read more.
Pigments and melanins of fungal spores have been investigated for decades, revealing important roles in the survival of the fungus in hostile environments. The key genes and the encoded enzymes for pigment and melanin biosynthesis have recently been found in Ascomycota, including Aspergillus spp. In Aspergillus terreus, the pigmentation has remained mysterious with only one class of melanin biogenesis being found. In this study, we examined an intriguing, partially annotated gene cluster of A. terreus strain NIH2624, utilizing previously sequenced transcriptome and improved gene expression data of strain MUCL 38669, under the influence of a suggested quorum sensing inducing metabolite, butyrolactone I. The core polyketide synthase (PKS) gene of the cluster was predicted to be significantly longer on the basis of the obtained transcriptional data, and the surrounding cluster was positively regulated by butyrolactone I at the late growth phase of submerged culture, presumably during sporulation. Phylogenetic analysis of the extended PKS revealed remarkable similarity with a group of known pigments of Fusarium spp., indicating a similar function for this PKS. We present a hypothesis of this PKS cluster to biosynthesise a 1,8-dihydroxynaphthalene (DHN)-type of pigment during sporulation with the influence of butyrolactone I under submerged culture. Full article
Figures

Figure 1

Open AccessArticle
Hyperbaric Oxygen Therapy is Ineffective as an Adjuvant to Daptomycin with Rifampicin Treatment in a Murine Model of Staphylococcus aureus in Implant-Associated Osteomyelitis
Microorganisms 2017, 5(2), 21; doi:10.3390/microorganisms5020021 -
Abstract
Implant-associated infections caused by bacterial biofilms are difficult to treat. Surgical intervention is often necessary to cure the patient, as the antibiotic recalcitrance of biofilms renders them untreatable with conventional antibiotics. Intermittent hyperbaric oxygen treatment (HBOT) has been proposed as an adjuvant to
[...] Read more.
Implant-associated infections caused by bacterial biofilms are difficult to treat. Surgical intervention is often necessary to cure the patient, as the antibiotic recalcitrance of biofilms renders them untreatable with conventional antibiotics. Intermittent hyperbaric oxygen treatment (HBOT) has been proposed as an adjuvant to conventional antibiotic treatment and it has been speculated that combining HBOT with antibiotics could improve treatment outcomes for biofilm infections. In this study we addressed whether HBOT could improve treatment outcomes of daptomycin and rifampicin combination therapy. The effect of HBOT on the treatment outcomes of daptomycin and rifampicin against implant-associated osteomyelitis was quantified in a murine model. In total, 80 mice were randomized into two groups receiving antibiotics, either alone or in combination with daily intermittent HBOT (304 kPa for 60 min) following injection of antibiotics. Treatment was initiated 11 days after animals were infected with Staphylococcus aureus and treatment duration was 14 days. We found that HBOT did not improve the cure rate and did not reduce the bacterial load on the implant surface or in the surrounding tissue. Cure rates of daptomycin + rifampicin were 40% in infected tibias and 75% for implants while cure rates for HBOT-daptomycin + rifampicin were 50% and 85%, respectively, which were not significantly higher (Fisher’s exact test). While it is encouraging that the combination of daptomycin and rifampicin is very effective, our study demonstrates that this efficacy cannot be improved by adjuvant HBOT. Full article
Figures

Figure 1

Open AccessArticle
Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme
Microorganisms 2017, 5(2), 20; doi:10.3390/microorganisms5020020 -
Abstract
Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and
[...] Read more.
Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa) in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase. Full article
Figures

Figure 1

Open AccessReview
The Status of Biofilms in Penile Implants
Microorganisms 2017, 5(2), 19; doi:10.3390/microorganisms5020019 -
Abstract
Erectile dysfunction is prevalent among men and will continue to become more so with the aging population. Of the available treatment options, implantable prosthetic devices are typically thought of as a third line treatment even though they have the highest satisfaction rate and
[...] Read more.
Erectile dysfunction is prevalent among men and will continue to become more so with the aging population. Of the available treatment options, implantable prosthetic devices are typically thought of as a third line treatment even though they have the highest satisfaction rate and continually improving success rates. Infection and mechanical failure are the most common reasons for implant revision in the past. Since the development of more reliable devices, bacterial biofilms are coming to the forefront of discussion as causes of required revision. Biofilms are problematic as they are ubiquitous and exceedingly difficult to prevent or treat. Full article