Open AccessEditorial
SNP Arrays
Microarrays 2016, 5(4), 27; doi:10.3390/microarrays5040027 -
Abstract
The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays) focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The
[...] Read more.
The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays) focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays. Full article
Open AccessEditorial
Computational Modeling and Analysis of Microarray Data: New Horizons
Microarrays 2016, 5(4), 26; doi:10.3390/microarrays5040026 -
Abstract
High-throughput microarray technologies have long been a source of data for a wide range of biomedical investigations. Over the decades, variants have been developed and sophistication of measurements has improved, with generated data providing both valuable insight and considerable analytical challenge. The cost-effectiveness
[...] Read more.
High-throughput microarray technologies have long been a source of data for a wide range of biomedical investigations. Over the decades, variants have been developed and sophistication of measurements has improved, with generated data providing both valuable insight and considerable analytical challenge. The cost-effectiveness of microarrays, as well as their fundamental applicability, made them a first choice for much early genomic research and efforts to improve accessibility, quality and interpretation have continued unabated. In recent years, however, the emergence of new generations of sequencing methods and, importantly, reduction of costs, has seen a preferred shift in much genomic research to the use of sequence data, both less ‘noisy’ and, arguably, with species information more directly targeted and easily interpreted. Nevertheless, new microarray data are still being generated and, together with their considerable legacy, can offer a complementary perspective on biological systems and disease pathogenesis. The challenge now is to exploit novel methods for enhancing and combining these data with those generated by alternative high-throughput techniques, such as sequencing, to provide added value. Augmentation and integration of microarray data and the new horizons this opens up, provide the theme for the papers in this Special Issue. Full article
Open AccessArticle
Automated and Multiplexed Soft Lithography for the Production of Low-Density DNA Microarrays
Microarrays 2016, 5(4), 25; doi:10.3390/microarrays5040025 -
Abstract
Microarrays are established research tools for genotyping, expression profiling, or molecular diagnostics in which DNA molecules are precisely addressed to the surface of a solid support. This study assesses the fabrication of low-density oligonucleotide arrays using an automated microcontact printing device, the InnoStamp
[...] Read more.
Microarrays are established research tools for genotyping, expression profiling, or molecular diagnostics in which DNA molecules are precisely addressed to the surface of a solid support. This study assesses the fabrication of low-density oligonucleotide arrays using an automated microcontact printing device, the InnoStamp 40®. This automate allows a multiplexed deposition of oligoprobes on a functionalized surface by the use of a MacroStampTM bearing 64 individual pillars each mounted with 50 circular micropatterns (spots) of 160 µm diameter at 320 µm pitch. Reliability and reuse of the MacroStampTM were shown to be fast and robust by a simple washing step in 96% ethanol. The low-density microarrays printed on either epoxysilane or dendrimer-functionalized slides (DendriSlides) showed excellent hybridization response with complementary sequences at unusual low probe and target concentrations, since the actual probe density immobilized by this technology was at least 10-fold lower than with the conventional mechanical spotting. In addition, we found a comparable hybridization response in terms of fluorescence intensity between spotted and printed oligoarrays with a 1 nM complementary target by using a 50-fold lower probe concentration to produce the oligoarrays by the microcontact printing method. Taken together, our results lend support to the potential development of this multiplexed microcontact printing technology employing soft lithography as an alternative, cost-competitive tool for fabrication of low-density DNA microarrays. Full article
Figures

Open AccessArticle
OSAnalyzer: A Bioinformatics Tool for the Analysis of Gene Polymorphisms Enriched with Clinical Outcomes
Microarrays 2016, 5(4), 24; doi:10.3390/microarrays5040024 -
Abstract
Background: The identification of biomarkers for the estimation of cancer patients’ survival is a crucial problem in modern oncology. Recently, the Affymetrix DMET (Drug Metabolizing Enzymes and Transporters) microarray platform has offered the possibility to determine the ADME (absorption, distribution, metabolism, and excretion)
[...] Read more.
Background: The identification of biomarkers for the estimation of cancer patients’ survival is a crucial problem in modern oncology. Recently, the Affymetrix DMET (Drug Metabolizing Enzymes and Transporters) microarray platform has offered the possibility to determine the ADME (absorption, distribution, metabolism, and excretion) gene variants of a patient and to correlate them with drug-dependent adverse events. Therefore, the analysis of survival distribution of patients starting from their profile obtained using DMET data may reveal important information to clinicians about possible correlations among drug response, survival rate, and gene variants. Methods: In order to provide support to this analysis we developed OSAnalyzer, a software tool able to compute the overall survival (OS) and progression-free survival (PFS) of cancer patients and evaluate their association with ADME gene variants. Results: The tool is able to perform an automatic analysis of DMET data enriched with survival events. Moreover, results are ranked according to statistical significance obtained by comparing the area under the curves that is computed by using the log-rank test, allowing a quick and easy analysis and visualization of high-throughput data. Conclusions: Finally, we present a case study to highlight the usefulness of OSAnalyzer when analyzing a large cohort of patients. Full article
Figures

Open AccessFeature PaperArticle
Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories
Microarrays 2016, 5(3), 23; doi:10.3390/microarrays5030023 -
Abstract
Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable
[...] Read more.
Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp. Full article
Figures

Open AccessArticle
Serology in the Digital Age: Using Long Synthetic Peptides Created from Nucleic Acid Sequences as Antigens in Microarrays
Microarrays 2016, 5(3), 22; doi:10.3390/microarrays5030022 -
Abstract
Background: Antibodies to microbes, or to autoantigens, are important markers of disease. Antibody detection (serology) can reveal both past and recent infections. There is a great need for development of rational ways of detecting and quantifying antibodies, both for humans and animals. Traditionally,
[...] Read more.
Background: Antibodies to microbes, or to autoantigens, are important markers of disease. Antibody detection (serology) can reveal both past and recent infections. There is a great need for development of rational ways of detecting and quantifying antibodies, both for humans and animals. Traditionally, serology using synthetic antigens covers linear epitopes using up to 30 amino acid peptides. Methods: We here report that peptides of 100 amino acids or longer (“megapeptides”), designed and synthesized for optimal serological performance, can successfully be used as detection antigens in a suspension multiplex immunoassay (SMIA). Megapeptides can quickly be created just from pathogen sequences. A combination of rational sequencing and bioinformatic routines for definition of diagnostically-relevant antigens can, thus, rapidly yield efficient serological diagnostic tools for an emerging infectious pathogen. Results: We designed megapeptides using bioinformatics and viral genome sequences. These long peptides were tested as antigens for the presence of antibodies in human serum to the filo-, herpes-, and polyoma virus families in a multiplex microarray system. All of these virus families contain recently discovered or emerging infectious viruses. Conclusion: Long synthetic peptides can be useful as serological diagnostic antigens, serving as biomarkers, in suspension microarrays. Full article
Figures

Open AccessArticle
A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations
Microarrays 2016, 5(3), 21; doi:10.3390/microarrays5030021 -
Abstract
Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and
[...] Read more.
Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response. Full article
Figures

Open AccessReview
The Potentials and Pitfalls of Microarrays in Neglected Tropical Diseases: A Focus on Human Filarial Infections
Microarrays 2016, 5(3), 20; doi:10.3390/microarrays5030020 -
Abstract
Data obtained from expression microarrays enables deeper understanding of the molecular signatures of infectious diseases. It provides rapid and accurate information on how infections affect the clustering of gene expression profiles, pathways and networks that are transcriptionally active during various infection states compared
[...] Read more.
Data obtained from expression microarrays enables deeper understanding of the molecular signatures of infectious diseases. It provides rapid and accurate information on how infections affect the clustering of gene expression profiles, pathways and networks that are transcriptionally active during various infection states compared to conventional diagnostic methods, which primarily focus on single genes or proteins. Thus, microarray technologies offer advantages in understanding host-parasite interactions associated with filarial infections. More importantly, the use of these technologies can aid diagnostics and helps translate current genomic research into effective treatment and interventions for filarial infections. Studying immune responses via microarray following infection can yield insight into genetic pathways and networks that can have a profound influence on the development of anti-parasitic vaccines. Full article
Figures

Open AccessArticle
Protein Profiling Gastric Cancer and Neighboring Control Tissues Using High-Content Antibody Microarrays
Microarrays 2016, 5(3), 19; doi:10.3390/microarrays5030019 -
Abstract
In this study, protein profiling was performed on gastric cancer tissue samples in order to identify proteins that could be utilized for an effective diagnosis of this highly heterogeneous disease and as targets for therapeutic approaches. To this end, 16 pairs of postoperative
[...] Read more.
In this study, protein profiling was performed on gastric cancer tissue samples in order to identify proteins that could be utilized for an effective diagnosis of this highly heterogeneous disease and as targets for therapeutic approaches. To this end, 16 pairs of postoperative gastric adenocarcinomas and adjacent non-cancerous control tissues were analyzed on microarrays that contain 813 antibodies targeting 724 proteins. Only 17 proteins were found to be differentially regulated, with much fewer molecules than the numbers usually identified in studies comparing tumor to healthy control tissues. Insulin-like growth factor-binding protein 7 (IGFBP7), S100 calcium binding protein A9 (S100A9), interleukin-10 (IL‐10) and mucin 6 (MUC6) exhibited the most profound variations. For an evaluation of the proteins’ capacity for discriminating gastric cancer, a Receiver Operating Characteristic curve analysis was performed, yielding an accuracy (area under the curve) value of 89.2% for distinguishing tumor from non-tumorous tissue. For confirmation, immunohistological analyses were done on tissue slices prepared from another cohort of patients with gastric cancer. The utility of the 17 marker proteins, and particularly the four molecules with the highest specificity for gastric adenocarcinoma, is discussed for them to act as candidates for diagnosis, even in serum, and targets for therapeutic approaches. Full article
Figures

Open AccessArticle
MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature
Microarrays 2016, 5(3), 18; doi:10.3390/microarrays5030018 -
Abstract
Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA
[...] Read more.
Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. Full article
Figures

Open AccessArticle
SNPConvert: SNP Array Standardization and Integration in Livestock Species
Microarrays 2016, 5(2), 17; doi:10.3390/microarrays5020017 -
Abstract
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each
[...] Read more.
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git. Full article
Figures

Open AccessFeature PaperArticle
Enhancing Interpretability of Gene Signatures with Prior Biological Knowledge
Microarrays 2016, 5(2), 15; doi:10.3390/microarrays5020015 -
Abstract
Biological interpretability is a key requirement for the output of microarray data analysis pipelines. The most used pipeline first identifies a gene signature from the acquired measurements and then uses gene enrichment analysis as a tool for functionally characterizing the obtained results. Recently
[...] Read more.
Biological interpretability is a key requirement for the output of microarray data analysis pipelines. The most used pipeline first identifies a gene signature from the acquired measurements and then uses gene enrichment analysis as a tool for functionally characterizing the obtained results. Recently Knowledge Driven Variable Selection (KDVS), an alternative approach which performs both steps at the same time, has been proposed. In this paper, we assess the effectiveness of KDVS against standard approaches on a Parkinson’s Disease (PD) dataset. The presented quantitative analysis is made possible by the construction of a reference list of genes and gene groups associated to PD. Our work shows that KDVS is much more effective than the standard approach in enhancing the interpretability of the obtained results. Full article
Figures

Open AccessFeature PaperArticle
Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays
Microarrays 2016, 5(2), 16; doi:10.3390/microarrays5020016 -
Abstract
Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the
[...] Read more.
Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. Full article
Figures

Open AccessArticle
Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays
Microarrays 2016, 5(2), 14; doi:10.3390/microarrays5020014 -
Abstract
Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued
[...] Read more.
Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP) vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells), coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001) might be important in immunotherapeutic interventions and HIV vaccine development. Full article
Open AccessArticle
Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks
Microarrays 2016, 5(2), 13; doi:10.3390/microarrays5020013 -
Abstract
Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer
[...] Read more.
Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B), which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB) showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis. Full article
Figures

Open AccessReview
Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing
Microarrays 2016, 5(2), 12; doi:10.3390/microarrays5020012 -
Abstract
As recognised by the National Institutes of Health (NIH) Precision Medicine Initiative (PMI), microarray technology currently provides a rapid, inexpensive means of identifying large numbers of known genomic variants or gene transcripts in experimental and clinical settings. However new generation sequencing techniques are
[...] Read more.
As recognised by the National Institutes of Health (NIH) Precision Medicine Initiative (PMI), microarray technology currently provides a rapid, inexpensive means of identifying large numbers of known genomic variants or gene transcripts in experimental and clinical settings. However new generation sequencing techniques are now being introduced in many clinical genetic contexts, particularly where novel mutations are involved. While these methods can be valuable for screening a restricted set of genes for known or novel mutations, implementation of whole genome sequencing in clinical practice continues to present challenges. Even very accurate high-throughput methods with small error rates can generate large numbers of false negative or false positive errors due to the high numbers of simultaneous readings. Additional validation is likely to be required for safe use of any such methods in clinical settings. Custom-designed arrays can offer advantages for screening for common, known mutations and, in this context, may currently be better suited for accredited, quality-controlled clinical genetic screening services, as illustrated by their successful application in several large-scale pre-emptive pharmacogenomics programs now underway. Excessive, inappropriate use of next-generation sequencing may waste scarce research funds and other resources. Microarrays presently remain the technology of choice in applications that require fast, cost-effective genome-wide screening of variants of known importance, particularly for large sample sizes. This commentary considers some of the applications where microarrays continue to offer advantages over next-generation sequencing technologies. Full article
Open AccessReview
Living Cell Microarrays: An Overview of Concepts
Microarrays 2016, 5(2), 11; doi:10.3390/microarrays5020011 -
Abstract
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of
[...] Read more.
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. Full article
Figures

Open AccessArticle
Stromal Activation by Tumor Cells: An in Vitro Study in Breast Cancer
Microarrays 2016, 5(2), 10; doi:10.3390/microarrays5020010 -
Abstract
Background: The tumor microenvironment participates in the regulation of tumor progression and influences treatment sensitivity. In breast cancer, it also may play a role in determining the fate of non-invasive lesions such as ductal carcinoma in situ (DCIS), a non-obligate precursor of invasive
[...] Read more.
Background: The tumor microenvironment participates in the regulation of tumor progression and influences treatment sensitivity. In breast cancer, it also may play a role in determining the fate of non-invasive lesions such as ductal carcinoma in situ (DCIS), a non-obligate precursor of invasive diseases, which is aggressively treated despite its indolent nature in many patients since no biomarkers are available to predict the progression of DCIS to invasive disease. In vitro models of stromal activation by breast tumor cells might provide clues as to specific stromal genes crucial for the transition from DCIS to invasive disease. Methods: normal human dermal fibroblasts (NHDF) were treated under serum-free conditions with cell culture media conditioned by breast cancer cell lines (SkBr3, MDA-MB-468, T47D) for 72 h and subjected to gene expression profiling with Illumina platform. Results: TGM2, coding for a tissue transglutaminase, was identified as candidate gene for stromal activation. In public transcriptomic datasets of invasive breast tumors TGM2 expression proved to provide prognostic information. Conversely, its role as an early biosensor of tumor invasiveness needs to be further investigated by in situ analyses. Conclusion: Stromal TGM2 might probably be associated with precancerous evolution at earlier stages compared to DCIS. Full article
Figures

Open AccessReview
Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi
Microarrays 2016, 5(2), 9; doi:10.3390/microarrays5020009 -
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the
[...] Read more.
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. Full article
Open AccessArticle
Time-Resolved Study of Nanoparticle Induced Apoptosis Using Microfabricated Single Cell Arrays
Microarrays 2016, 5(2), 8; doi:10.3390/microarrays5020008 -
Abstract
Cell fate decisions like apoptosis are heterogeneously implemented within a cell population and, consequently, the population response is recognized as sum of many individual dynamic events. Here, we report on the use of micro-patterned single-cell arrays for real-time tracking of nanoparticle-induced (NP) cell
[...] Read more.
Cell fate decisions like apoptosis are heterogeneously implemented within a cell population and, consequently, the population response is recognized as sum of many individual dynamic events. Here, we report on the use of micro-patterned single-cell arrays for real-time tracking of nanoparticle-induced (NP) cell death in sets of thousands of cells in parallel. Annexin (pSIVA) and propidium iodide (PI), two fluorescent indicators of apoptosis, are simultaneously monitored after exposure to functionalized polystyrene (PSNH2) nanobeads as a model system. We find that the distribution of Annexin onset times shifts to later times and broadens as a function of decreasing NP dose. We discuss the mean time-to-death as a function of dose, and show how the EC50 value depends both on dose and time of measurement. In addition, the correlations between the early and late apoptotic markers indicate a systematic shift from apoptotic towards necrotic cell death during the course of the experiment. Thus, our work demonstrates the potential of array-based single cell cytometry for kinetic analysis of signaling cascades in a high-throughput format. Full article