Open AccessArticle
Leaching Kinetics of Hemimorphite in Ammonium Chloride Solution
Metals 2017, 7(7), 237; doi:10.3390/met7070237 (registering DOI) -
Abstract
The leaching kinetics of hemimorphite (Zn4Si2O7(OH)2·H2O) in ammonium chloride solution was presented in detail. Effects of stirring speed (150–350 rpm), leaching temperature (75–108 °C), particle size of hemimorphite (45–150 μm), and the concentration
[...] Read more.
The leaching kinetics of hemimorphite (Zn4Si2O7(OH)2·H2O) in ammonium chloride solution was presented in detail. Effects of stirring speed (150–350 rpm), leaching temperature (75–108 °C), particle size of hemimorphite (45–150 μm), and the concentration of ammonium chloride (3.5–5.5 mol/L) on the zinc extraction rate were studied. The zinc extraction rate enhanced slightly with the increase in stirring speed, but increased significantly with an increase in the leaching temperature and ammonium chloride concentration. Zinc extraction was enhanced significantly in the first 60 min with decreasing particle size, but had little effect on the leaching process after 60 min. Scanning electron microscopy (SEM) analysis showed that some silica gel formed in the leaching process was not separated from the hemimorphite surface, but covered some of the active particle surface. The Elovich equation successfully described the leaching kinetics of hemimorphite in ammonium chloride solution with an apparent activation energy of 405.14 kJ/mol at temperatures of 75–90 °C and 239.61 kJ/mol at temperatures of 95–108 °C, which is characteristic for a chemically-controlled process. Silica gel is generated at temperatures of 75–90 °C and decomposed into silica at temperatures of 95–108 °C. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Effect of Ausforming Temperature on the Microstructure of G91 Steel
Metals 2017, 7(7), 236; doi:10.3390/met7070236 (registering DOI) -
Abstract
The development of thermomechanical treatments (TMT) has a high potential for improving creep-strength in 9Cr-1Mo ferritic/martensitic steel (ASTM T/P91) to operate at temperatures beyond 600 °C. To maximize the number of nanoscale MX precipitates, an ausforming procedure has been used to increase the
[...] Read more.
The development of thermomechanical treatments (TMT) has a high potential for improving creep-strength in 9Cr-1Mo ferritic/martensitic steel (ASTM T/P91) to operate at temperatures beyond 600 °C. To maximize the number of nanoscale MX precipitates, an ausforming procedure has been used to increase the number of nucleation sites for precipitation inside the martensite lath. Relative to standard heat treatments (consisting of austenitization at about 1040 °C followed by tempering at about 730 °C) this processing concept has enabled achieving a microstructure containing approximately three orders of magnitude higher number density of MX precipitates having a size around four times smaller in ASTM T/P91 steel. On the other hand; this TMT has little effect on the size and number density of M23C6 particles. The optimized microstructure produced by this TMT route proposed is expected to improve the creep strength of this steel. Full article
Figures

Figure 1

Open AccessArticle
Secondary Solidification Behavior of A356 Aluminum Alloy Prepared by the Self-Inoculation Method
Metals 2017, 7(7), 233; doi:10.3390/met7070233 -
Abstract
Semisolid slurry of A356 aluminum alloy was prepared by Self-Inoculation Method, and the secondary solidification behavior during rheo-diecasting forming process was researched. The results indicate that the component with non-dendritic and uniformly distributed microstructures can be produced by Rheo-Diecasting (RDC) process (combining Self-inoculation
[...] Read more.
Semisolid slurry of A356 aluminum alloy was prepared by Self-Inoculation Method, and the secondary solidification behavior during rheo-diecasting forming process was researched. The results indicate that the component with non-dendritic and uniformly distributed microstructures can be produced by Rheo-Diecasting (RDC) process (combining Self-inoculation Method (SIM) with High Pressure Die Casting (HPDC)). The isothermal holding time of the slurry has large effect on primary particles, but has little effect on secondary particles. Growth rate of the primary particles in the isothermal holding process conforms to the dynamic equation of Dt3− D03= Kt. The suitable holding time for rheo-diecasting of A356 aluminum alloy is 3 min. During filling process, the nucleation occurs throughout the entire remaining liquid, and nuclei grow stably into globular particles with the limited grain size of 6.5μm firstly, then both α1 and α2 particles appear unstable growth phenomenon due to the existence of constitutional undercooling. The average particle sizes and shape factors of both α1 and α2 are decreasing with the increase of filling distance due to different cooling rate in different positions. The growth rate of the eutectic in RDC is 4 times faster than HPDC, which is mainly due to the limitation of α2 particles in RDC process. The average eutectic spacings are decreasing with the increase of filling distance. Full article
Figures

Open AccessFeature PaperArticle
The Nitrocarburising Response of Low Temperature Bainite Steel
Metals 2017, 7(7), 234; doi:10.3390/met7070234 -
Abstract
The nitrocarburising response of low transformation temperature ultrafine and nanoscale bainitic steel was investigated and compared with martensite and pearlite from the same steel composition. It was found that the retained austenite content of the bainitic steel dictated the core hardness after nitrocarburising.
[...] Read more.
The nitrocarburising response of low transformation temperature ultrafine and nanoscale bainitic steel was investigated and compared with martensite and pearlite from the same steel composition. It was found that the retained austenite content of the bainitic steel dictated the core hardness after nitrocarburising. The refined bainitic structure showed improvements in the nitriding depth and hardness of the nitrocarburised layer, compared to coarser grained martensitic and pearlitic structures, possibly due to the fine structure and the distribution of nitride forming elements. Full article
Figures

Figure 1

Open AccessArticle
Design of U-Geometry Parameters Using Statistical Analysis Techniques in the U-Bending Process
Metals 2017, 7(7), 235; doi:10.3390/met7070235 -
Abstract
The various U-geometry parameters in the U-bending process result in processing difficulties in the control of the spring-back characteristic. In this study, the effects of U-geometry parameters, including channel width, bend angle, material thickness, tool radius, as well as workpiece length, and their
[...] Read more.
The various U-geometry parameters in the U-bending process result in processing difficulties in the control of the spring-back characteristic. In this study, the effects of U-geometry parameters, including channel width, bend angle, material thickness, tool radius, as well as workpiece length, and their design, were investigated using a combination of finite element method (FEM) simulation, and statistical analysis techniques. Based on stress distribution analyses, the FEM simulation results clearly identified the different bending mechanisms and effects of U-geometry parameters on the spring-back characteristic in the U-bending process, with and without pressure pads. The statistical analyses elucidated that the bend angle and channel width have a major influence in cases with and without pressure pads, respectively. The experiments were carried out to validate the FEM simulation results. Additionally, the FEM simulation results were in agreement with the experimental results, in terms of the bending forces and bending angles. Full article
Open AccessArticle
Electrochemical Behaviour of PACVD TiN-Coated CoCrMo Medical Alloy
Metals 2017, 7(7), 231; doi:10.3390/met7070231 -
Abstract
CoCrMo alloys have been used in hip replacements for many years, and their properties can be enhanced with hard coatings. The TiN layer can be deposited on a CoCrMo alloy to its improve corrosion properties, such as reduction of the release of potentially
[...] Read more.
CoCrMo alloys have been used in hip replacements for many years, and their properties can be enhanced with hard coatings. The TiN layer can be deposited on a CoCrMo alloy to its improve corrosion properties, such as reduction of the release of potentially harmful metal ions from CoCrMo-based surgical implants. In this work, a medical grade CoCrMo alloy was coated with TiN by means of plasma-assisted chemical deposition from the vapor phase (PACVD) technique at 500 °C for 4.5 h. The TiN/substrate interface and thickness of the TiN layer were analysed by scanning electron microscopy (SEM). Corrosion parameters Ecor, Rp, and Icor were determined via direct current (DC) and alternating current (AC) electrochemical techniques. The SEM analysis showed a highly dense and quite uniform TiN layer, with a thickness of 2 µm. The results obtained by the DC electrochemical methods show better corrosion stability of the TiN/CoCrMo samples in comparison with CoCrMo in 0.9% NaCl at (25 ± 1) °C and (36 ± 1) °C. The electrochemical impedance spectroscopy (EIS) results show that there are nuclei on the TiN coating which reduce the corrosion stability. Full article
Figures

Figure 1

Open AccessArticle
A New Recycling Process for Tungsten Carbide Soft Scrap That Employs a Mechanochemical Reaction with Sodium Hydroxide
Metals 2017, 7(7), 230; doi:10.3390/met7070230 -
Abstract
WC soft scrap, including Co used as a binder, thermally oxidized at 600 °C, was subjected to grinding with NaOH in a mechanochemical reaction, followed by water leaching to establish an effective recycling process. Na2WO4 was synthesized through a mechanochemical
[...] Read more.
WC soft scrap, including Co used as a binder, thermally oxidized at 600 °C, was subjected to grinding with NaOH in a mechanochemical reaction, followed by water leaching to establish an effective recycling process. Na2WO4 was synthesized through a mechanochemical (MC) reaction with oxidized scrap, and Na2CO3 was formed when the mixing ratio of NaOH increased. These as-synthesized compounds were water-soluble. When the weight ratio of soft scrap to NaOH was 1:0.5, 99.2% W was extracted by water leaching, while the extraction yield of Co was limited to 3.57% under the same conditions. Full article
Figures

Figure 1

Open AccessArticle
Effects of Q&P Processing Conditions on Austenite Carbon Enrichment Studied by In Situ High-Energy X-ray Diffraction Experiments
Metals 2017, 7(7), 232; doi:10.3390/met7070232 -
Abstract
We report the first ultra-fast time-resolved quantitative information on the quenching and partitioning process of conventional high-strength steel by an in situ high-energy X-ray diffraction (HEXRD) experiment. The time and temperature evolutions of phase fractions, their carbon content, and internal stresses were determined
[...] Read more.
We report the first ultra-fast time-resolved quantitative information on the quenching and partitioning process of conventional high-strength steel by an in situ high-energy X-ray diffraction (HEXRD) experiment. The time and temperature evolutions of phase fractions, their carbon content, and internal stresses were determined and discussed for different process parameters. It is shown that the austenite-to-martensite transformation below the martensite start temperature Ms is followed by a stage of fast carbon enrichment in austenite during isothermal holding at both 400 and 450 °C. The analysis proposed supports the concurrent bainite transformation and carbon diffusion from martensite to austenite as the main mechanisms of this enrichment. Furthermore, we give evidence that high hydrostatic tensile stresses in austenite are produced during the final quenching, and must be taken into account for the estimation of the carbon content in austenite. Finally, a large amount of carbon is shown to be trapped in the microstructure. Full article
Figures

Open AccessArticle
Influence of Temperature-Dependent Properties of Aluminum Alloy on Evolution of Plastic Strain and Residual Stress during Quenching Process
Metals 2017, 7(6), 228; doi:10.3390/met7060228 -
Abstract
To lessen quenching residual stresses in aluminum alloy components, theory analysis, quenching experiments, and numerical simulation were applied to investigate the influence of temperature-dependent material properties on the evolution of plastic strain and stress in the forged 2A14 aluminum alloy components during quenching
[...] Read more.
To lessen quenching residual stresses in aluminum alloy components, theory analysis, quenching experiments, and numerical simulation were applied to investigate the influence of temperature-dependent material properties on the evolution of plastic strain and stress in the forged 2A14 aluminum alloy components during quenching process. The results show that the thermal expansion coefficients, yield strengths, and elastic moduli played key roles in determining the magnitude of plastic strains. To produce a certain plastic strain, the temperature difference increased with decreasing temperature. It means that the cooling rates at high temperatures play an important role in determining residual stresses. Only reducing the cooling rate at low temperatures does not reduce residual stresses. An optimized quenching process can minimize the residual stresses and guarantee superior mechanical properties. In the quenching process, the cooling rates were low at temperatures above 450 °C and were high at temperatures below 400 °C. Full article
Figures

Open AccessArticle
Influence of Thickness and Chemical Composition of Hot-Rolled Bands on the Final Microstructure and Magnetic Properties of Non-Oriented Electrical Steel Sheets Subjected to Two Different Decarburizing Atmospheres
Metals 2017, 7(6), 229; doi:10.3390/met7060229 -
Abstract
During electrical steel processing, there are usually small variations in both chemical composition and thickness in the hot-rolled material that may lead to different magnetic properties for the same steel grade. Therefore, it is of great importance to know the effects of such
[...] Read more.
During electrical steel processing, there are usually small variations in both chemical composition and thickness in the hot-rolled material that may lead to different magnetic properties for the same steel grade. Therefore, it is of great importance to know the effects of such variations on the final microstructure and magnetic properties of these steels. In the present investigation, samples of a specific grade of a commercial hot-rolled grain non-oriented (GNO) electrical steel were taken from different steel batches to investigate the effects of thickness and chemical composition (C, Sn, Mn and Ti) in the hot-rolled material on the final microstructure and magnetic properties (core losses and magnetic permeability) resulting from two different decarburizing annealing cycles. Hot-rolled samples were processed by cold rolling, intermediate annealing, temper-rolling and final decarburization annealing using the same processing parameters. The experimental results show that the minimum core losses and maximum magnetic permeability are obtained with the thinnest steel thickness and the largest grain size. Increasing Sb and Mn contents, and reducing the C and Ti concentrations also improve the magnetic behavior of these steels. It was also found the effect of grain size on the magnetic behavior is more significant than the one of crystallographic texture. Full article
Figures

Open AccessArticle
Effect of Al-5Ti-0.62C-0.2Ce Master Alloy on the Microstructure and Tensile Properties of Commercial Pure Al and Hypoeutectic Al-8Si Alloy
Metals 2017, 7(6), 227; doi:10.3390/met7060227 -
Abstract
Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions
[...] Read more.
Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions of Al-5Ti-0.62C-0.2Ce master alloy were investigated. The results show that the Al-5Ti-0.62C-0.2Ce alloy was composed of α-Al, granular TiC, lump-like TiAl3 and block-like Ti2Al20Ce. Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min) can significantly refine macro grains of commercial pure Al into tiny equiaxed grains. The Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 30 min) still has a good refinement effect. The tensile strength and elongation of commercial pure Al modified by the Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min) increased by roughly 19.26% and 61.83%, respectively. Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min) can significantly refine both α-Al grains and eutectic Si of hypoeutectic Al-8Si alloy. The dendritic α-Al grains were significantly refined to tiny equiaxed grains. The morphology of the eutectic Si crystals was significantly refined from coarse needle-shape or lath-shape to short rod-like or grain-like eutectic Si. The tensile strength and elongation of hypoeutectic Al-8Si alloy modified by the Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min) increased by roughly 20.53% and 50%, respectively. The change in mechanical properties corresponds to evolution of the microstructure. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite
Metals 2017, 7(6), 225; doi:10.3390/met7060225 -
Abstract
The heavy metals, such as Pb(II) and radioisotope Cr(III), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is of the utmost importance
[...] Read more.
The heavy metals, such as Pb(II) and radioisotope Cr(III), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is of the utmost importance to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, the reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite has been prepared and was utilized for the removal of Pb(II) and Cr(III) from aqueous solutions. The prepared rGONF has been confirmed by X-ray photoelectron (XPS) and Raman spectroscopy. The surface characteristics of rGONF were measured by scanning electron microscopy (SEM), High-Resolution Transmission Electron Microscope (HR-TEM), and Brunauer-Emmett-Teller (BET) surface analysis. The average particle size of rGONF was found to be 32.0 ± 2.0 nm. The surface site density for the specific surface area (Ns) of rGONF was found to be 0.00238 mol·g−1, which was higher than that of the graphene oxide (GO) and NiFe2O4, which was expected. The prepared rGONF has been successfully applied for the removal of Pb(II) and Cr(III) by batch mode. The batch adsorption studies concluded that the adsorption of Pb(II) and Cr(III) onto rGONF was rapid and the adsorption percentage was more than 99% for both metal ions. The adsorption isotherm results found that the adsorptive removal of both metal ions onto rGONF occurred through monolayer adsorption on a homogeneous surface of rGONF. The pH-edge adsorption results suggest the adsorption occurs through an inner-sphere surface complex, which is proved by 2-pKa-diffusion model fitting, where the pH-edge adsorption data was well fitted. The adsorption of metal ions increased with increasing temperature. The overall obtained results demonstrated that the rGONF was an effective adsorbent for Pb(II) and Cr(III) removal from wastewater. Full article
Figures

Open AccessArticle
High Temperature Oxidation and Wear Behaviors of Ti–V–Cr Fireproof Titanium Alloy
Metals 2017, 7(6), 226; doi:10.3390/met7060226 -
Abstract
The high temperature oxidation and wear behaviors of Ti–35V–15Cr–0.3Si–0.1C fireproof titanium alloy were examined at 873 and 1073 K. The oxidation weight gain after oxidation at 1073 K for 100 h was significantly larger than that at 873 K. Based on the analyses
[...] Read more.
The high temperature oxidation and wear behaviors of Ti–35V–15Cr–0.3Si–0.1C fireproof titanium alloy were examined at 873 and 1073 K. The oxidation weight gain after oxidation at 1073 K for 100 h was significantly larger than that at 873 K. Based on the analyses of the oxidation reaction index and oxide layer, the oxidation process at 1073 K was mainly controlled by oxidation reaction at the interface between the substrate and oxide layer. Dry sliding wear tests were performed on a pin-on-disk tester in air conditions. The friction coefficient was smaller at 1073 K than that at 873 K, while the volume wear rate at 1073 K was larger due to formation of amount of oxides on the worn surface. When the wearing temperature increased from 873 to 1073 K, the wear mechanism underwent a transition from a combination of abrasive wear and oxidative wear to only oxidative wear. Full article
Figures

Open AccessArticle
Thermal Model of Rotary Friction Welding for Similar and Dissimilar Metals
Metals 2017, 7(6), 224; doi:10.3390/met7060224 -
Abstract
Friction welding is one of the foremost welding processes for similar and dissimilar metals. Previously, the process has been modeled utilizing the rudimentary techniques of constant friction and slip-stick friction. The motivation behind this article is to present a new characteristic for temperature
[...] Read more.
Friction welding is one of the foremost welding processes for similar and dissimilar metals. Previously, the process has been modeled utilizing the rudimentary techniques of constant friction and slip-stick friction. The motivation behind this article is to present a new characteristic for temperature profile estimation in modeling of the rotary friction welding process. For the first time, a unified model has been exhibited, with an implementation of the phase transformation of similar and dissimilar materials. The model was generated on COMSOL Multiphysics® and thermal and structural modules were used to plot the temperature curve. The curve for the welding of dissimilar metals using the model was generated, compared and analyzed with that of practical curves already acquired through experimentation available in the literature, and then the effect of varying the parameters on the welding of similar metals was also studied. Full article
Figures

Open AccessArticle
The Effect of Niobium on the Changing Behavior of Non-Metallic Inclusions in Solid Alloys Deoxidized with Mn and Si during Heat Treatment at 1473 K
Metals 2017, 7(6), 223; doi:10.3390/met7060223 -
Abstract
To clarify the effect of niobium (Nb) on the changing behavior of oxide inclusions in alloys containing different concentrations of Mn, Si, and Nb, heat treatment experiments at 1473 K were conducted and changes in the morphology, size, quantity, and composition of these
[...] Read more.
To clarify the effect of niobium (Nb) on the changing behavior of oxide inclusions in alloys containing different concentrations of Mn, Si, and Nb, heat treatment experiments at 1473 K were conducted and changes in the morphology, size, quantity, and composition of these inclusions were investigated. The stability of the oxide inclusions in both molten and solid Fe-Mn-Si-Nb alloys was also estimated by thermodynamic calculation using available data. Results showed that the change in the composition of the oxide inclusions owing to heat treatment depended on the concentrations of Nb and Si in the alloy. MnO-SiO2-type oxide inclusions gradually transformed into MnO-Nb2O5-type or MnO-SiO2- & MnO-Nb2O5-type inclusions in low-Si and high-Nb alloys after heating for 60 min. However, the shape of the inclusions did not change clearly. It was indicated that, during the heat treatment at 1473 K, an interface chemical reaction between the Fe-Mn-Si-Nb alloys and the MnO-SiO2-type oxide inclusions occurred according to the experimental and calculation results. Full article
Figures

Figure 1

Open AccessReview
A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution
Metals 2017, 7(6), 222; doi:10.3390/met7060222 -
Abstract
Thiosulfate leaching is a promising alternative to cyanidation, and the main hindrances for its wide commercial application are the high thiosulfate consumption and the difficult recovery of dissolved gold. In this review, the four solutions to reduce the consumption of thiosulfate, including the
[...] Read more.
Thiosulfate leaching is a promising alternative to cyanidation, and the main hindrances for its wide commercial application are the high thiosulfate consumption and the difficult recovery of dissolved gold. In this review, the four solutions to reduce the consumption of thiosulfate, including the control of reaction conditions, the use of additives, the generation of thiosulfate in situ, and the replacement of traditional cupric-ammonia catalysis, are introduced and evaluated after the presentation of background knowledge about thiosulfate consumption. The replacement of cupric-ammonia catalysis with other metals, such as nickel- and cobalt-based catalysts, is proposed. The reason is that it not only reduces thiosulfate consumption observably via decreasing the redox potential of leach solution significantly but also is beneficial to gold recovery mainly owing to eliminating the interference of cuprous thiosulfate [Cu(S2O3)3]5−. Based on the comparative analysis for five common recovery techniques of rare-noble metals from pregnant leach solution, ion-exchange resin adsorption is considered to be the most appropriate to recover aurothiosulfate [Au(S2O3)2]3− because the resin can be employed in the form of resin-in-leach/pulp and, furthermore, is able to be eluted and regenerated simultaneously at ambient temperature. At last, how to reduce the process cost of the resin adsorption technique is discussed. In order to simplify the complex two-stage elution process for loaded resins, the traditional catalysis is suggested to be replaced. Full article
Figures

Figure 1

Open AccessArticle
Robotic Nd:YAG Fiber Laser Welding of Ti-6Al-4V Alloy
Metals 2017, 7(6), 221; doi:10.3390/met7060221 -
Abstract
In the present study, Ti6Al4V titanium alloy plates were joined using a robotic fiber laser welding method. The laser welding process was carried out at two different welding speeds. Effects of different heat input conditions on the microstructure and mechanical properties of robotic
[...] Read more.
In the present study, Ti6Al4V titanium alloy plates were joined using a robotic fiber laser welding method. The laser welding process was carried out at two different welding speeds. Effects of different heat input conditions on the microstructure and mechanical properties of robotic fiber laser welded joints were investigated. Some grain coarsening was observed in the microstructure of weld metal in samples joined using high heat input, compared to those using low heat input, and volume rates of primary α structures increased in the weld metal. The microstructure of weld metal in samples joined using low heat input was made of basket-weave or acicular α' grains and primary β grains in grain boundaries. Tensile and yield strength of samples joined using low heat input were higher than for those joined using high heat input, but their ductility was lower. Full article
Figures

Figure 1

Open AccessArticle
Effect of the Temperature in the Mechanical Properties of Austenite, Ferrite and Sigma Phases of Duplex Stainless Steels Using Hardness, Microhardness and Nanoindentation Techniques
Metals 2017, 7(6), 219; doi:10.3390/met7060219 -
Abstract
The aim of this work is to study the hardness of the ferrite, austenite and sigma phases of a UNS S32760 superduplex stainless steel submitted to different thermal treatments, thus leading to different percentages of the mentioned phases. A comparative study has been
[...] Read more.
The aim of this work is to study the hardness of the ferrite, austenite and sigma phases of a UNS S32760 superduplex stainless steel submitted to different thermal treatments, thus leading to different percentages of the mentioned phases. A comparative study has been performed in order to evaluate the resulting mechanical properties of these phases by using hardness, microhardness and nanoindentation techniques. In addition, optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been also used to identify their presence and distribution. Finally, the experimental results have shown that the resulting hardness values were increased as a function of a longer heat treatment duration which it is associated to the formation of a higher percentage of the sigma phase. However, nanoindentation hardness measurements of this sigma phase showed lower values than expected, being a combination of two main factors, namely the complexity of the sigma phase structure as well as the surface finish (roughness). Full article
Figures

Figure 1

Open AccessArticle
TiO2 Nanotubes on Ti Dental Implant. Part 2: EIS Characterization in Hank’s Solution
Metals 2017, 7(6), 220; doi:10.3390/met7060220 -
Abstract
Titania nanotubes are widely studied for their potential applications in several fields. In this paper, the electrochemical characterization of a dental implant, made of commercially pure titanium grade 2, covered by titania nanotubes, when immersed in Hank’s solution, is proposed. Few papers were
[...] Read more.
Titania nanotubes are widely studied for their potential applications in several fields. In this paper, the electrochemical characterization of a dental implant, made of commercially pure titanium grade 2, covered by titania nanotubes, when immersed in Hank’s solution, is proposed. Few papers were found in the scientific literature regarding this topic, so a brief review is reported, concerning the use of some equivalent circuits to model experimental data. The analysis of results, obtained by using Electrochemical Impedance Spectroscopy, showed that: (i) a good correlation exists between the variation of Ecorr and the estimated values of the charge transfer resistance for both the bare- and the nanotube-covered samples, (ii) the nanostructured surface seems to possess a more active behaviour, while the effect could be over-estimated due to the real extent of the surface covered by nanotubes, (iii) the analysis of the “n” parameter, used to fit the experimental data, confirms the complex nature of nanostructured layer as well as that the nanotubes are partially filled by compounds containing Ca, P and Mg, when immersed in Hank’s solution. The results obtained in this work give a better understanding of the electrochemical behaviour of the nanotubes layer when immersed in Hank’s solution and could help to design a surface able to improve the implant osseointegration. Full article
Figures

Figure 1

Open AccessArticle
The Role of Mechanical Connection during Friction Stir Keyholeless Spot Welding Joints of Dissimilar Materials
Metals 2017, 7(6), 217; doi:10.3390/met7060217 -
Abstract
Contrast experiments of lap joints among dissimilar AZ31B Mg alloy, Mg99.50, zinc-coated DP600 sheet, and non-zinc-coated DP600 sheet were made by friction stir keyholeless spot welding (FSKSW) and vacuum diffusion welding (VDW), respectively. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) were
[...] Read more.
Contrast experiments of lap joints among dissimilar AZ31B Mg alloy, Mg99.50, zinc-coated DP600 sheet, and non-zinc-coated DP600 sheet were made by friction stir keyholeless spot welding (FSKSW) and vacuum diffusion welding (VDW), respectively. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) were used to investigate the microstructures and components of the joints welded. The experimental results show that the FSKSW bonding method is a kind of compound mode that contains a mechanical connection and element diffusion fusion connection, in which mechanical connection has the main decisive function on joints of Mg/steel. Elements diffusion exists in the interfacial region of the joints and the elements diffusion extent is basically the same to that of VDW. The elements’ diffusion in Mg/steel using FSKSW is defined in the reaction between small amounts elements of the base metal and zinc-coated metals. The intermetallic compounds and composite oxide perform some reinforcement on the mechanical connection strength. Full article
Figures

Figure 1