**Abstract: **We propose a simple model with two infective classes in order to model the cholera epidemic in Haiti. We include the impact of environmental events (rainfall, temperature and tidal range) on the epidemic in the Artibonite and Ouest regions by introducing terms in the transmission rate that vary with environmental conditions. We fit the model on weekly data from the beginning of the epidemic until December 2013, including the vaccination programs that were recently undertaken in the Ouest and Artibonite regions. We then modified these projections excluding vaccination to assess the programs’ effectiveness. Using real-time daily rainfall, we found lag times between precipitation events and new cases that range from 3:4 to 8:4 weeks in Artibonite and 5:1 to 7:4 in Ouest. In addition, it appears that, in the Ouest region, tidal influences play a significant role in the dynamics of the disease. Intervention efforts of all types have reduced case numbers in both regions; however, persistent outbreaks continue. In Ouest, where the population at risk seems particularly besieged and the overall population is larger, vaccination efforts seem to be taking hold more slowly than in Artibonite, where a smaller core population was vaccinated. The models including the vaccination programs predicted that a year and six months later, the mean number of cases in Artibonite would be reduced by about two thousand cases, and in Ouest by twenty four hundred cases below that predicted by the models without vaccination. We also found that vaccination is best when done in the early spring, and as early as possible in the epidemic. Comparing vaccination between the first spring and the second, there is a drop of about 40% in the case reduction due to the vaccine and about 10% per year after that.

**Abstract: **Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.

**Abstract: **We discuss a method of constructing solutions of the initial value problem for diffusion-type equations in terms of solutions of certain Riccati and Ermakov-type systems. A nonautonomous Burgers-type equation is also considered. Examples include, but are not limited to the Fokker-Planck equation in physics, the Black-Scholes equation and the Hull-White model in finance.

**Abstract: **In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

**Abstract: **A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined) is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.

**Abstract: **In this paper, we propose and justify the quadrature-differences method for the full linear singular integro-differential equations with the Cauchy kernel on the interval (–1,1). We consider equations of zero, positive and negative indices. It is shown that the method converges to an exact solution, and the error estimation depends on the sharpness of derivative approximations and on the smoothness of the coefficients and the right-hand side of the equation.