**Abstract: **The aim of this note is to present the necessary optimality conditions for a model (in closed population) of an immunizing disease similar to hepatitis B following. We study the impact of medical tests and controls involved in curing this kind of immunizing disease and deduced a well posed adjoint system if there exists an optimal control.

**Abstract: **Using torus gauge fixing, Hahn in 2008 wrote down an expression for a Chern-Simons path integral to compute the Wilson Loop observable, using the Chern-Simons action \(S_{CS}^\kappa\), \(\kappa\) is some parameter. Instead of making sense of the path integral over the space of \(\mathfrak{g}\)-valued smooth 1-forms on \(S^2 \times S^1\), we use the Segal Bargmann transform to define the path integral over \(B_i\), the space of \(\mathfrak{g}\)-valued holomorphic functions over \(\mathbb{C}^2 \times \mathbb{C}^{i-1}\). This approach was first used by us in 2011. The main tool used is Abstract Wiener measure and applying analytic continuation to the Wiener integral. Using the above approach, we will show that the Chern-Simons path integral can be written as a linear functional defined on \(C(B_1^{\times^4} \times B_2^{\times^2}, \mathbb{C})\) and this linear functional is similar to the Chern-Simons linear functional defined by us in 2011, for the Chern-Simons path integral in the case of \(\mathbb{R}^3\). We will define the Wilson Loop observable using this linear functional and explicitly compute it, and the expression is dependent on the parameter \(\kappa\). The second half of the article concentrates on taking \(\kappa\) goes to infinity for the Wilson Loop observable, to obtain link invariants. As an application, we will compute the Wilson Loop observable in the case of \(SU(N)\) and \(SO(N)\). In these cases, the Wilson Loop observable reduces to a state model. We will show that the state models satisfy a Jones type skein relation in the case of \(SU(N)\) and a Conway type skein relation in the case of \(SO(N)\). By imposing quantization condition on the charge of the link \(L\), we will show that the state models are invariant under the Reidemeister Moves and hence the Wilson Loop observables indeed define a framed link invariant. This approach follows that used in an article written by us in 2012, for the case of \(\mathbb{R}^3\).

**Abstract: **A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (*n* — 1)-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.

**Abstract: **We develop isometry and inversion formulas for the Segal–Bargmann transform on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of odd-dimensional spheres.

**Abstract: **Phys and Math are two colleagues at the University of Saçenbon (Crefan Kingdom), dialoguing about the remarkable efficiency of mathematics for physics. They talk about the notches on the Ishango bone and the various uses of psi in maths and physics; they arrive at dessins d’enfants, moonshine concepts, Rademacher sums and their significance in the quantum world. You should not miss their eccentric proposal of relating Bell’s theorem to the Baby Monster group. Their hyperbolic polygons show a considerable singularity/cusp structure that our modern age of computers is able to capture. Henri Poincaré would have been happy to see it.

**Abstract: **Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.