**Abstract: **In his study of Nekrasov–Okounkov type formulas on “partition theoretic” expressions for families of infinite products, Han discovered seemingly unrelated *q*-series that are supported on precisely the same terms as these infinite products. In collaboration with Ono, Han proved one instance of this occurrence that exhibited a relation between the numbers *a(n)* that are given in terms of hook lengths of partitions, with the numbers *b(n)* that equal the number of 3-core partitions of *n*. Recently Han revisited the q-series with coefficients* a(n)* and *b(n)*, and numerically found a third *q*-series whose coefficients appear to be supported on the same terms. Here we prove Han’s conjecture about this third series by proving a general theorem about this phenomenon.

**Abstract: **We consider a weighted family of \(n\) generic parallelly translated hyperplanes in \(\mathbb{C}^k\) and describe the characteristic variety of the Gauss–Manin differential equations for associated hypergeometric integrals. The characteristic variety is given as the zero set of Laurent polynomials, whose coefficients are determined by weights and the Plücker coordinates of the associated point in the Grassmannian Gr\((k,n)\). The Laurent polynomials are in involution.

**Abstract: **A shape optimization method is used to study the exterior Bernoulli free boundaryproblem. We minimize the Kohn–Vogelius-type cost functional over a class of admissibledomains subject to two boundary value problems. The first-order shape derivative of the costfunctional is recalled and its second-order shape derivative for general domains is computedvia the boundary differentiation scheme. Additionally, the second-order shape derivative ofJ at the solution of the Bernoulli problem is computed using Tiihonen’s approach.

**Abstract: **Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.

**Abstract: **We propose a simple model with two infective classes in order to model the cholera epidemic in Haiti. We include the impact of environmental events (rainfall, temperature and tidal range) on the epidemic in the Artibonite and Ouest regions by introducing terms in the transmission rate that vary with environmental conditions. We fit the model on weekly data from the beginning of the epidemic until December 2013, including the vaccination programs that were recently undertaken in the Ouest and Artibonite regions. We then modified these projections excluding vaccination to assess the programs’ effectiveness. Using real-time daily rainfall, we found lag times between precipitation events and new cases that range from 3:4 to 8:4 weeks in Artibonite and 5:1 to 7:4 in Ouest. In addition, it appears that, in the Ouest region, tidal influences play a significant role in the dynamics of the disease. Intervention efforts of all types have reduced case numbers in both regions; however, persistent outbreaks continue. In Ouest, where the population at risk seems particularly besieged and the overall population is larger, vaccination efforts seem to be taking hold more slowly than in Artibonite, where a smaller core population was vaccinated. The models including the vaccination programs predicted that a year and six months later, the mean number of cases in Artibonite would be reduced by about two thousand cases, and in Ouest by twenty four hundred cases below that predicted by the models without vaccination. We also found that vaccination is best when done in the early spring, and as early as possible in the epidemic. Comparing vaccination between the first spring and the second, there is a drop of about 40% in the case reduction due to the vaccine and about 10% per year after that.

**Abstract: **Tree-like structures are ubiquitous in nature. In particular, neuronal axons and dendrites have tree-like geometries that mediate electrical signaling within and between cells. Electrical activity in neuronal trees is typically modeled using coupled cable equations on multi-compartment representations, where each compartment represents a small segment of the neuronal membrane. The geometry of each compartment is usually defined as a cylinder or, at best, a surface of revolution based on a linear approximation of the radial change in the neurite. The resulting geometry of the model neuron is coarse, with non-smooth or even discontinuous jumps at the boundaries between compartments. We propose a hyperbolic approximation to model the geometry of neurite compartments, a branched, multi-compartment extension, and a simple graphical approach to calculate steady-state solutions of an associated system of coupled cable equations. A simple case of transient solutions is also briefly discussed.