**Abstract: **It has been recently shown that measurement incompatibility and fine grained uncertainty—a particular form of preparation uncertainty relation—are deeply related to the nonlocal feature of quantum mechanics. In particular, the degree of measurement incompatibility in a no-signaling theory determines the bound on the violation of Bell-CHSH inequality, and a similar role is also played by (fine-grained) uncertainty along with steering, a subtle non-local phenomenon. We review these connections, along with comments on the difference in the roles played by measurement incompatibility and uncertainty. We also discuss why the toy model of Spekkens (Phys. Rev. A 75, 032110 (2007)) shows no nonlocal feature even though steering is present in this theory.

**Abstract: **The purpose of this paper is to present a new approach to study the existence of fixed points for multivalued *F*-contraction in the setting of modular metric spaces. In establishing this connection, we introduce the notion of multivalued *F*-contraction and prove corresponding fixed point theorems in complete modular metric space with some specific assumption on the modular. Then we apply our results to establish the existence of solutions for a certain type of non-linear integral equations.

**Abstract: **In this paper we find the Noether symmetries of the Lagrangian of cylindrically symmetric static spacetimes. Using this approach we recover all cylindrically symmetric static spacetimes appeared in the classification by isometries and homotheties. We give different classes of cylindrically symmetric static spacetimes along with the Noether symmetries of the corresponding Lagrangians and conservation laws.

**Abstract: **A smooth function of the second moments of N continuous variables gives rise to an uncertainty relation if it is bounded from below. We present a method to systematically derive such bounds by generalizing an approach applied previously to a single continuous variable. New uncertainty relations are obtained for multi-partite systems that allow one to distinguish entangled from separable states. We also investigate the geometry of the “uncertainty region” in the $N(2N+1)$ -dimensional space of moments. It is shown to be a convex set, and the points on its boundary are found to be in one-to-one correspondence with pure Gaussian states of minimal uncertainty. For a single degree of freedom, the boundary can be visualized as one sheet of a “Lorentz-invariant” hyperboloid in the three-dimensional space of second moments.

**Abstract: **We address the recently posed question as to whether the nonlocality of a single member of an entangled pair of spin $1/2$ particles can be shared among multiple observers on the other wing who act sequentially and independently of each other. We first show that the optimality condition for the trade-off between information gain and disturbance in the context of weak or non-ideal measurements emerges naturally when one employs a one-parameter class of positive operator valued measures (POVMs). Using this formalism we then prove analytically that it is impossible to obtain violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by more than two Bobs in one of the two wings using unbiased input settings with an Alice in the other wing.

**Abstract: **Coherence of a quantum state intrinsically depends on the choice of the reference basis. A natural question to ask is the following: if we use two or more incompatible reference bases, can there be some trade-off relation between the coherence measures in different reference bases? We show that the quantum coherence of a state as quantified by the relative entropy of coherence in two or more noncommuting reference bases respects uncertainty like relations for a given state of single and bipartite quantum systems. In the case of bipartite systems, we find that the presence of entanglement may tighten the above relation. Further, we find an upper bound on the sum of the relative entropies of coherence of bipartite quantum states in two noncommuting reference bases. Moreover, we provide an upper bound on the absolute value of the difference of the relative entropies of coherence calculated with respect to two incompatible bases.