**Abstract: **The multiple zeta values (MZVs) possess a rich algebraic structure of algebraic relations, which is conjecturally determined by two different (shuffle and stuffle) products of a certain algebra of noncommutative words. In a recent work, Bachmann constructed a* q*-analogue of the MZVs—the so-called bi-brackets—for which the two products are dual to each other, in a very natural way. We overview Bachmann’s construction and discuss the radial asymptotics of the bi-brackets, its links to the MZVs, and related linear (in)dependence questions of the *q*-analogue.

**Abstract: **We investigate the process of quantum measurements on scattered probes. Before scattering, the probes are independent, but they become entangled afterwards, due to the interaction with the scatterer. The collection of measurement results (the history) is a stochastic process of dependent random variables. We link the asymptotic properties of this process to spectral characteristics of the dynamics. We show that the process has decaying time correlations and that a zero-one law holds. We deduce that if the incoming probes are not sharply localized with respect to the spectrum of the measurement operator, then the process does not converge. Nevertheless, the scattering modifies the measurement outcome frequencies, which are shown to be the average of the measurement projection operator, evolved for one interaction period, in an asymptotic state. We illustrate the results on a truncated Jaynes–Cummings model.

**Abstract: **We have developed a representation form for the linear fractional differential equation of order q when *0 < q < 1*, with variable coefficients. We have also obtained a closed form of the solution for sequential Caputo fractional differential equation of order *2q*, with initial and boundary conditions, for *0 < 2q < 1*. The solutions are in terms of Mittag–Leffler functions of order *q* only. Our results yield the known results of integer order when *q = 1*. We have also presented some numerical results to bring the salient features of sequential fractional differential equations.

**Abstract: **We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic spheres conjecture stating the existence of the bijective correspondence between based harmonic spheres in the loop space \(\Omega G\) of a compact Lie group \(G\) and the moduli space of Yang–Mills \(G\)-fields on \(\mathbb R^4\).

**Abstract: **The relation between analyticity in mathematics and the concept of a global information field in physics is reviewed. Mathematics is complete in the complex plane only. In the complex plane, a very powerful tool appears—analyticity. According to this property, if an analytic function is known on the countable set of points having an accumulation point, then it is known everywhere. This mysterious property has profound consequences in quantum physics. Analyticity allows one to obtain asymptotic (approximate) results in terms of some singular points in the complex plane which accumulate all necessary data on a given process. As an example, slow atomic collisions are presented, where the cross-sections of inelastic transitions are determined by branch-points of the adiabatic energy surface at a complex internuclear distance. Common aspects of the non-local nature of analyticity and a recently introduced interpretation of classical electrodynamics and quantum physics as theories of a global information field are discussed.

**Abstract: **Let \(\mathbb{N}_{0}\) be the set of all non-negative integers and \(\mathcal{P}(\mathbb{N}_{0})\) be its power set. Then, an integer additive set-indexer (IASI) of a given graph \(G\) is defined as an injective function \(f:V(G)\to \mathcal{P}(\mathbb{N}_{0})\) such that the induced edge-function \(f^+:E(G) \to\mathcal{P}(\mathbb{N}_{0})\) defined by \(f^+ (uv) = f(u)+ f(v)\) is also injective, where \(f(u)+f(v)\) is the sumset of \(f(u)\) and \(f(v)\). An IASI \(f\) of \(G\) is said to be a strong IASI of \(G\) if \(|f^+(uv)|=|f(u)|\,|f(v)|\) for all \(uv\in E(G)\). The nourishing number of a graph \(G\) is the minimum order of the maximal complete subgraph of \(G\) so that \(G\) admits a strong IASI. In this paper, we study the characteristics of certain graph classes and graph powers that admit strong integer additive set-indexers and determine their corresponding nourishing numbers.