Open AccessArticle
Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling
Mar. Drugs 2017, 15(3), 55; doi:10.3390/md15030055 (registering DOI) -
Abstract
Tuberatolide B (TTB, C27H34O4) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast,
[...] Read more.
Tuberatolide B (TTB, C27H34O4) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer. Full article
Figures

Figure 1

Open AccessArticle
Seasonal Changes in the Tetrodotoxin Content of the Flatworm Planocera multitentaculata
Mar. Drugs 2017, 15(3), 56; doi:10.3390/md15030056 (registering DOI) -
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that acts specifically on voltage-gated sodium channels on excitable membranes of muscle and nerve tissues. The biosynthetic process for TTX is unclear, although marine bacteria are generally thought to be the primary producers. The marine flatworm Planocera
[...] Read more.
Tetrodotoxin (TTX) is a potent neurotoxin that acts specifically on voltage-gated sodium channels on excitable membranes of muscle and nerve tissues. The biosynthetic process for TTX is unclear, although marine bacteria are generally thought to be the primary producers. The marine flatworm Planocera multitentaculata is a known TTX-bearing organism, and is suspected to be a TTX supplier to pufferfish. In this study, flatworm specimens were collected from an intertidal zone in Hayama, Kanagawa, Japan, the TTX content of the flatworm was measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and seasonal changes in TTX content were investigated. No significant difference in TTX concentration of the flatworm body was found between the spawning period and other periods. However, the TTX content in individual flatworms was significantly higher in the spawning period than at other times. The TTX content rose in association with an increase in the body weight of the flatworm. Full article
Figures

Figure 1

Open AccessReview
Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors
Mar. Drugs 2017, 15(3), 53; doi:10.3390/md15030053 -
Abstract
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors
[...] Read more.
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review. Full article
Figures

Figure 1

Open AccessArticle
Sterols from Thai Marine Sponge Petrosia (Strongylophora) sp. and Their Cytotoxicity
Mar. Drugs 2017, 15(3), 54; doi:10.3390/md15030054 -
Abstract
Eight new sterols (15 and 1113), together with eight known compounds (610 and 1416) were isolated from marine sponge Petrosia sp. The structures of these compounds were elucidated on the basis
[...] Read more.
Eight new sterols (15 and 1113), together with eight known compounds (610 and 1416) were isolated from marine sponge Petrosia sp. The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis. The cytotoxicity of some compounds against a panel of human cancer cell lines is also reported. Full article
Figures

Figure 1

Open AccessReview
Secondary Metabolites from Polar Organisms
Mar. Drugs 2017, 15(3), 28; doi:10.3390/md15030028 -
Abstract
Polar organisms have been found to develop unique defences against the extreme environment environment, leading to the biosynthesis of novel molecules with diverse bioactivities. This review covers the 219 novel natural products described since 2001, from the Arctic and the Antarctic microoganisms, lichen,
[...] Read more.
Polar organisms have been found to develop unique defences against the extreme environment environment, leading to the biosynthesis of novel molecules with diverse bioactivities. This review covers the 219 novel natural products described since 2001, from the Arctic and the Antarctic microoganisms, lichen, moss and marine faunas. The structures of the new compounds and details of the source organism, along with any relevant biological activities are presented. Where reported, synthetic and biosynthetic studies on the polar metabolites have also been included. Full article
Figures

Open AccessArticle
Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection
Mar. Drugs 2017, 15(2), 51; doi:10.3390/md15020051 -
Abstract
Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination
[...] Read more.
Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na+, NH4+, K+, Mg2+, Ca2+, and chloride, acetate and lactate anions was developed. Detection limits were 0.01–0.05 μM for cations and 0.5–0.6 μM for anions. The linear range was 0.001–0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate. Full article
Figures

Figure 1

Open AccessArticle
Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland
Mar. Drugs 2017, 15(2), 52; doi:10.3390/md15020052 -
Abstract
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to
[...] Read more.
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea (Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA) responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens. Full article
Figures

Open AccessArticle
Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell
Mar. Drugs 2017, 15(2), 49; doi:10.3390/md15020049 -
Abstract
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different
[...] Read more.
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds. Full article
Figures

Figure 1

Open AccessArticle
Influence of Chitosan Swelling Behaviour on Controlled Release of Tenofovir from Mucoadhesive Vaginal Systems for Prevention of Sexual Transmission of HIV
Mar. Drugs 2017, 15(2), 50; doi:10.3390/md15020050 -
Abstract
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining
[...] Read more.
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Vaginal mucoadhesive tablets can be developed by including natural polymers that have good binding capacity with mucosal tissues, such as chitosan or guar gum, semisynthetic polymers such as hydroxypropylmethyl cellulose, or synthetic polymers such as Eudragit® RS. This paper assesses the potential of chitosan for the development of sustained-release vaginal tablets of Tenofovir and compares it with different polymers. The parameters assessed were the permanence time of the bioadhesion—determined ex vivo using bovine vaginal mucosa as substrate—the drug release profiles from the formulation to the medium (simulated vaginal fluid), and swelling profiles in the same medium. Chitosan can be said to allow the manufacture of tablets that remain adhered to the vaginal mucosa and release the drug in a sustained way, with low toxicity and moderate swelling that ensures the comfort of the patient and may be useful for the prevention of sexual transmission of HIV. Full article
Figures

Figure 1

Open AccessArticle
Structural Determinant and Its Underlying Molecular Mechanism of STPC2 Related to Anti-Angiogenic Activity
Mar. Drugs 2017, 15(2), 48; doi:10.3390/md15020048 -
Abstract
In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product
[...] Read more.
In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product were subjected to evaluate their anti-angiogenic effects. In the tube formation assay, STPC2 showed dose-dependent inhibition. In addition, STPC2 could distinctly inhibit the permeation of HUVEC cells into the lower chamber. Moreover, a significant reduction of microvessel density was observed in chick chorioallantoic membrane assay treated with STPC2. Meanwhile, STPC2 was found to repress the VEGF-induced neovessel formation in the matrigel plug assay in vivo. However, STPC2-DeS failed to suppress the anti-angiogenic activity via these in vitro and in vivo strategies. In addition, we demonstrated that STPC2 could significantly downregulate the phosphorylation of VEGFR2 and its related downstream Src family kinase, focal adhesion kinase, and AKT kinase. Furthermore, surface plasmon resonance assay revealed that STPC2 bound strongly to VEGF to interfere with VEGF–VEGFR2 interaction. Taken together, these results evidently demonstrated that STPC2 exhibited a potent anti-angiogenic activity through binding to VEGF via sulfated groups to impede VEGF–VEGFR2 interaction, thus affected the downstream signaling molecules. Full article
Figures

Figure 1

Open AccessReview
Briarane Diterpenoids Isolated from Octocorals between 2014 and 2016
Mar. Drugs 2017, 15(2), 44; doi:10.3390/md15020044 -
Abstract
The structures, names, bioactivities, and references of 124 briarane-type natural products, including 66 new metabolites, isolated between 2014 and 2016 are summarized in this review article. All of the briarane diterpenoids mentioned in this review were isolated from octocorals, mainly from Briareum violacea
[...] Read more.
The structures, names, bioactivities, and references of 124 briarane-type natural products, including 66 new metabolites, isolated between 2014 and 2016 are summarized in this review article. All of the briarane diterpenoids mentioned in this review were isolated from octocorals, mainly from Briareum violacea, Dichotella gemmacea, Ellisella dollfusi, Junceella fragilis, Junceella gemmacea, and Pennatula aculeata. Some of these compounds exhibited potential biomedical activities, including anti-inflammatory activity, antibacterial activity, and cytotoxicity towards cancer cells. Full article
Figures

Figure 1

Open AccessArticle
Zosteropenillines: Polyketides from the MarineDerived Fungus Penicillium thomii
Mar. Drugs 2017, 15(2), 46; doi:10.3390/md15020046 -
Abstract
Twelve new polyketides, zosteropenillines A–L (1–12), together with known polyketide pallidopenilline A (13), were isolated from the ethylacetate extract of the fungus Penicillium thomii associated with the seagrass Zostera marina. Their structures were established based on spectroscopic methods. The absolute configuration of zosteropenilline
[...] Read more.
Twelve new polyketides, zosteropenillines A–L (1–12), together with known polyketide pallidopenilline A (13), were isolated from the ethylacetate extract of the fungus Penicillium thomii associated with the seagrass Zostera marina. Their structures were established based on spectroscopic methods. The absolute configuration of zosteropenilline A (1) as 4R, 5S, 8S, 9R, 10R, and 13S was determined by a combination of the modified Mosher’s method, X‐ray analysis, and NOESY data. Absolute configurations of zosteropenillines B–D (2–4) were determined by timedependent density functional theory (TD‐DFT) calculations of ECD spectra. The effect of compounds 1–3, 7, 8, 10, and 11 on the viability of human drug‐resistant prostate cancer cells PC3 as well as on autophagy in these cancer cells and inhibitory effects of compounds 1, 2, and 8–10 on NO production in LPS‐induced RAW 264.7 murine macrophages were examined. Full article
Figures

Open AccessArticle
Propylene Glycol Alginate Sodium Sulfate Alleviates  Cerulein‐Induced Acute Pancreatitis by Modulating  the MEK/ERK Pathway in Mice
Mar. Drugs 2017, 15(2), 45; doi:10.3390/md15020045 -
Abstract Previous studies have focused on the effects of propylene glycol alginate sodium sulfate  (PSS)  against  thrombosis,  but  the  anti‐inflammatory  potential  is  unknown.  Therefore,  we  specifically focused on the protective effects of PSS on cerulein‐induced acute pancreatitis (AP)  using a mouse model, and investigated the mechanism of PSS on autophagy and apoptosis via the  Mitogen‐activated  protein  kinase  (MEK)/extracellular  signal‐regulated  kinase  (ERK)  pathway.  Cerulein (100 ug/kg) was used to induce AP by ten intraperitoneal injections at hourly intervals in  Balb/C mice. Pretreatment with vehicle or PSS was carried out 1 h before the first cerulein injection  and two doses (25 mg/kg and 50 mg/kg) of PSS were injected intraperitoneally. The severity of AP was  assessed by pathological score, biochemistry, pro‐inflammatory cytokine levels, myeloperoxidase  (MPO) activity and MEK/ERK activity. Furthermore, pancreatic histological scores, serum amylase  and lipase activities, tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐1β interleukin (IL)‐6 levels, and  MPO activity were significantly reduced by PSS via up‐regulated MEK/ERK activity. The representative  molecules of apoptosis and autophagy, such as Bcl‐2, Bax, Lc‐3, Beclin‐1, P62, were remarkably reduced.  Taken together, these results indicate that PSS attenuates pancreas injury by inhibiting autophagy and  apoptosis through a mechanism involving the MEK/ERK signaling pathway. Full article
Figures

Figure 1

Open AccessArticle
Antibacterial Activities of Bacteria Isolated from the  Marine Sponges Isodictya compressa and Higginsia  bidentifera Collected from Algoa Bay, South Africa
Mar. Drugs 2017, 15(2), 47; doi:10.3390/md15020047 -
Abstract
Due to the rise in multi‐drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may
[...] Read more.
Due to the rise in multi‐drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge‐associated bacterial isolates were cultured and screened for antibacterial activity. Thirty‐five isolates showed antibacterial activity, twelve of which exhibited activity against the multi‐drug resistant Escherichia coli 1699, implying that some of the bioactive compounds could be novel. Genome sequencing of two of these isolates confirmed that they harbour uncharacterized biosynthetic pathways that may encode novel chemical structures. Full article
Figures

Figure 1

Open AccessArticle
Brevianamides and Mycophenolic Acid Derivatives from the Deep-Sea-Derived Fungus Penicillium brevicompactum DFFSCS025
Mar. Drugs 2017, 15(2), 43; doi:10.3390/md15020043 -
Abstract
Four new compounds (14), including two brevianamides and two mycochromenic acid derivatives along with six known compounds were isolated from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Their structures were elucidated by spectroscopic analysis. Moreover, the absolute configurations of 1
[...] Read more.
Four new compounds (14), including two brevianamides and two mycochromenic acid derivatives along with six known compounds were isolated from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Their structures were elucidated by spectroscopic analysis. Moreover, the absolute configurations of 1 and 2 were determined by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compound 9 showed moderate cytotoxicity against human colon cancer HCT116 cell line with IC50 value of 15.6 μM. In addition, 3 and 5 had significant antifouling activity against Bugula neritina larval settlement with EC50 values of 13.7 and 22.6 μM, respectively. The NMR data of 6, 8, and 9 were assigned for the first time. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review
Mar. Drugs 2017, 15(2), 42; doi:10.3390/md15020042 -
Abstract
Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery
[...] Read more.
Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed. Full article
Figures

Figure 1

Open AccessArticle
Short-Chain Chitin Oligomers: Promoters of Plant Growth
Mar. Drugs 2017, 15(2), 40; doi:10.3390/md15020040 -
Abstract
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed
[...] Read more.
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields. Full article
Figures

Open AccessArticle
The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH
Mar. Drugs 2017, 15(2), 41; doi:10.3390/md15020041 -
Abstract
Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit
[...] Read more.
Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM. Full article
Figures

Open AccessArticle
Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2+
Mar. Drugs 2017, 15(2), 29; doi:10.3390/md15020029 -
Abstract
Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated
[...] Read more.
Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC-Ni2+). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC50 of 0.116 mg·mL−1) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate. Full article
Figures

Figure 1

Open AccessArticle
Antitumor Effects of Laminaria Extract Fucoxanthin on Lung Cancer
Mar. Drugs 2017, 15(2), 39; doi:10.3390/md15020039 -
Abstract
Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor
[...] Read more.
Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor activities. Accumulating evidence suggests anti-proliferative effects of FX on many cancer cell lines including NSCLCs, but the detailed mechanisms remain unclear. In the present investigation, we confirmed molecular mechanisms and in vivo anti-lung cancer effect of FX at the first time. Flow cytometry, real-time PCR, western blotting and immunohistochemistry revealed that FX arrested cell cycle and induced apoptosis by modulating expression of p53, p21, Fas, PUMA, Bcl-2 and caspase-3/8. These results show that FX is a potent marine drug for human non-small-cell lung cancer treatment. Full article
Figures

Figure 1