Open AccessReview
The Insulation for Machines Having a High Lifespan Expectancy, Design, Tests and Acceptance Criteria Issues
Machines 2017, 5(1), 7; doi:10.3390/machines5010007 -
Abstract
The windings insulation of electrical machines will remain a topic that is updated frequently. The criteria severity requested by the electrical machine applications increases continuously. Manufacturers and designers are always confronted with new requirements or new criteria with enhanced performances. The most problematic
[...] Read more.
The windings insulation of electrical machines will remain a topic that is updated frequently. The criteria severity requested by the electrical machine applications increases continuously. Manufacturers and designers are always confronted with new requirements or new criteria with enhanced performances. The most problematic requirements that will be investigated here are the extremely long lifespan coupled to critical operating conditions (overload, supply grid instabilities, and critical operating environments). Increasing lifespan does not have a considerable benefit because the purchasing price of usual machines has to be compared to the purchasing price and maintenance price of long lifespan machines. A machine having a 40-year lifespan will cost more than twice the usual price of a 20-year lifetime machine. Systems which need a long lifetime are systems which are crucial for a country, and those for which outage costs are exorbitant. Nuclear power stations are such systems. It is certain that the used technologies have evolved since the first nuclear power plant, but they cannot evolve as quickly as in other sectors of activities. No-one wants to use an immature technology in such power plants. Even if the electrical machines have exceeded 100 years of age, their improvements are linked to a patient and continuous work. Nowadays, the windings insulation systems have a well-established structure, especially high voltage windings. Unfortunately, a high life span is not only linked to this result. Several manufacturers’ improvements induced by many years of experiment have led to the writing of standards that help the customers and the manufacturers to regularly enhance the insulation specifications or qualifications. Hence, in this publication, the authors will give a step by step exhaustive review of one insulation layout and will take time to give a detailed report on the standards that are linked to insulation systems. No standard can provide insurance about lifespan, nor do any insulation tests incorporate all of the operating conditions: thermal, mechanical, moisture and chemical. Even if one manufacturer uses the standards compliance to demonstrate the quality of its realization; in the end, the successful use in operation remains an objective test. Thereafter, both customer and manufacturers will use the standards while knowing that such documents cannot fully satisfy their wishes. In one 20-year historical review, the authors will highlight the duration in insulation improvements and small breakthroughs in standards writing. High lifespan machines are not the main interest of standards. A large part of this publication is dedicated to the improvements of the insulation wall to achieve the lifespan. Even if the choice of raw materials is fundamental, the understanding of ageing phenomena also leads to improvements. Full article
Figures

Figure 1

Open AccessArticle
Perception, Planning, Control, and Coordination for Autonomous Vehicles
Machines 2017, 5(1), 6; doi:10.3390/machines5010006 -
Abstract
Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic
[...] Read more.
Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic advances in recent years, due to the increases in available computing power and reduced cost in sensing and computing technologies, resulting in maturing technological readiness level of fully autonomous vehicles. The objective of this paper is to provide a general overview of the recent developments in the realm of autonomous vehicle software systems. Fundamental components of autonomous vehicle software are reviewed, and recent developments in each area are discussed. Full article
Figures

Figure 1

Open AccessArticle
A Method for Design of Modular Reconfigurable Machine Tools
Machines 2017, 5(1), 5; doi:10.3390/machines5010005 -
Abstract
Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method
[...] Read more.
Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family. Full article
Figures

Figure 1

Open AccessArticle
Automatic Motion Generation for Robotic Milling Optimizing Stiffness with Sample-Based Planning
Machines 2017, 5(1), 3; doi:10.3390/machines5010003 -
Abstract
Optimal and intuitive robotic machining is still a challenge. One of the main reasons for this is the lack of robot stiffness, which is also dependent on the robot positioning in the Cartesian space. To make up for this deficiency and with the
[...] Read more.
Optimal and intuitive robotic machining is still a challenge. One of the main reasons for this is the lack of robot stiffness, which is also dependent on the robot positioning in the Cartesian space. To make up for this deficiency and with the aim of increasing robot machining accuracy, this contribution describes a solution approach for optimizing the stiffness over a desired milling path using the free degree of freedom of the machining process. The optimal motion is computed based on the semantic and mathematical interpretation of the manufacturing process modeled on its components: product, process and resource; and by configuring automatically a sample-based motion problem and the transition-based rapid-random tree algorithm for computing an optimal motion. The approach is simulated on a CAM software for a machining path revealing its functionality and outlining future potentials for the optimal motion generation for robotic machining processes. Full article
Figures

Figure 1

Open AccessArticle
Physics-Embedded Machine Learning: Case Study with Electrochemical Micro-Machining
Machines 2017, 5(1), 4; doi:10.3390/machines5010004 -
Abstract
Although intelligent machine learning techniques have been used for input-output modeling of many different manufacturing processes, these techniques map directly from the input process parameters to the outputs and do not take into consideration any partial knowledge available about the mechanisms and physics
[...] Read more.
Although intelligent machine learning techniques have been used for input-output modeling of many different manufacturing processes, these techniques map directly from the input process parameters to the outputs and do not take into consideration any partial knowledge available about the mechanisms and physics of the process. In this paper, a new approach is presented for taking advantage of the partial knowledge available about the mechanisms of the process and embedding it into the neural network structure. To validate the proposed approach, it is used to create a forward prediction model for the process of electrochemical micro-machining (μ-ECM). The prediction accuracy of the proposed approach is compared to the prediction accuracy of pure neural structure models with different structures and the results show that the Neural Network (NN) models with embedded knowledge have better prediction accuracy over pure NN models. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Machines in 2016
Machines 2017, 5(1), 2; doi:10.3390/machines5010002 -
Abstract The editors of Machines would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
Online Estimation and Correction of Systematic Encoder Line Errors
Machines 2017, 5(1), 1; doi:10.3390/machines5010001 -
Abstract
This paper addresses the identification and correction of amplitude and offset errors in the sinusoidal outputs from incremental position encoders. Precise angular position measurement is of high importance in many position control applications. Manufacturing tolerances and noise from thermal and electromagnetic interference sources
[...] Read more.
This paper addresses the identification and correction of amplitude and offset errors in the sinusoidal outputs from incremental position encoders. Precise angular position measurement is of high importance in many position control applications. Manufacturing tolerances and noise from thermal and electromagnetic interference sources introduce systematic and random errors in the orthogonal sine cosine output line signals. Evaluation of these signals reproduces deviations in the measured angular position. This paper proposes two methods to identify and compensate for the influence of the systematic errors online without the necessity of a reference measurement during identification. The key component of the methods is a nonlinear estimator that exploits the orthogonality property of harmonic functions. The first method explains the basic idea with a scalar error model and operates continuously but exhibits an angular shift in direction of rotation during transients of the parameters, whereas the second method assumes an error model with error parameters as a function over one full revolution of the encoder. The latter updates the error function iteratively in subsequent revolutions. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Study on the Kinematic Performances and Optimization for Three Types of Parallel Manipulators
Machines 2016, 4(4), 24; doi:10.3390/machines4040024 -
Abstract
The modelling, optimization issues and stiffness for several types of three degrees-of-freedom parallel robotic manipulators, i.e., 3-DOF pure translational, 3-DOF pure rotational and 3-DOF mixed motion types, are studied in this paper. First of all, the kinematics and Jacobian for the robotic manipulators
[...] Read more.
The modelling, optimization issues and stiffness for several types of three degrees-of-freedom parallel robotic manipulators, i.e., 3-DOF pure translational, 3-DOF pure rotational and 3-DOF mixed motion types, are studied in this paper. First of all, the kinematics and Jacobian for the robotic manipulators are determined through different approaches; secondly, objective functions modelling are presented, and the associated optimization issues and the geometric parameters’ effect on the objective functions for the robotic mechanisms are illustrated and analyzed in detail. Through employing several multi-objective optimization approaches, we manifest an overall process and approach for multi-objective optimization of robotic systems. The correlation among different stiffness models is finally presented. The results indicate that the kinetostatic compliance model is the closest one to the traditional stiffness model. Full article
Figures

Figure 1

Open AccessArticle
Self-Organization and Self-Coordination in Welding Automation with Collaborating Teams of Industrial Robots
Machines 2016, 4(4), 23; doi:10.3390/machines4040023 -
Abstract
In welding automation, growing interest can be recognized in applying teams of industrial robots to perform manufacturing processes through collaboration. Although robot teamwork can increase profitability and cost-effectiveness in production, the programming of the robots is still a problem. It is extremely time
[...] Read more.
In welding automation, growing interest can be recognized in applying teams of industrial robots to perform manufacturing processes through collaboration. Although robot teamwork can increase profitability and cost-effectiveness in production, the programming of the robots is still a problem. It is extremely time consuming and requires special expertise in synchronizing the activities of the robots to avoid any collision. Therefore, a research project has been initiated to solve those problems. This paper will present strategies, concepts, and research results in applying robot operating system (ROS) and ROS-based solutions to overcome existing technical deficits through the integration of self-organization capabilities, autonomous path planning, and self-coordination of the robots’ work. The new approach should contribute to improving the application of robot teamwork and collaboration in the manufacturing sector at a higher level of flexibility and reduced need for human intervention. Full article
Figures

Figure 1

Open AccessArticle
Kinematics and Dynamics of a Translational Parallel Robot Based on Planar Mechanisms
Machines 2016, 4(4), 22; doi:10.3390/machines4040022 -
Abstract
In this contribution, a novel translational parallel robot composed of an arrangement of mechanisms with planar motion is presented. Its mobility is analyzed and the position analysis is solved by using equations derived from mechanical constraints. Furthermore, the analysis of velocity and acceleration
[...] Read more.
In this contribution, a novel translational parallel robot composed of an arrangement of mechanisms with planar motion is presented. Its mobility is analyzed and the position analysis is solved by using equations derived from mechanical constraints. Furthermore, the analysis of velocity and acceleration are solved by means of the screw theory. For completeness, the inverse dynamics are also presented and solved by means of an interesting combination of the screw theory and the virtual work principle. Finally, a numerical example is included to show the application of the kinematic model, which is verified with the aid of a commercially available software. Full article
Figures

Figure 1

Open AccessArticle
Study on Payload Effects on the Joint Motion Accuracy of Serial Mechanical Mechanisms
Machines 2016, 4(4), 21; doi:10.3390/machines4040021 -
Abstract
Robotic manipulators have been widely used in many arenas, when the robotic arm performs positioning, a traditional controller (e.g., a proportional-integral-derivative, PID controller) has the problem of not being able to compensate the payload variations. When the end-effector of the robotic arm grasps
[...] Read more.
Robotic manipulators have been widely used in many arenas, when the robotic arm performs positioning, a traditional controller (e.g., a proportional-integral-derivative, PID controller) has the problem of not being able to compensate the payload variations. When the end-effector of the robotic arm grasps different payload masses as most applications require, the output of joint motion will vary under different payload masses, which will decrease the end-effector positioning accuracy of the robotic arm system. Based on the model reference adaptive control technique, the payload variation effect can be solved, therefore improving the positioning accuracy. This paper studies payload effects on the joint motion accuracy of serial mechanical mechanisms. Full article
Figures

Figure 1

Open AccessArticle
Rotor Unbalance Estimation with Reduced Number of Sensors
Machines 2016, 4(4), 19; doi:10.3390/machines4040019 -
Abstract
The most common cause of the excessive vibration in rotating machines is the rotor mass unbalance. If a machine vibration due to mass unbalance exceeds the alarm limits, then it may lead to machine failure. Therefore, rotating machines should be regularly checked to
[...] Read more.
The most common cause of the excessive vibration in rotating machines is the rotor mass unbalance. If a machine vibration due to mass unbalance exceeds the alarm limits, then it may lead to machine failure. Therefore, rotating machines should be regularly checked to ensure that they are properly balanced. Currently, industries use the influence coefficient (IC) balancing technique for in situ machine balancing. The accepted practice is to use the vibration measurements in both vertical and horizontal directions at the machine-bearing pedestals together with the tachometer signal to estimate the machine rotor unbalance (both mass and phase angle). It is generally believed that the use of the machine vibration measurements in the vertical and horizontal directions represents better machine dynamics, and hence the estimated unbalance is likely to be more accurate. However, this paper applies the same concept of the IC method but with a reduced number of vibration sensors (one sensor per bearing pedestal at 45° instead of two sensors at the vertical and horizontal directions). The use of one sensor per bearing pedestal at 45° from both vertical and horizontal directions is likely to have responses from both directions. The reduction in the number of sensors by half will definitely save the instruments and their maintenance cost and reduce the computational effort in the signal processing significantly. The proposed concept is applied on a small-size laboratory rig with two balancing planes. The paper presents the unbalance estimations by using the measured vibration responses in both the vertical and horizontal directions simultaneously and using vibration responses measured at 45°. Full article
Figures

Figure 1

Open AccessArticle
Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform
Machines 2016, 4(4), 20; doi:10.3390/machines4040020 -
Abstract
To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST) design, the integrated dynamic model of the Stewart platform including the electric cylinder is established
[...] Read more.
To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST) design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral) controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness. Full article
Figures

Figure 1

Open AccessArticle
On the “Zero of Potential of the Electric Field Produced by the Heart Beat”. A Machine Capable of Estimating this Underlying Persistent Error in Electrocardiography
Machines 2016, 4(4), 18; doi:10.3390/machines4040018 -
Abstract
Modern electrocardiography (ECG) uses a constructed reference potential for the majority of leads. This reference potential, named after its inventor as the Wilson central terminal, is assumed to have negligible value and to be stationary during the cardiac cycle. However, the problem of
[...] Read more.
Modern electrocardiography (ECG) uses a constructed reference potential for the majority of leads. This reference potential, named after its inventor as the Wilson central terminal, is assumed to have negligible value and to be stationary during the cardiac cycle. However, the problem of its variability during the cardiac cycle has been known almost since the inception of 12-lead electrocardiography. Due to the cumbersomeness of the measurement system required to fully appreciate these variations, this topic has received scant research attention during the last 60 years. Taking advantage of modern electronic amplifiers’ capability to detect small voltages, drawing only femtoamperes from physiological equivalent signal sources and of the right-leg connection availability, we developed a complete electrocardiography device that, aside from the eight independent signals of the standard 12-lead ECG, allows direct recording of the Wilson central terminal components. In this paper, we present details of the circuit together with its initial clinical evaluation. For this trial, we recorded data from 44 volunteer patients at Campbelltown Hospital (Campbelltown, Australia) and we found that the Wilson central terminal amplitude, as foreseen by Frank and others in the 1950s, is not negligible, its amplitude in relation to the lead II is, on average, 51.2%, and thus it may be clinically relevant. Full article
Figures

Figure 1

Open AccessArticle
Aeronautical Magnetic Torque Limiter for Passive Protection against Overloads
Machines 2016, 4(3), 17; doi:10.3390/machines4030017 -
Abstract
Actual aerospace and defense technologies present multiple limitations that need to be overcome in order to evolve to less contaminating and more efficient aircraft solutions. Contactless technologies come with essential advantages such as the absence of wear and friction. This work describes the
[...] Read more.
Actual aerospace and defense technologies present multiple limitations that need to be overcome in order to evolve to less contaminating and more efficient aircraft solutions. Contactless technologies come with essential advantages such as the absence of wear and friction. This work describes the design, prototype, and performance test according to RTCA-DO-160 of an aeronautical magnetic torque limiter. The results show correct continuous transmission operation (2250 rpm and 24 Nm) from −50 °C to +90 °C. Moreover, overload protection has been demonstrated for more than 200 jamming events without damage or required maintenance to the device. Full article
Figures

Figure 1

Open AccessArticle
Self-Sensing Electromagnets for Robotic Tooling Systems: Combining Sensor and Actuator
Machines 2016, 4(3), 16; doi:10.3390/machines4030016 -
Abstract
A low-cost method, which integrates distance sensing functionality into a switched electromagnet by using a hybrid switching mode and current ripple measurements, is proposed. The electromagnet is controlled by a micro-controller via a MOSFET H bridge, utilizing a comparator-based current control. Additionally, a
[...] Read more.
A low-cost method, which integrates distance sensing functionality into a switched electromagnet by using a hybrid switching mode and current ripple measurements, is proposed. The electromagnet is controlled by a micro-controller via a MOSFET H bridge, utilizing a comparator-based current control. Additionally, a method for calculating the inductance of the electromagnet and approximating the magnetic contact between the electromagnet and its target is also presented. The resulting tool is attached to an industrial robot, and the system performance using this setup is evaluated. Distance sensing in the range of 0 mm to 5.2 mm is demonstrated. It is also shown that the relation between magnetic contact, coil current and calculated inductance can be reduced to a predictive look-up table, enabling the quality of the magnetic contact to be estimated using minimal computational effort. Full article
Figures

Figure 1

Open AccessArticle
Optimization Design and Performance Analysis of a PM Brushless Rotor Claw Pole Motor with FEM
Machines 2016, 4(3), 15; doi:10.3390/machines4030015 -
Abstract
A new type of permanent magnet (PM) brushless claw pole motor (CPM) with soft magnetic composite (SMC) core is designed and analyzed in this paper. The PMs are mounted on the claw pole surface, and the three-phase stator windings are fed by variable-frequency
[...] Read more.
A new type of permanent magnet (PM) brushless claw pole motor (CPM) with soft magnetic composite (SMC) core is designed and analyzed in this paper. The PMs are mounted on the claw pole surface, and the three-phase stator windings are fed by variable-frequency three-phase AC currents. The advantages of the proposed CPM are that the slip rings on the rotor are cast off and it can achieve the efficiency improvement and higher power density. The effects of the claw-pole structure parameters, the air-gap length, and the PM thinner parameter of the proposed CPM on the output torque are investigated by using three-dimensional time-stepping finite element method (3D TS-FEM). The optimal rotor structure of the proposed CPM is obtained by using the response surface methodology (RSM) and the particle swarm optimization (PSO) method and the comparison of full-load performances of the proposed CPM with different material cores (SMC and silicon steel) is analyzed. Full article
Open AccessArticle
Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds
Machines 2016, 4(3), 14; doi:10.3390/machines4030014 -
Abstract
The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom additive manufacturing for a wide array of industrial, medical, and end user/consumer applications. This paper provides an open source design for a laser polymer welding system, which can
[...] Read more.
The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom additive manufacturing for a wide array of industrial, medical, and end user/consumer applications. This paper provides an open source design for a laser polymer welding system, which can be fabricated with low-cost fused filament fabrication and off-the-shelf mechanical and electrical parts. The system is controlled with free and open source software and firmware. The operation of the machine is validated and the performance of the system is quantified for the mechanical properties (peak load) and weld width of linear low density polyethylene (LLDPE) lap welds manufactured with the system as a function of linear energy density. The results provide incident laser power and machine parameters that enable both dual (two layers) and multilayer (three layers while welding only two sheets) polymer welded systems. The application of these parameter sets provides users of the open source laser polymer welder with the fundamental requirements to produce mechanically stable LLDPE multi-layer welded products, such as heat exchangers. Full article
Figures

Open AccessArticle
Software Architecture and Framework for Programmable Logic Controllers: A Case Study and Suggestions for Research
Machines 2016, 4(2), 13; doi:10.3390/machines4020013 -
Abstract
Programmable Logic Controllers (PLCs) are widely used for control and automation of machines and processes, so the quality of PLC software has a direct impact on production efficiency. This paper describes a PLC program for a food production line that was completely rewritten
[...] Read more.
Programmable Logic Controllers (PLCs) are widely used for control and automation of machines and processes, so the quality of PLC software has a direct impact on production efficiency. This paper describes a PLC program for a food production line that was completely rewritten using a different software architecture and framework. The PLC hardware and the production line equipment were not changed, so this project provides an opportunity to quantify the impact of different PLC software architecture on production efficiency. The average number of cases of products produced per production hour during the first ten months with the new program was 6.1% higher than the average during the previous ten months with the old program. PLC software, unlike most other software, is often used by the end-user for troubleshooting. In this case, a relatively simple architecture and framework that favors the end-user significantly improved production efficiency over a more sophisticated architecture and framework that favors the software developer. Suggestions for further research on software architecture and framework are given. Full article
Open AccessArticle
Z-Damper: A New Paradigm for Attenuation of Vibrations
Machines 2016, 4(2), 12; doi:10.3390/machines4020012 -
Abstract
Magnetic linear gear provides a new and unique opportunity for coupling mechanical impedances and optimizing vibration damping. In the present paper a new magneto-mechanical vibration damper (the so-called Z-damper) is described. Its expected theoretical dynamic behavior shows a particularly high damping capability, a
[...] Read more.
Magnetic linear gear provides a new and unique opportunity for coupling mechanical impedances and optimizing vibration damping. In the present paper a new magneto-mechanical vibration damper (the so-called Z-damper) is described. Its expected theoretical dynamic behavior shows a particularly high damping capability, a low frequency, as well as an optimal behavior for high frequencies. Full article