Open AccessReview
The Genetic Code and RNA-Amino Acid Affinities
Life 2017, 7(2), 13; doi:10.3390/life7020013 -
Abstract
A significant part of the genetic code likely originated via a chemical interaction, which should be experimentally verifiable. One possible verification relates bound amino acids (or perhaps their activated congeners) and ribonucleotide sequences within cognate RNA binding sites. To introduce this interaction, I
[...] Read more.
A significant part of the genetic code likely originated via a chemical interaction, which should be experimentally verifiable. One possible verification relates bound amino acids (or perhaps their activated congeners) and ribonucleotide sequences within cognate RNA binding sites. To introduce this interaction, I first summarize how amino acids function as targets for RNA binding. Then the experimental method for selecting relevant RNA binding sites is characterized. The selection method’s characteristics are related to the investigation of the RNA binding site model treated at the outset. Finally, real binding sites from selection and also from extant natural RNAs (for example, the Sulfobacillus guanidinium riboswitch) are connected to the genetic code, and by extension, to the evolutionary progression that produced the code. During this process, peptides may have been produced directly on an instructive amino acid binding RNA (a DRT; Direct RNA Template). Combination of observed stereochemical selectivity with adaptation and co-evolutionary refinement is logically required, and also potentially sufficient, to create the striking order conserved throughout the present coding table. Full article
Figures

Figure 1

Open AccessReview
Efforts and Challenges in Engineering the Genetic Code
Life 2017, 7(1), 12; doi:10.3390/life7010012 -
Abstract
This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification.
[...] Read more.
This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification. Full article
Figures

Figure 1

Open AccessArticle
Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum
Life 2017, 7(1), 11; doi:10.3390/life7010011 -
Abstract
Background: The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was
[...] Read more.
Background: The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum, is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane. Full article
Figures

Figure 1

Open AccessReview
Future of the Genetic Code
Life 2017, 7(1), 10; doi:10.3390/life7010010 -
Abstract
The methods for establishing synthetic lifeforms with rewritten genetic codes comprising non-canonical amino acids (NCAA) in addition to canonical amino acids (CAA) include proteome-wide replacement of CAA, insertion through suppression of nonsense codon, and insertion via the pyrrolysine and selenocysteine pathways. Proteome-wide reassignments
[...] Read more.
The methods for establishing synthetic lifeforms with rewritten genetic codes comprising non-canonical amino acids (NCAA) in addition to canonical amino acids (CAA) include proteome-wide replacement of CAA, insertion through suppression of nonsense codon, and insertion via the pyrrolysine and selenocysteine pathways. Proteome-wide reassignments of nonsense codons and sense codons are also under development. These methods enable the application of NCAAs to enrich both fundamental and applied aspects of protein chemistry and biology. Sense codon reassignment to NCAA could incur problems arising from the usage of anticodons as identity elements on tRNA, and possible misreading of NNY codons by UNN anticodons. Evidence suggests that the problem of anticodons as identity elements can be diminished or resolved through removal from the tRNA of all identity elements besides the anticodon, and the problem of misreading of NNY codons by UNN anticodon can be resolved by the retirement of both the UNN anticodon and its complementary NNA codon from the proteome in the event that a restrictive post-transcriptional modification of the UNN anticodon by host enzymes to prevent the misreading cannot be obtained. Full article
Figures

Figure 1

Open AccessArticle
Highly Conserved Elements and Chromosome Structure Evolution in Mitochondrial Genomes in Ciliates
Life 2017, 7(1), 9; doi:10.3390/life7010009 -
Abstract
Recent phylogenetic analyses are incorporating ultraconserved elements (UCEs) and highly conserved elements (HCEs). Models of evolution of the genome structure and HCEs initially faced considerable algorithmic challenges, which gave rise to (often unnatural) constraints on these models, even for conceptually simple tasks such
[...] Read more.
Recent phylogenetic analyses are incorporating ultraconserved elements (UCEs) and highly conserved elements (HCEs). Models of evolution of the genome structure and HCEs initially faced considerable algorithmic challenges, which gave rise to (often unnatural) constraints on these models, even for conceptually simple tasks such as the calculation of distance between two structures or the identification of UCEs. In our recent works, these constraints have been addressed with fast and efficient solutions with no constraints on the underlying models. These approaches have led us to an unexpected result: for some organelles and taxa, the genome structure and HCE set, despite themselves containing relatively little information, still adequately resolve the evolution of species. We also used the HCE identification to search for promoters and regulatory elements that characterize the functional evolution of the genome. Full article
Figures

Figure 1

Open AccessArticle
Bioinformatic Analysis Reveals Archaeal tRNATyr and tRNATrp Identities in Bacteria
Life 2017, 7(1), 8; doi:10.3390/life7010008 -
Abstract
The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR) bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria
[...] Read more.
The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR) bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria possess genes for tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) predicted to be derived from DPANN superphylum archaea, while the cognate tRNATyr and tRNATrp genes reveal bacterial or archaeal origins. We identified a trace of domain fusion and swapping in the archaeal-type TyrRS gene of a bacterial lineage, suggesting that CPR bacteria may have used this mechanism to create diverse proteins. Archaeal-type TrpRS of bacteria and a few TrpRS species of DPANN archaea represent a new phylogenetic clade (named TrpRS-A). The TrpRS-A open reading frames (ORFs) are always associated with another ORF (named ORF1) encoding an unknown protein without global sequence identity to any known protein. However, our protein structure prediction identified a putative HIGH-motif and KMSKS-motif as well as many α-helices that are characteristic of class I aminoacyl-tRNA synthetase (aaRS) homologs. These results provide another example of the diversity of molecular components that implement the genetic code and provide a clue to the early evolution of life and the genetic code. Full article
Figures

Figure 1

Open AccessArticle
On the Uniqueness of the Standard Genetic Code
Life 2017, 7(1), 7; doi:10.3390/life7010007 -
Abstract
In this work, we determine the biological and mathematical properties that are sufficient and necessary to uniquely determine both the primeval RNY (purine-any base-pyrimidine) code and the standard genetic code (SGC). These properties are: the evolution of the SGC from the RNY code;
[...] Read more.
In this work, we determine the biological and mathematical properties that are sufficient and necessary to uniquely determine both the primeval RNY (purine-any base-pyrimidine) code and the standard genetic code (SGC). These properties are: the evolution of the SGC from the RNY code; the degeneracy of both codes, and the non-degeneracy of the assignments of aminoacyl-tRNA synthetases (aaRSs) to amino acids; the wobbling property; the consideration that glycine was the first amino acid; the topological and symmetrical properties of both codes. Full article
Figures

Figure 1

Open AccessReview
Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †
Life 2017, 7(1), 6; doi:10.3390/life7010006 -
Abstract
Aminoacyl-tRNA synthetases (AARSs) have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I
[...] Read more.
Aminoacyl-tRNA synthetases (AARSs) have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases. Full article
Figures

Figure 1

Open AccessReview
The Role of Lipid Membranes in Life’s Origin
Life 2017, 7(1), 5; doi:10.3390/life7010005 -
Abstract
At some point in early evolution, life became cellular. Assuming that this step was required for the origin of life, there would necessarily be a pre-existing source of amphihilic compounds capable of assembling into membranous compartments. It is possible to make informed guesses
[...] Read more.
At some point in early evolution, life became cellular. Assuming that this step was required for the origin of life, there would necessarily be a pre-existing source of amphihilic compounds capable of assembling into membranous compartments. It is possible to make informed guesses about the properties of such compounds and the conditions most conducive to their self-assembly into boundary structures. The membranes were likely to incorporate mixtures of hydrocarbon derivatives between 10 and 20 carbons in length with carboxylate or hydroxyl head groups. Such compounds can be synthesized by chemical reactions and small amounts were almost certainly present in the prebiotic environment. Membrane assembly occurs most readily in low ionic strength solutions with minimal content of salt and divalent cations, which suggests that cellular life began in fresh water pools associated with volcanic islands rather than submarine hydrothermal vents. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Life in 2016
Life 2017, 7(1), 4; doi:10.3390/life7010004 -
Abstract The editors of Life would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016. Full article
Open AccessArticle
Selection of Prebiotic Molecules in Amphiphilic Environments
Life 2017, 7(1), 3; doi:10.3390/life7010003 -
Abstract
A basic problem in all postulated pathways of prebiotic chemistry is the low concentration which generally is expected for interesting reactants in fluid environments. Even though compounds, like nucleobases, sugars or peptides, principally may form spontaneously under environmental conditions, they will always be
[...] Read more.
A basic problem in all postulated pathways of prebiotic chemistry is the low concentration which generally is expected for interesting reactants in fluid environments. Even though compounds, like nucleobases, sugars or peptides, principally may form spontaneously under environmental conditions, they will always be rapidly diluted in an aqueous environment. In addition, any such reaction leads to side products which often exceed the desired compound and generally hamper the first steps of a subsequent molecular evolution. Therefore, a mechanism of selection and accumulation of relevant prebiotic compounds seems to be crucial for molecular evolution. A very efficient environment for selection and accumulation can be found in the fluid continuum circulating in tectonic fault zones. Vesicles which form spontaneously at a depth of approximately 1 km present a selective trap for amphiphilic molecules, especially for peptides composed of hydrophilic and hydrophobic amino acids in a suitable sequence. The accumulation effect is shown in a numeric simulation on a simplified model. Further, possible mechanisms of a molecular evolution in vesicle membranes are discussed. Altogether, the proposed scenario can be seen as an ideal environment for constant, undisturbed molecular evolution in and on cell-like compartments. Full article
Figures

Figure 1

Open AccessArticle
Mobility of a Mononucleotide within a Lipid Matrix: A Neutron Scattering Study
Life 2017, 7(1), 2; doi:10.3390/life7010002 -
Abstract
An essential question in studies on the origins of life is how nucleic acids were first synthesized and then incorporated into compartments about 4 billion years ago. A recent discovery is that guided polymerization within organizing matrices could promote a non-enzymatic condensation reaction
[...] Read more.
An essential question in studies on the origins of life is how nucleic acids were first synthesized and then incorporated into compartments about 4 billion years ago. A recent discovery is that guided polymerization within organizing matrices could promote a non-enzymatic condensation reaction allowing the formation of RNA-like polymers, followed by encapsulation in lipid membranes. Here, we used neutron scattering and deuterium labelling to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix. The aim of the research was to determine and compare how mononucleotides are captured and differently organized within matrices and multilamellar phospholipid structures and to explore the role of water in organizing the system to determine at which level the system becomes sufficiently anhydrous to lock the AMP molecules into an organized structure and initiate ester bond synthesis. Elastic incoherent neutron scattering experiments were thus employed to investigate the changes of the dynamic properties of AMP induced by embedding the molecules within the lipid matrix. The influence of AMP addition to the lipid membrane organization was determined through diffraction measurement, which also helped us to define the best working Q range for dynamical data analysis with respect to specific hydration. The use of different complementary instruments allowed coverage of a wide time-scale domain, from ns to ps, of atomic mean square fluctuations, providing evidence of a well-defined dependence of the AMP dynamics on the hydration level. Full article
Figures

Figure 1

Open AccessArticle
Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada
Life 2017, 7(1), 1; doi:10.3390/life7010001 -
Abstract
Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring
[...] Read more.
Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA–DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion. Full article
Figures

Figure 1

Open AccessOpinion
Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks
Life 2016, 6(4), 43; doi:10.3390/life6040043 -
Abstract
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the
[...] Read more.
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates. Full article
Figures

Figure 1

Open AccessReview
Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects
Life 2016, 6(4), 42; doi:10.3390/life6040042 -
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics”
[...] Read more.
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future. Full article
Figures

Figure 1

Open AccessArticle
Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants
Life 2016, 6(4), 41; doi:10.3390/life6040041 -
Abstract
Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum
[...] Read more.
Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air–liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876—also critical for both motility and adhesion—will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects. Full article
Figures

Figure 1

Open AccessReview
Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System
Life 2016, 6(4), 40; doi:10.3390/life6040040 -
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as
[...] Read more.
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. Full article
Figures

Figure 1

Open AccessArticle
Functional Annotations of Paralogs: A Blessing and a Curse
Life 2016, 6(3), 39; doi:10.3390/life6030039 -
Abstract
Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately
[...] Read more.
Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. Full article
Figures

Figure 1

Open AccessArticle
Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the “Ancient Asexual” Bdelloid Rotifer Philodina roseola
Life 2016, 6(3), 38; doi:10.3390/life6030038 -
Abstract
Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis
[...] Read more.
Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of “ancient asexuals”. Full article
Figures

Figure 1

Open AccessArticle
Bipyrimidine Signatures as a Photoprotective Genome Strategy in G + C-rich Halophilic Archaea
Life 2016, 6(3), 37; doi:10.3390/life6030037 -
Abstract
Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional
[...] Read more.
Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional photoprotective strategy. The predominant forms of UV-induced DNA damage are cyclobutane pyrimidine dimers, most notoriously thymine dimers (T^Ts), which form at adjacent Ts. We tested whether the high G + C content seen in halophilic archaea serves a photoprotective function through limiting T nucleotides, and thus T^T lesions. However, this speculation overlooks the other bipyrimidine sequences, all of which capable of forming photolesions to varying degrees. Therefore, we designed a program to determine the frequencies of the four bipyrimidine pairs (5’ to 3’: TT, TC, CT, and CC) within genomes of halophilic archaea and four other randomized sample groups for comparison. The outputs for each sampled genome were weighted by the intrinsic photoreactivities of each dinucleotide pair. Statistical methods were employed to investigate intergroup differences. Our findings indicate that the UV-resistance seen in halophilic archaea can be attributed in part to a genomic strategy: high G + C content and the resulting bipyrimidine signature reduces the genomic photoreactivity. Full article
Figures

Figure 1