Open AccessArticle
Characterization of the New Status of Nador Lagoon (Morocco) after the Implementation of the Management Plan
J. Mar. Sci. Eng. 2017, 5(1), 7; doi:10.3390/jmse5010007 -
Abstract
The present study was carried out in 2011 with the aims of (1) evaluating the changes in sedimentary distribution that occurred in Nador lagoon seabed (Morocco) after the implementation of the lagoon management plan in 2009; and (2) characterizing its new sedimentary status
[...] Read more.
The present study was carried out in 2011 with the aims of (1) evaluating the changes in sedimentary distribution that occurred in Nador lagoon seabed (Morocco) after the implementation of the lagoon management plan in 2009; and (2) characterizing its new sedimentary status in 2011. Due to the lack of a baseline, we used the 1992 sedimentary status for comparison. The seabed surface sediment distribution showed a great change between 1992 and 2011. We found the same four sediment facies, which were present in 1992, namely: mud, sandy mud, muddy sand, and fine sand. However, in 2011, mud covered more than 54% of the lagoon seabed surface, mostly located in the middle part of the seabed, whereas in 1992, more than 80% of the lagoon seabed was covered by sandy mud. The sediments’ characteristics showed moderately to poorly sorted facies (S0), ranging between platykurtic and leptokurtic (SK) and with various symmetry indices (SG). The organic matter content in sediment has strongly decreased, from values higher than 20% in most areas in 1992 to a mean value of 3.9% in 2011, ranging from 0.2% to 10.4%, thus confirming that the management actions implemented in 2009 were likely effective in reducing the organic pollution. Full article
Figures

Figure 1

Open AccessArticle
Towards the Development of an Operational Forecast System for the Florida Coast
J. Mar. Sci. Eng. 2017, 5(1), 8; doi:10.3390/jmse5010008 -
Abstract
A nowcasting and forecasting system for storm surge, inundation, waves, and baroclinic flow for the Florida coast has been developed. The system is based on dynamically coupled CH3D and SWAN models and can use a variety of modules to provide different input forcing,
[...] Read more.
A nowcasting and forecasting system for storm surge, inundation, waves, and baroclinic flow for the Florida coast has been developed. The system is based on dynamically coupled CH3D and SWAN models and can use a variety of modules to provide different input forcing, boundary and initial conditions. The system is completely automated and operates unattended at pre-scheduled intervals as well as in event-triggered mode in response to Atlantic-basin tropical cyclone advisories issued by the National Hurricane Center. The system provides up to 72-h forecasts forward depending on the input dataset duration. Spatially, the system spans the entire Florida coastline by employing four high-resolution domains with resolutions as fine as 10–30 m in the near-shore and overland to allow the system to resolve fine estuarine details such as in the Intracoastal Waterway and minor tributaries. The system has been validated in both hindcast and nowcast/forecast modes using water level and salinity data from a variety of sources and has been found to run robustly during the test periods. Low level products (e.g., raw output datasets) are disseminated using THREDDS while a custom defined web-based graphical user interface (GUI) was developed for high level access. Full article
Figures

Figure 1

Open AccessArticle
Thermal Recirculation Modeling for Power Plants in an Estuarine Environment
J. Mar. Sci. Eng. 2017, 5(1), 5; doi:10.3390/jmse5010005 -
Abstract
Many power plants require large quantities of water for cooling purposes. The water taken from the source water body (e.g., lakes, estuaries, bays and rivers) circulates through the plant and returns to the source through outfall with a higher temperature. For optimal performance
[...] Read more.
Many power plants require large quantities of water for cooling purposes. The water taken from the source water body (e.g., lakes, estuaries, bays and rivers) circulates through the plant and returns to the source through outfall with a higher temperature. For optimal performance of the power plant, the intake inlet and discharge outlet should be meticulously placed so that the heated water will not recirculate back into the power plant. In this study, the Flow module of the Delft3D software is employed to simulate the temperature transport within the study area in three-dimensional and nested format. Model results are used to optimize the location of intake inlets, outfall outlets and diffuser port orientations. The physical processes used in the study are tidal fluctuations, winds, river discharges, salinity and temperature. The subject power plant (power plant parameters presented in this paper are realistic; however, they do not target any specific power plant within the study area) has a nominal capacity of 2600 MW and is planned to be located in Delaware Bay, USA. Existing field measurements are used to calibrate the model in a coupled two-staged fashion for main tidal constituents, currents and water temperature. The sensitivity of the model against various input parameters is tested, and conservative values are selected. The location of the intake is fixed, and the location of the outfall is changed until the thermal impact to the intake is less than 1 °C. Analysis of the results shows that there is a linear logarithmic relation between the excess temperatures at the intake inlet and horizontal eddy diffusivity. The k-ϵ turbulence closure results in higher excess temperature and a more conservative design. Extending the outfall location to the deeper portion of the estuary combined with port orientations reduces the impact by keeping the thermal plume away from the intake inlet and meeting the established criteria. It is concluded that an approximate distance of 1300 m is the optimal location for the power plant outfall outlets. In addition, the diffuser ports should not discharge the heated water toward the intake and have to be oriented away from the line connecting outfall to the intake. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of JMSE in 2016
J. Mar. Sci. Eng. 2017, 5(1), 6; doi:10.3390/jmse5010006 -
Abstract
The editors of JMSE would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016. We greatly appreciate the contribution of expert reviewers, which is crucial to the journal’s editorial process. We aim to recognize reviewer contributions through
[...] Read more.
The editors of JMSE would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016. We greatly appreciate the contribution of expert reviewers, which is crucial to the journal’s editorial process. We aim to recognize reviewer contributions through several mechanisms, of which the annual publication of reviewer names is one. Reviewers receive a voucher entitling them to a discount on their next MDPI publication and can download a certificate of recognition directly from our submission system. Additionally, reviewers can sign up to the service Publons (https://publons.com) to receive recognition. Of course, in these initiatives we are careful not to compromise reviewer confidentiality. Many reviewers see their work as a voluntary and often unseen part of their role as researchers. We are grateful to the time reviewers donate to our journals and the contribution they make. Full article
Open AccessArticle
Information Theoretic Source Seeking Strategies for Multiagent Plume Tracking in Turbulent Fields
J. Mar. Sci. Eng. 2017, 5(1), 3; doi:10.3390/jmse5010003 -
Abstract
We present information theoretic search strategies for single and multi-robot teams to localize the source of biochemical contaminants in turbulent flows. The robots synthesize the information provided by sporadic and intermittent sensor readings to optimize their exploration strategy. By leveraging the spatio-temporal sensing
[...] Read more.
We present information theoretic search strategies for single and multi-robot teams to localize the source of biochemical contaminants in turbulent flows. The robots synthesize the information provided by sporadic and intermittent sensor readings to optimize their exploration strategy. By leveraging the spatio-temporal sensing capabilities of a mobile sensing network, our strategies result in control actions that maximize the information gained by the team while minimizing the time spent localizing the biochemical source. By leveraging the team’s ability to obtain simultaneous measurements at different locations, we show how a multi-robot team is able to speed up the search process resulting in a collaborative information theoretic search strategy. We validate our proposed strategies in both simulations and experiments. Full article
Figures

Figure 1

Open AccessArticle
Evaluating the Reliability of Counting Bacteria Using Epifluorescence Microscopy
J. Mar. Sci. Eng. 2017, 5(1), 4; doi:10.3390/jmse5010004 -
Abstract
The common practice of counting bacteria using epifluorescence microscopy involves selecting 5–30 random fields of view on a glass slide to calculate the arithmetic mean which is then used to estimate the total bacterial abundance. However, not much is known about the accuracy
[...] Read more.
The common practice of counting bacteria using epifluorescence microscopy involves selecting 5–30 random fields of view on a glass slide to calculate the arithmetic mean which is then used to estimate the total bacterial abundance. However, not much is known about the accuracy of the arithmetic mean when it is calculated by selecting random fields of view and its effect on the overall abundance. The aim of this study is to evaluate the accuracy and reliability of the arithmetic mean by estimating total bacterial abundance and to calculate its variance using a bootstrapping technique. Three fixed suspensions obtained from a three-week-old marine biofilm were stained and dispersed on glass slides. Bacterial cells were counted from a total of 13,924 fields of view on each slide. Total bacterial count data obtained were used for calculating the arithmetic mean and associated variance and bias for sample field sizes of 5, 10, 15, 20, 25, 30, 35 and 40. The study revealed a non-uniform distribution of bacterial cells on the glass slide. A minimum of 20 random fields of view or a minimum of 350 bacterial cells need to be counted to obtain a reliable value of the arithmetic mean to estimate the total bacterial abundance for a marine biofilm sample dispersed on a glass slide. Full article
Figures

Figure 1

Open AccessArticle
Multi-Layered Stratification in the Baltic Sea: Insight from a Modeling Study with Reference to Environmental Conditions
J. Mar. Sci. Eng. 2017, 5(1), 2; doi:10.3390/jmse5010002 -
Abstract
The hydrodynamic and transport characteristics of the Baltic Sea in the period 2000–2009 were studied using a fully calibrated and validated 3D hydrodynamic model with a horizontal resolution of 4.8 km. This study provided new insight into the type and dynamics of vertical
[...] Read more.
The hydrodynamic and transport characteristics of the Baltic Sea in the period 2000–2009 were studied using a fully calibrated and validated 3D hydrodynamic model with a horizontal resolution of 4.8 km. This study provided new insight into the type and dynamics of vertical structure in the Baltic Sea, not considered in previous studies. Thermal and salinity stratification are both addressed, with a focus on the structural properties of the layers. The detection of cooler regions (dicothermal) within the layer structure is an important finding. The detailed investigation of thermal stratification for a 10-year period (i.e., 2000–2009) revealed some new features. A multilayered structure that contains several thermocline and dicothermal layers was identified from this study. Statistical analysis of the simulation results made it possible to derive the mean thermal stratification properties, expressed as mean temperatures and the normalized layer thicknesses. The three-layered model proposed by previous investigators appears to be valid only during the winter periods; for other periods, a multi-layered structure with more than five layers has been identified during this investigation. This study provides detailed insight into thermal and salinity stratification in the Baltic Sea during a recent decade that can be used as a basis for diverse environmental assessments. It extends previous studies on stratification in the Baltic Sea regarding both the extent and the nature of stratification. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Role of Beach Morphology in Wave Overtopping Hazard Assessment
J. Mar. Sci. Eng. 2017, 5(1), 1; doi:10.3390/jmse5010001 -
Abstract
Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 year joint probability distribution of
[...] Read more.
Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 year joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show that disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 year joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses. Full article
Figures

Figure 1

Open AccessArticle
Variations in the Wave Climate and Sediment Transport Due to Climate Change along the Coast of Vietnam
J. Mar. Sci. Eng. 2016, 4(4), 86; doi:10.3390/jmse4040086 -
Abstract
This study quantifies the climate change (CC)-driven variations in wave characteristics and the resulting variations in potential longshore sediment transport rate along the ~2000 km mainland coast of Vietnam. Wind fields derived from global circulation models (GCM) for current and future (2041–2060 and
[...] Read more.
This study quantifies the climate change (CC)-driven variations in wave characteristics and the resulting variations in potential longshore sediment transport rate along the ~2000 km mainland coast of Vietnam. Wind fields derived from global circulation models (GCM) for current and future (2041–2060 and 2081–2100) climate conditions are used to force a numerical wave model (MIKE21 SW) to derive the deep water wave climate. The offshore wave climate is translated to nearshore wave conditions using another numerical model (Simulating WAves Nearshore—SWAN) and finally, a sediment transport model (GENEralized model for Simulating Shoreline Change—GENESIS) is used to estimate potential sediment transport for current and future climate conditions. Results indicate that CC effects are substantially different in the northern, central and southern parts of the coast of Vietnam. The 2081–2100 mean significant wave height along the northern coast is estimated to be up to 8 cm lower (relative to 1981–2000), while projections for central and southern coasts of Vietnam indicate slightly higher (increases of up to 5 cm and 7 cm respectively). Wave direction along the northern coast of Vietnam is projected to shift by up to 4° towards the south (clockwise) by 2081–2100 (relative to 1981–2000), up to 6° clockwise along the central coast and by up to 8° anti-clockwise (to the north) along the southern coast. The projected potential longshore sediment transport rates show very substantial and spatially variable future changes in net transport rates along the coast of Vietnam, with increases of up to 0.5 million m3/year at some locations (by 2081–2100 relative to 1981–2000), implying major changes in future coastline position and/or orientation. The vicinity of the highly developed city of Da Nang is likely to be particularly subject to coastline changes, with potentially an additional 875,000 m3 of sand being transported away from the area per year by the turn of the 21st century. Full article
Figures

Figure 1

Open AccessArticle
Effect of Coastal Erosion on Storm Surge: A Case Study in the Southern Coast of Rhode Island
J. Mar. Sci. Eng. 2016, 4(4), 85; doi:10.3390/jmse4040085 -
Abstract
The objective of this study was to assess the effect of shoreline retreat and dune erosion on coastal flooding in a case study located in the southern coast of Rhode Island, USA. Using an extensive dataset collected during 2011, an ADCIRC model was
[...] Read more.
The objective of this study was to assess the effect of shoreline retreat and dune erosion on coastal flooding in a case study located in the southern coast of Rhode Island, USA. Using an extensive dataset collected during 2011, an ADCIRC model was developed to simulate the propagation of storm surge in the coastal areas, including coastal inlets and ponds. A simplified methodology, based on the geological assessment of historical trends of the shoreline retreat and dune erosion in this area, was incorporated in the model to represent coastal erosion. The results showed that for extreme storms (e.g., a 100-year event), where coastal dunes are overtopped and low-lying areas are flooded, the flooding extent is not significantly sensitive to coastal erosion. However, failure of the dunes leads to a significant increase of the flooding extent for smaller storms. Substantial dampening of the storm surge elevation in coastal ponds for moderate and small storms was associated with coastal inlets connecting to coastal ponds which are often not resolved in regional surge models. The shoreline change did not significantly affect the extent of flooding. It was also shown that the accuracy of a storm surge model highly depends on its ability to resolve coastal inlets, which is critical for reliable storm surge predictions in areas with inlet-basin systems. Full article
Figures

Figure 1

Open AccessArticle
Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water
J. Mar. Sci. Eng. 2016, 4(4), 84; doi:10.3390/jmse4040084 -
Abstract
Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass.
[...] Read more.
Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW) while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively). Cultivation of Chlorella species in industrial process water is an environmentally friendly, sustainable bioremediation method with added value biomass production and resource valorization, since the resulting biomass also presented a good source of proteins, amino acids, and carotenoids for potential use in aquaculture feed industry. Full article
Figures

Open AccessArticle
Line Force and Damping at Full and Partial Stator Overlap in a Linear Generator for Wave Power
J. Mar. Sci. Eng. 2016, 4(4), 81; doi:10.3390/jmse4040081 -
Abstract
A full scale linear generator for wave power has been experimentally evaluated by measuring the line force and translator position throughout the full translator stroke. The measured line force, in relation to translator speed, generator damping and stator overlap, has been studied by
[...] Read more.
A full scale linear generator for wave power has been experimentally evaluated by measuring the line force and translator position throughout the full translator stroke. The measured line force, in relation to translator speed, generator damping and stator overlap, has been studied by comparing the line force and the damping coefficient, γ, for multiple load cases along the translator stroke length. The study also compares the generator’s behavior during upward and downward motion, studies oscillations and determines the no load losses at two different speeds. The generator damping factor, γ, was determined for five different load cases during both upward and downward motion. The γ value was found to be constant for full stator overlap and to decrease linearly with a decreasing overlap, as the translator moved towards the endstops. The decline varied with the external load case, as previously suggested but not shown. In addition, during partial stator overlap, a higher γ value was noted as the translator was leaving the stator, compared to when it was entering the stator. Finally, new insights were gained regarding how translator weight and generator damping will affect the translator downward motion during offshore operation. This is important for power production and for avoiding damaging forces acting on the wave energy converter during operation. Full article
Figures

Figure 1

Open AccessArticle
Procedure for Application-Oriented Optimisation of Marine Propellers
J. Mar. Sci. Eng. 2016, 4(4), 83; doi:10.3390/jmse4040083 -
Abstract
The use of automated optimisation in engineering applications is emerging. In particular, nature inspired algorithms are frequently used because of their variability and robust application in constraints and multi-objective optimisation problems. The purpose of this paper is the comparison of four different algorithms
[...] Read more.
The use of automated optimisation in engineering applications is emerging. In particular, nature inspired algorithms are frequently used because of their variability and robust application in constraints and multi-objective optimisation problems. The purpose of this paper is the comparison of four different algorithms and several optimisation strategies on a set of seven test propellers in realistic industrial design setting. The propellers are picked from real commercial projects and the manual final designs were delivered to customers. The different approaches are evaluated and final results of the automated optimisation toolbox are compared with designs generated in a manual design process. We identify a two-stage optimisation for marine propellers, where the geometry is first modified by parametrised geometry distribution curves to gather knowledge of the test case. Here we vary the optimisation strategy in terms of applied algorithms, constraints and objectives. A second supporting optimisation aims to improve the design by locally changing the geometry, based on the results of the first optimisation. The optimisation algorithms and strategies yield propeller designs that are comparable to the manually designed propeller blade geometries, thus being suitable as robust and advanced design support tools. The supporting optimisation, with local modification of the blade geometry and the proposed cavity shape constraints, features particular good performance in modifying cavitation on the blade and is, with the AS NSGA-II (adaptive surrogate-assisted NSGA-II), superior in lead time. Full article
Figures

Figure 1

Open AccessArticle
Modeling Water Clarity and Light Quality in Oceans
J. Mar. Sci. Eng. 2016, 4(4), 80; doi:10.3390/jmse4040080 -
Abstract
Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The
[...] Read more.
Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of adequate light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative coupling between light intensity and phytoplankton concentration (e.g., through self-shading by the cells), which reduces available light and in return affects the growth rate of the cells. Proper modeling of this coupling is essential to understand primary productivity in the oceans. This paper provides the methodology to model light intensity in the water column, which can be included in relevant water quality models. The methodology implements relationships from bio-optical models, which use phytoplankton chlorophyll a (chl-a) concentration as a surrogate for light attenuation, including absorption and scattering by other attenuators. The presented mathematical methodology estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae particles (NAPs) and colored dissolved organic matter (CDOM), as well as backscattering by pure seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of the effects of various environmental and management scenarios (e.g., global warming, altered precipitation patterns, greenhouse gases) on the wellbeing of phytoplankton communities in the oceans as temperature-driven chl-a changes take place. Full article
Figures

Figure 1

Open AccessArticle
Development of the Hydrodynamic Model for Long-Term Simulation of Water Quality Processes of the Tidal James River, Virginia
J. Mar. Sci. Eng. 2016, 4(4), 82; doi:10.3390/jmse4040082 -
Abstract
Harmful algal blooms (HABs) have frequently occurred in the James River. The State has convened a Scientific Advisory Panel (SAP) to review the James River chlorophyll-a standards. The SAP will conduct a scientific study to review the basis for setting the chlorophyll-a standards.
[...] Read more.
Harmful algal blooms (HABs) have frequently occurred in the James River. The State has convened a Scientific Advisory Panel (SAP) to review the James River chlorophyll-a standards. The SAP will conduct a scientific study to review the basis for setting the chlorophyll-a standards. To support the SAP study of chlorophyll-a standards, the State of Virginia has decided to develop a numerical modeling system that is capable of simulating phytoplankton and HABs. The modeling system includes a watershed model, a three-dimensional hydrodynamic model and water quality models. The focus of this study will be on the development and verification of the hydrodynamic model. In order to simulate the complex geometry of the James River, a high-resolution model has been implemented. The model has been calibrated for a long-term period of 23 years. A series of model experiments was conducted to evaluate the impact of forcings on dynamic simulation and transport time. It was found that freshwater discharge is the most sensitive for an accurate simulation of salinity and transport time. The water age predicted by the model in the tidal freshwater region represents the fluctuation of transport processes, and it has a good correlation with the algal bloom, while at the downstream, the transport time simulation agrees with the delay of the HAB in the mesohaline of the James after the HAB occurred in the Elizabeth River due to the transport processes. The results indicate that the hydrodynamic model is capable of simulating the dynamic processes of the James and driving water quality models in the James River. Full article
Figures

Figure 1

Open AccessArticle
Tidal Datum Changes Induced by Morphological Changes of North Carolina Coastal Inlets
J. Mar. Sci. Eng. 2016, 4(4), 79; doi:10.3390/jmse4040079 -
Abstract
In support of the National Oceanic and Atmospheric Administration’s VDatum program, a new version of a tidal datum product for the North Carolina coastal waters has been developed to replace the initial version released in 2004. Compared with the initial version, the new
[...] Read more.
In support of the National Oceanic and Atmospheric Administration’s VDatum program, a new version of a tidal datum product for the North Carolina coastal waters has been developed to replace the initial version released in 2004. Compared with the initial version, the new version used a higher resolution grid to cover more areas and incorporated up-to-date tide, bathymetry, and shoreline data. Particularly, the old bathymetry datasets that were collected from the 1930s to the 1970s and were used in the initial version have been replaced by the new bathymetry datasets collected in the 2010s in the new version around five North Carolina inlets. This study aims at evaluating and quantifying tidal datum changes induced by morphological changes over about 40 to 80 years around the inlets. A series of tidal simulations with either the old or new bathymetry datasets used around five inlets were conducted to quantify the consequent tidal datum changes. The results showed that around certain inlets, approximately 10% change in the averaged depth could result in over 30% change in the tidal datum magnitude. Further investigation also revealed that tidal datum changes behind the barrier islands are closely associated with the cross-inlet tidal flux changes. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Climate Change Impacts on Future Wave Climate around the UK
J. Mar. Sci. Eng. 2016, 4(4), 78; doi:10.3390/jmse4040078 -
Abstract
Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave
[...] Read more.
Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model. Full article
Figures

Figure 1

Open AccessArticle
Model Development and Hindcast Simulations of NOAA’s Gulf of Maine Operational Forecast System
J. Mar. Sci. Eng. 2016, 4(4), 77; doi:10.3390/jmse4040077 -
Abstract
The National Ocean Service (NOS) of National Oceanic and Atmospheric Administration is developing an operational nowcast/forecast system for the Gulf of Maine (GoMOFS). The system aims to produce real-time nowcasts and short-range forecast guidance for water levels, 3-dimensional currents, water temperature, and salinity
[...] Read more.
The National Ocean Service (NOS) of National Oceanic and Atmospheric Administration is developing an operational nowcast/forecast system for the Gulf of Maine (GoMOFS). The system aims to produce real-time nowcasts and short-range forecast guidance for water levels, 3-dimensional currents, water temperature, and salinity over the broad GoM region. GoMOFS will be implemented using the Regional Ocean Model System (ROMS). This paper describes the system setup and results from a one-year (2012) hindcast simulation. The hindcast performance was evaluated using the NOS standard skill assessment software. The results indicate favorable agreement between observations and model forecasts. The root-mean-squared errors are about 0.12 m for water level, less than 1.5 °C for temperature, less than 1.5 psu for salinity, and less than 0.2 m/s for currents. It is anticipated to complete the system development and the transition into operations in fiscal year 2017. Full article
Figures

Figure 1

Open AccessArticle
Simulating the Response of Estuarine Salinity to Natural and Anthropogenic Controls
J. Mar. Sci. Eng. 2016, 4(4), 76; doi:10.3390/jmse4040076 -
Abstract
The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D), an oyster population model, and probability analysis.
[...] Read more.
The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D), an oyster population model, and probability analysis. The model uses input from river inflow, ocean and atmospheric forcing and is verified with long-term water level and salinity data, including data from the 2004 hurricane season when four hurricanes impacted the system. Strong freshwater flow from the Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed; some based on observed data and others using altered freshwater inflow. For observed flow, simulated salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1%) upstream of the Apalachicola River, the model results show slightly (less than 5%) increased salinity inside the Bay. A worst-case sea-level rise (~1 m by 2100) could increase the bay salinity by up to 20%. A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested and appears to be substantiated. Full article
Figures

Figure 1

Open AccessArticle
Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater
J. Mar. Sci. Eng. 2016, 4(4), 74; doi:10.3390/jmse4040074 -
Abstract
Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined
[...] Read more.
Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions. Full article
Figures

Figure 1