Open AccessArticle
Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion
J. Funct. Biomater. 2016, 7(4), 32; doi:10.3390/jfb7040032 (registering DOI) -
Abstract
Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the
[...] Read more.
Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex. Full article
Figures

Open AccessArticle
Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects
J. Funct. Biomater. 2016, 7(4), 30; doi:10.3390/jfb7040030 -
Abstract
Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of
[...] Read more.
Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction. Full article
Figures

Figure 1

Open AccessArticle
In Vitro Study of a Superhydrophilic Thin Film Nitinol Endograft that is Electrostatically Endothelialized in the Catheter Prior to the Endovascular Procedure
J. Funct. Biomater. 2016, 7(4), 31; doi:10.3390/jfb7040031 (registering DOI) -
Abstract
Electrostatic endothelial cell seeding has evolved as an exceptional technique to improve the efficiency of cell seeding in terms of frequency of attached cells and the amount of cell adhesion for the treatment of vascular diseases. In the recent times, both untreated and
[...] Read more.
Electrostatic endothelial cell seeding has evolved as an exceptional technique to improve the efficiency of cell seeding in terms of frequency of attached cells and the amount of cell adhesion for the treatment of vascular diseases. In the recent times, both untreated and superhydrophilic thin film nitinol (TFN) have exhibited strong prospects as substrates for creation of small-diameter endovascular grafts due to their hallmark properties of superelasticity, ultra low-profile character, and grown hemocompatible oxide layer with the presence of a uniform endothelial layer on the surface. The purpose of the current study is to understand the effects of endothelial cell seeding parameters (i.e., applied voltage, incubation time, substrate chemistry, and cell suspension solution) to investigate the cell seeding phenomenon and to improve the cell adhesion and growth on the TFN surface under electrostatic transplantation. Both parallel plate and cylindrical capacitor models were used along with the Taguchi Design of Experiment (DOE) methods to design in vitro test parameters. A novel in vitro system for a cylindrical capacitor model was created using a micro flow pump, micro incubation system, and silicone tubings. The augmented endothelialization on thin film nitinol was developed to determine the effect of cell seeding and deployed in a 6 Fr intravascular catheter setup. Cell viability along with morphology and proliferation of adhered cells were evaluated using fluorescent and scanning electron microscopy. Our results demonstrated that the maximum number of cells attached on STFN in the catheter was observed in 5 V with the 2 h exposure of in the cell culture medium (CCM) solution. The condition showed 5 V voltage with 0.68 × 10−6 µC electrostatic charge and 5.11 V·mm−1 electric field. Our findings have first demonstrated that the electrostatic endothelialization on the superhydrophilic thin film nitinol endograft within the catheter prior to the endovascular procedure could enhance the biocompatibility for low-profile endovascular applications. Full article
Figures

Figure 1

Open AccessArticle
Cerebral Microvascular and Systemic Effects Following Intravenous Administration of the Perfluorocarbon Emulsion Perftoran
J. Funct. Biomater. 2016, 7(4), 29; doi:10.3390/jfb7040029 -
Abstract
Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the
[...] Read more.
Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 μm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50–100 μm) showed minor (~8–9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend. Full article
Figures

Figure 1

Open AccessArticle
Debris Evaluation after Root Canal Shaping with Rotating and Reciprocating Single-File Systems
J. Funct. Biomater. 2016, 7(4), 28; doi:10.3390/jfb7040028 -
Abstract
This study evaluated the root canal dentine surface by scanning electron microscope (SEM) after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules
[...] Read more.
This study evaluated the root canal dentine surface by scanning electron microscope (SEM) after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules along the walls of each sample; Forty-eight single-rooted teeth were divided into four groups and shaped with OneShape (OS), F6 SkyTaper (F6), WaveOne (WO) and Reciproc and irrigated using 5.25% NaOCl and 17% EDTA. Root canal walls were analyzed by SEM at a standard magnification of 2500×. The presence/absence of the smear layer and the presence/absence of open tubules at the coronal, middle, and apical third of each canal were estimated using a five-step scale for scores. Numeric data were analyzed using Kruskal-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05; The Kruskal-Wallis ANOVA for debris score showed significant differences among the NiTi systems (P < 0.05). The Mann-Whitney test confirmed that reciprocating systems presented significantly higher score values than rotating files. The same results were assessed considering the smear layer scores. ANOVA confirmed that the apical third of the canal maintained a higher quantity of debris and smear layer after preparation of all the samples; Single-use NiTi systems used in continuous rotation appeared to be more effective than reciprocating instruments in leaving clean walls. The reciprocating systems produced more debris and smear layer than rotating instruments. Full article
Figures

Figure 1

Open AccessArticle
Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering
J. Funct. Biomater. 2016, 7(3), 27; doi:10.3390/jfb7030027 -
Abstract
Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray
[...] Read more.
Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties. Full article
Figures

Figure 1

Open AccessReview
Processing Techniques and Applications of Silk Hydrogels in Bioengineering
J. Funct. Biomater. 2016, 7(3), 26; doi:10.3390/jfb7030026 -
Abstract
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required
[...] Read more.
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. Full article
Figures

Open AccessArticle
A Smart pH-Responsive Three Components Luminescent Hydrogel
J. Funct. Biomater. 2016, 7(3), 25; doi:10.3390/jfb7030025 -
Abstract
In this study, we report a novel three-component luminescent hydrogel, which is composed of amino acid derivatives (N,N′-di valine-3,4,9,10-perylenetetracarboxylic acid, NVPD), riboflavin (RF), and melamine (MM). The three-component hydrogel is attributed to multiple hydrogen bonds and the strong π-π
[...] Read more.
In this study, we report a novel three-component luminescent hydrogel, which is composed of amino acid derivatives (N,N′-di valine-3,4,9,10-perylenetetracarboxylic acid, NVPD), riboflavin (RF), and melamine (MM). The three-component hydrogel is attributed to multiple hydrogen bonds and the strong π-π stacking interaction between these molecules. Based on the strong hydrogen bonding of the gelator, when the reversible process between the gel and the solution take places it changes the pH of the system from 6.1 to 10.6. In addition, green fluorescence could be the emissive of the hydrogel under 498 nm and the conversion process of the aggregation state repeated reversibly by altering the value of ambient pH. This pH-responsive luminescent gel may display potential for use in nano pH sensors. Full article
Figures

Figure 1

Open AccessArticle
Photocrosslinkable Trehalose Derivatives Carrying Mesogenic Groups: Synthesis, Characterization, and in Vitro Evaluation for Fibroblast Attachment
J. Funct. Biomater. 2016, 7(3), 24; doi:10.3390/jfb7030024 -
Abstract
A photocrosslinkable trehalose derivative carrying mesogenic groups was synthesized by esterification reactions. The derivative (TC-HBPHA) was synthesized by the reaction of partially cinnamoyl-modified trehalose (TC4) with 4-(4-hexyloxybenzoyloxy)phenoxy-6-oxohexanoic acid (HBPHA) as a mesogenic unit. TC-HBPHA showed a nematic liquid crystalline mesophase at a temperature
[...] Read more.
A photocrosslinkable trehalose derivative carrying mesogenic groups was synthesized by esterification reactions. The derivative (TC-HBPHA) was synthesized by the reaction of partially cinnamoyl-modified trehalose (TC4) with 4-(4-hexyloxybenzoyloxy)phenoxy-6-oxohexanoic acid (HBPHA) as a mesogenic unit. TC-HBPHA showed a nematic liquid crystalline mesophase at a temperature range from 150 °C to 175 °C in the heating process under observation with a polarized optical microscope. The dimerization of the cinnamoyl groups of TC-HBPHA by ultraviolet (UV) light irradiation was monitored by ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The photocrosslinked film was obtained after the UV irradiation of TC-HBPHA, and it kept the liquid crystalline mesophase at almost the same temperature range. Fibroblast cells cultured on the photocrosslinked TC-HBPHA proliferated as well as on the polystyrene culture plate, indicating that the film has no toxicity. Interestingly, some cells on photocrosslinked TC-HBPHA had a spindle shape and aligned characteristically. Full article
Figures

Figure 1

Open AccessArticle
Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings
J. Funct. Biomater. 2016, 7(3), 23; doi:10.3390/jfb7030023 -
Abstract
Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a
[...] Read more.
Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. Full article
Figures

Figure 1

Open AccessReview
Tissue Regeneration: A Silk Road
J. Funct. Biomater. 2016, 7(3), 22; doi:10.3390/jfb7030022 -
Abstract
Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds,
[...] Read more.
Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world’s best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. Full article
Figures

Open AccessArticle
pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium
J. Funct. Biomater. 2016, 7(3), 21; doi:10.3390/jfb7030021 -
Abstract
Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles
[...] Read more.
Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. Full article
Figures

Open AccessReply
In Response to Michael Wininger’s Commentary: Common Roadblocks for Biomaterials Metrologists
J. Funct. Biomater. 2016, 7(3), 20; doi:10.3390/jfb7030020 -
Abstract I welcome Wininger’s commentary [1], and I would like to take the opportunity to address some of the issues raised.[...] Full article
Figures

Figure 1

Open AccessReview
Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy
J. Funct. Biomater. 2016, 7(3), 19; doi:10.3390/jfb7030019 -
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles
[...] Read more.
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed. Full article
Figures

Open AccessReview
Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review
J. Funct. Biomater. 2016, 7(3), 18; doi:10.3390/jfb7030018 -
Abstract
Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to
[...] Read more.
Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. Full article
Figures

Figure 1

Open AccessArticle
Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation
J. Funct. Biomater. 2016, 7(3), 17; doi:10.3390/jfb7030017 -
Abstract
The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation
[...] Read more.
The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation in situ, or without the need of extracting scaffolds once implanted. Specifically, the surface-eroding degradation of scaffolds in a degrading medium was monitored in situ by synchrotron-based imaging; and the time-dependent geometry of scaffolds captured by images was then employed to estimate their mass loss with time, based on the mathematical model that was adopted from the literature of surface erosion with the experimentally-identified model parameters. Acceptable agreement between experimental results and model predictions was observed for scaffolds in a cylindrical shape, made from poly(lactic-co-glycolic) acid (PLGA) and polycaprolactone (PCL). This study illustrates that geometry evaluation by synchrotron-based imaging is an effective means to in situ characterize the scaffold mass loss as well as possibly other degradation-related properties. Full article
Figures

Figure 1

Open AccessReview
A Review of Glass-Ionomer Cements for Clinical Dentistry
J. Funct. Biomater. 2016, 7(3), 16; doi:10.3390/jfb7030016 -
Abstract
This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base
[...] Read more.
This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature. Full article
Figures

Figure 1

Open AccessArticle
Fibrochondrocyte Growth and Functionality on TiO2 Nanothin Films
J. Funct. Biomater. 2016, 7(2), 15; doi:10.3390/jfb7020015 -
Abstract
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their
[...] Read more.
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO2) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO2 nanofilms may have potential as a TMJ scaffolding material. Full article
Figures

Open AccessArticle
Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet
J. Funct. Biomater. 2016, 7(2), 14; doi:10.3390/jfb7020014 -
Abstract
A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties
[...] Read more.
A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo. Full article
Open AccessReview
Keratoprosthesis: A Review of Recent Advances in the Field
J. Funct. Biomater. 2016, 7(2), 13; doi:10.3390/jfb7020013 -
Abstract
Since its discovery in the years of the French Revolution, the field of keratoprostheses has evolved significantly. However, the path towards its present state has not always been an easy one. Initially discarded for its devastating complications, the introduction of new materials and
[...] Read more.
Since its discovery in the years of the French Revolution, the field of keratoprostheses has evolved significantly. However, the path towards its present state has not always been an easy one. Initially discarded for its devastating complications, the introduction of new materials and the discovery of antibiotics in the last century gave new life to the field. Since then, the use of keratoprostheses for severe ocular surface disorders and corneal opacities has increased significantly, to the point that it has become a standard procedure for corneal specialists worldwide. Although the rate of complications has significantly been reduced, these can impede the long-term success, since some of them can be visually devastating. In an attempt to overcome these complications, researchers in the field have been recently working on improving the design of the currently available devices, by introducing the use of new materials that are more biocompatible with the eye. Here we present an update on the most recent research in the field. Full article