Open AccessArticle
Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field
J. Funct. Biomater. 2018, 9(2), 30; doi:10.3390/jfb9020030 (registering DOI) -
Abstract
Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we
[...] Read more.
Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration. Full article
Figures

Figure 1

Open AccessArticle
Novel Chlorhexidine-Loaded Polymeric Nanoparticles for Root Canal Treatment
J. Funct. Biomater. 2018, 9(2), 29; doi:10.3390/jfb9020029 -
Abstract
Persistence of microorganisms in dentinal tubules after root canal chemo-mechanical preparation has been well documented. The complex anatomy of the root canal and dentinal buffering ability make delivery of antimicrobial agents difficult. This work explores the use of a novel trilayered nanoparticle (TNP)
[...] Read more.
Persistence of microorganisms in dentinal tubules after root canal chemo-mechanical preparation has been well documented. The complex anatomy of the root canal and dentinal buffering ability make delivery of antimicrobial agents difficult. This work explores the use of a novel trilayered nanoparticle (TNP) drug delivery system that encapsulates chlorhexidine digluconate, which is aimed at improving the disinfection of the root canal system. Chlorhexidine digluconate was encapsulated inside polymeric self-assembled TNPs. These were self-assembled through water-in-oil emulsion from poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA), a di-block copolymer, with one hydrophilic segment and another hydrophobic. The resulting TNPs were physicochemically characterized and their antimicrobial effectiveness was evaluated against Enterococcus faecalis using a broth inhibition method. The hydrophilic interior of the TNPs successfully entrapped chlorhexidine digluconate. The resulting TNPs had particle size ranging from 140–295 nm, with adequate encapsulation efficiency, and maintained inhibition of bacteria over 21 days. The delivery of antibacterial irrigants throughout the dentinal matrix by employing the TNP system described in this work may be an effective alternative to improve root canal disinfection. Full article
Figures

Figure 1

Open AccessArticle
Rapidly-Dissolving Silver-Containing Bioactive Glasses for Cariostatic Applications
J. Funct. Biomater. 2018, 9(2), 28; doi:10.3390/jfb9020028 -
Abstract
A novel bioactive glass series containing incremental amounts of silver oxide was synthesized, ground down, and subsequently incorporated into a dentifrice for the purpose of reducing the incidence of dental caries and lesion formation. Three glasses were synthesized using the melt quench route:
[...] Read more.
A novel bioactive glass series containing incremental amounts of silver oxide was synthesized, ground down, and subsequently incorporated into a dentifrice for the purpose of reducing the incidence of dental caries and lesion formation. Three glasses were synthesized using the melt quench route: Si-Control (70SiO2–12CaO–3P2O5–15Na2O, mol %), Si-02 and Si-05, where 0.2 and 0.5 mol % Ag2O were substituted, respectively, for SiO2 in Si-Control. The glasses were then ground, sieved, characterized, and dissolved in Tris buffer solution (pH = 7.30) for 6, 12, and 24 h, with the pH of the resultant solution being recorded and the ions that were released into solution quantified. Samples of each glass were subsequently embedded into a non-fluoridated, commercially available toothpaste which was then used to brush resin-mounted lamb molars which, up to the point of testing, had been stored in a 1.0 M HCl solution. Knoop microhardness measurements of the molars were recorded before and after brushing to determine the presence of remineralization on the surface of the teeth (surface hardness loss of 37%, 35%, and 34% for Si-Control, Si-02 and Si-05, respectively, after 24 h). Four oral cavity bacterial strains were isolated through swabs of the inner cheek, gums, and teeth surfaces of three volunteers, and placed on agar discs. Of each glass, 0.5 g was placed onto the discs, and the resultant inhibition zones were measured after 6, 12, and 24 h. Si-05 performed better than Si-02 on two strains after 24 h, while exhibiting similar behavior for the remaining two strains after 24 h; the largest inhibition zone measured was 2.8 mm, for Si-05 after 12 h. Si-Control exhibited no antibacterial effect at any time point, providing evidence for the role of silver oxide as the antibacterial component of these glasses. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Short-Term Degradation of Bi-Component Electrospun Fibers: Qualitative and Quantitative Evaluations via AFM Analysis
J. Funct. Biomater. 2018, 9(2), 27; doi:10.3390/jfb9020027 -
Abstract
Electrospun polymeric fibers are currently used as 3D models for in vitro applications in biomedical areas, i.e., tissue engineering, cell and drug delivery. The high customization of the electrospinning process offers numerous opportunities to manipulate and control surface area, fiber diameter, and fiber
[...] Read more.
Electrospun polymeric fibers are currently used as 3D models for in vitro applications in biomedical areas, i.e., tissue engineering, cell and drug delivery. The high customization of the electrospinning process offers numerous opportunities to manipulate and control surface area, fiber diameter, and fiber density to evaluate the response of cells under different morphological and/or biochemical stimuli. The aim of this study was to investigate—via atomic force microscopy (AFM)—the chemical and morphological changes in bi-component electrospun fibers (BEFs) during the in vitro degradation process using a biological medium. BEFs were fabricated by electrospinning a mixture of synthetic-polycaprolactone (PCL)-and natural polymers (gelatin) into a binary solution. During the hydrolytic degradation of protein, no significant remarkable effects were recognized in terms of fiber integrity. However, increases in surface roughness as well as a decrease in fiber diameter as a function of the degradation conditions were detected. We suggest that morphological and chemical changes due to the local release of gelatin positively influence cell behavior in culture, in terms of cell adhesion and spreading, thus working to mimic the native microenvironment of natural tissues. Full article
Figures

Figure 1

Open AccessCorrection
Correction: W.C. Mak, et al. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules. J. Funct. Biomater. 2015, 6, 439–453
J. Funct. Biomater. 2018, 9(2), 26; doi:10.3390/jfb9020026 -
Abstract
Recently, we found a mistake in Figure 4D in our previously published paper[...] Full article
Figures

Figure 1

Open AccessReview
Bioactive Glasses: Where Are We and Where Are We Going?
J. Funct. Biomater. 2018, 9(1), 25; doi:10.3390/jfb9010025 -
Abstract
Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of
[...] Read more.
Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies
J. Funct. Biomater. 2018, 9(1), 24; doi:10.3390/jfb9010024 -
Abstract
Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone
[...] Read more.
Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. Recent advances in the use of BGs in tissue engineering are outlined, where the use of porous scaffolds is gaining growing importance thanks to the new possibilities given by technological progress extended to both manufacturing processes and functionalization techniques. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
First Results of a New Vacuum Plasma Sprayed (VPS) Titanium-Coated Carbon/PEEK Composite Cage for Lumbar Interbody Fusion
J. Funct. Biomater. 2018, 9(1), 23; doi:10.3390/jfb9010023 -
Abstract
The aim of this study was to assess the performance of a new vacuum plasma sprayed (VPS) titanium-coated carbon/polyetheretherketone (PEEK) cage under first use clinical conditions. Forty-two patients who underwent a one or two segment transforaminal lumbar interbody fusion (TLIF) procedure with a
[...] Read more.
The aim of this study was to assess the performance of a new vacuum plasma sprayed (VPS) titanium-coated carbon/polyetheretherketone (PEEK) cage under first use clinical conditions. Forty-two patients who underwent a one or two segment transforaminal lumbar interbody fusion (TLIF) procedure with a new Ca/PEEK composite cage between 2012 and 2016 were retrospectively identified by an electronic patient chart review. Fusion rates (using X-ray), patient’s satisfaction, and complications were followed up for two years. A total of 90.4% of the patients were pain-free and satisfied after a follow up (FU) period of 29.1 ± 9 (range 24–39) months. A mean increase of 3° in segmental lordosis in the early period (p = 0.002) returned to preoperative levels at final follow-ups. According to the Bridwell classification, the mean 24-month G1 fusion rate was calculated as 93.6% and the G2 as 6.4%. No radiolucency around the cage (G3) or clear pseudarthrosis could be seen (G4). In conclusion, biological properties of the inert, hydrophobic surface, which is the main disadvantage of PEEK, can be improved with VPS titanium coating, so that the carbon/PEEK composite cage, which has great advantages in respect of biomechanical properties, can be used safely in TLIF surgery. High fusion rates, good clinical outcome, and low implant-related complication rates without the need to use rhBMP or additional iliac bone graft can be achieved. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Recent Advances in Biomaterials for 3D Printing and Tissue Engineering
J. Funct. Biomater. 2018, 9(1), 22; doi:10.3390/jfb9010022 -
Abstract
Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology.
[...] Read more.
Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched. Full article
Figures

Figure 1

Open AccessArticle
Electron Beam Immobilization of Novel Antimicrobial, Short Peptide Motifs Leads to Membrane Surfaces with Promising Antibacterial Properties
J. Funct. Biomater. 2018, 9(1), 21; doi:10.3390/jfb9010021 -
Abstract
In this study, the efficacy of electron beam irradiation versus chemical coupling for yielding polyethersulfone (PES) membranes with antibacterial properties was investigated. For the surface coating, a recently discovered lead compound, IL-KKA, comprising a short peptide sequence functionalized with imidazolium groups, was used.
[...] Read more.
In this study, the efficacy of electron beam irradiation versus chemical coupling for yielding polyethersulfone (PES) membranes with antibacterial properties was investigated. For the surface coating, a recently discovered lead compound, IL-KKA, comprising a short peptide sequence functionalized with imidazolium groups, was used. For better integration within the membrane, several novel variants of IL-KKA were generated. Membrane immobilization was achieved using different doses of electron beam irradiation and NHS/EDC chemical coupling. Physicochemical characterization of the coated membranes was performed by water contact angle measurements, X-ray photoelectron spectroscopy, and scanning electron microscopy. Our results show that electron beam irradiation is as effective and gentle as chemical coupling using the NHS/EDC method. Moreover, it was demonstrated that the obtained membranes exhibit promising antibacterial activity against B. subtilis. In summary, the technique presented herein might be promising as a template for developing future anti-biofilm devices. Full article
Figures

Open AccessFeature PaperArticle
Antimicrobial Monomers for Polymeric Dental Restoratives: Cytotoxicity and Physicochemical Properties
J. Funct. Biomater. 2018, 9(1), 20; doi:10.3390/jfb9010020 -
Abstract
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide
[...] Read more.
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide (IDMA2), intended for utilization in bi-functional antimicrobial and remineralizing composites, were synthesized, purified with an ethanol-diethyl ether-hexane solvent system, and validated by nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry, and Fourier-transform infrared spectroscopy. When incorporated into light-curable urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA (PEG-U)/ethyl 2-(hydroxymethyl)acrylate (EHMA) (assigned UPE) resins, IDMAs did not affect the overall resins’ hydrophilicity/hydrophobicity balance (water contact angle: 60.8–65.5°). The attained degrees of vinyl conversion (DVC) were consistently higher in both IDMA-containing copolymers and their amorphous calcium phosphate (ACP) composites (up to 5% and 20%, respectively) reaching 92.5% in IDMA2 formulations. Notably, these high DVCs values were attained without an excessive increase in polymerization stress. The observed reduction in biaxial flexure strength of UPE-IDMA ACP composites should not prevent further evaluation of these materials as multifunctional Class V restoratives. In direct contact with human gingival fibroblasts, at biologically relevant concentrations, IDMAs did not adversely affect cell viability or their metabolic activity. Ion release from the composites was indicative of their strong remineralization potential. The above, early-phase biocompatibility and physicochemical tests justify further evaluation of these experimental materials to identify formulation(s) suitable for clinical testing. Successful completion is expected to yield a new class of restoratives with well-controlled bio-function, which will physicochemically, mechanically, and biologically outperform the conventional Class V restoratives. Full article
Figures

Open AccessFeature PaperReview
A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications
J. Funct. Biomater. 2018, 9(1), 19; doi:10.3390/jfb9010019 -
Abstract
Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic
[...] Read more.
Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic alloys, placing them at the frontier of biomaterials research. MGs have potential to improve corrosion resistance, biocompatibility, strength, and longevity of biomedical implants, and hence are promising materials for cardiovascular stent applications. Nevertheless, while functional properties and biocompatibility of MGs have been widely investigated and validated, a solid understanding of their mechanical performance during different stages in stent applications is still scarce. In this review, we provide a brief, yet comprehensive account on the general aspects of MGs regarding their formation, processing, structure, mechanical, and chemical properties. More specifically, we focus on the additive manufacturing (AM) of MGs, their outstanding high strength and resilience, and their fatigue properties. The interconnection between processing, structure and mechanical behaviour of MGs is highlighted. We further review the main categories of cardiovascular stents, the required mechanical properties of each category, and the conventional materials have been using to address these requirements. Then, we bridge between the mechanical requirements of stents, structural properties of MGs, and the corresponding stent design caveats. In particular, we discuss our recent findings on the feasibility of using MGs in self-expandable stents where our results show that a metallic glass based aortic stent can be crimped without mechanical failure. We further justify the safe deployment of this stent in human descending aorta. It is our intent with this review to inspire biodevice developers toward the realization of MG-based stents. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Modulation of Osteoclast Interactions with Orthopaedic Biomaterials
J. Funct. Biomater. 2018, 9(1), 18; doi:10.3390/jfb9010018 -
Abstract
Biomaterial integration in bone depends on bone remodelling at the bone-implant interface. Optimal balance of bone resorption by osteoclasts and bone deposition by osteoblasts is crucial for successful implantation, especially in orthopaedic surgery. Most studies examined osteoblast differentiation on biomaterials, yet few research
[...] Read more.
Biomaterial integration in bone depends on bone remodelling at the bone-implant interface. Optimal balance of bone resorption by osteoclasts and bone deposition by osteoblasts is crucial for successful implantation, especially in orthopaedic surgery. Most studies examined osteoblast differentiation on biomaterials, yet few research has been conducted to explore the effect of different orthopaedic implants on osteoclast development. This review covers, in detail, the biology of osteoclasts, in vitro models of osteoclasts, and modulation of osteoclast activity by different implant surfaces, bio-ceramics, and polymers. Studies show that surface topography influence osteoclastogenesis. For instance, metal implants with rough surfaces enhanced osteoclast activity, while smooth surfaces resulted in poor osteoclast differentiation. In addition, surface modification of implants with anti-osteoporotic drug further decreased osteoclast activity. In bioceramics, osteoclast development depended on different chemical compositions. Strontium-incorporated bioceramics decreased osteoclast development, whereas higher concentrations of silica enhanced osteoclast activity. Differences between natural and synthetic polymers also modulated osteoclastogenesis. Physiochemical properties of implants affect osteoclast activity. Hence, understanding osteoclast biology and its response to the natural microarchitecture of bone are indispensable to design suitable implant interfaces and scaffolds, which will stimulate osteoclasts in ways similar to that of native bone. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Novel Biomaterials Used in Medical 3D Printing Techniques
J. Funct. Biomater. 2018, 9(1), 17; doi:10.3390/jfb9010017 -
Abstract
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has
[...] Read more.
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications
J. Funct. Biomater. 2018, 9(1), 16; doi:10.3390/jfb9010016 -
Abstract
Magnetic resonance imaging (MRI) is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials
[...] Read more.
Magnetic resonance imaging (MRI) is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Towards Additive Manufacture of Functional, Spline-Based Morphometric Models of Healthy and Diseased Coronary Arteries: In Vitro Proof-of-Concept Using a Porcine Template
J. Funct. Biomater. 2018, 9(1), 15; doi:10.3390/jfb9010015 -
Abstract
The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries
[...] Read more.
The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending) and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries. Full article
Figures

Figure 1

Open AccessReview
Advances in Degradable Embolic Microspheres: A State of the Art Review
J. Funct. Biomater. 2018, 9(1), 14; doi:10.3390/jfb9010014 -
Abstract
Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all
[...] Read more.
Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. Full article
Figures

Open AccessFeature PaperReview
Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications
J. Funct. Biomater. 2018, 9(1), 13; doi:10.3390/jfb9010013 -
Abstract
Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been
[...] Read more.
Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections. Full article
Figures

Figure 1

Open AccessArticle
Route and Type of Formulation Administered Influences the Absorption and Disposition of Vitamin B12 Levels in Serum
J. Funct. Biomater. 2018, 9(1), 12; doi:10.3390/jfb9010012 -
Abstract
The administration of biological compounds that optimize health benefits is an ever-evolving therapeutic goal. Pharmaceutical and other adjunctive biological compounds have been administered via many different routes in order to produce a systemic pharmacological effect. The article summarizes the findings from an Australian
[...] Read more.
The administration of biological compounds that optimize health benefits is an ever-evolving therapeutic goal. Pharmaceutical and other adjunctive biological compounds have been administered via many different routes in order to produce a systemic pharmacological effect. The article summarizes the findings from an Australian comparative study in adults administered vitamin B12 through different oral delivery platforms. A total of 16 subjects (9 males, 7 females) voluntarily partook in a comparative clinical study of five different vitamin B12 formulations across a six-month period, completing 474 person-hours of cumulative contribution, that was equivalent to an n = 60 participation. A nanoparticle delivered vitamin B12 through a NanoCelle platform was observed to be significantly (p < 0.05) better absorbed than all other dose equivalent platforms (i.e., tablets, emulsions, or liposomes) from baseline to 1, 3, and 6 h of the study period. The nanoparticle platform delivered vitamin B12 demonstrated an enhanced and significant absorption profile as exemplified by rapid systemic detection (i.e., 1 h from baseline) when administered to the oro-buccal mucosa with no reports of any adverse events of toxicity. The nanoparticle formulation of methylcobalamin (1000 µg/dose in 0.3 mL volume) showed bioequivalence only with a chewable-dissolvable tablet that administered a five times higher dose of methylcobalamin (5000 µg) per tablet. This study has demonstrated that an active metabolite embedded in a functional biomaterial (NanoCelle) may constitute a drug delivery method that can better access the circulatory system. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Formulation of Poloxamers for Drug Delivery
J. Funct. Biomater. 2018, 9(1), 11; doi:10.3390/jfb9010011 -
Abstract
Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization
[...] Read more.
Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc.) of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective. Full article
Figures

Figure 1