Open AccessArticle
Periodic Physical Disturbance: An Alternative Method for Controlling Sitophilus zeamais (Maize Weevil) Infestation
Insects 2016, 7(4), 51; doi:10.3390/insects7040051 -
Abstract
Sitophilus zeamais Motschulsky is the most important insect pest of stored maize in tropical regions. The objective of this study was to determine the practicality of periodic physical disturbance on S. zeamais mortality and its adoption by smallholder farmers in developing countries. [...] Read more.
Sitophilus zeamais Motschulsky is the most important insect pest of stored maize in tropical regions. The objective of this study was to determine the practicality of periodic physical disturbance on S. zeamais mortality and its adoption by smallholder farmers in developing countries. In this experiment, treatments and control were arranged in a randomized block design with three replications and three storage times in three regions of Tanzania. Region was used as the blocking variable. A total of 108 clean 20-L plastic containers were each loaded with 10 kg of fresh white dent corn and 0.50 kg of maize infested with S. zeamais. For the treatment, containers were disturbed twice a day, whereas for the controls the containers were not disturbed until the end of storage. The overall mortality rate (%) after 30, 60, and 90 days of storage were 88%, 96%, and 98%, respectively. A statistically significant difference (p < 0.05) was observed for the number of live S. zeamais between the control and experimental treatments. Additionally, the number of live S. zeamais in the treatment significantly decreased as storage time increased. This study shows the potential of a feasible, simple, affordable, and effective method of protecting maize grain for small-holder farmers in developing countries without using chemicals. Full article
Figures

Figure 1

Open AccessReview
Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases
Insects 2016, 7(4), 50; doi:10.3390/insects7040050 -
Abstract
Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the [...] Read more.
Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being. Full article
Figures

Figure 1

Open AccessArticle
Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum
Insects 2016, 7(4), 49; doi:10.3390/insects7040049 -
Abstract
Climate change in the UK is predicted to cause an increase in summer drought events. Elatobium abietinum is an important pest of Sitka spruce (Picea sitchensis), causing defoliation of trees, and is predicted to become more abundant in response to [...] Read more.
Climate change in the UK is predicted to cause an increase in summer drought events. Elatobium abietinum is an important pest of Sitka spruce (Picea sitchensis), causing defoliation of trees, and is predicted to become more abundant in response to climatic change, reducing spruce productivity. Populations are also moderated by invertebrate predators, though the extent to which this might be modified under a changing climate is unclear. Elatobium abietinum is preyed upon by the coccinellid species Aphidecta obliterata (a spruce specialist) and Adalia bipunctata (a generalist), populations of which naturally occur in spruce plantations. This study sought to investigate the effect of different intensities and frequencies of drought on the consumption rate of the aphids by the two coccinellids. In Petri dish trials, severe drought stress increased the consumption rates of 3rd instar aphids by both adult and larval coccinellids. Moderate intermittent stress tended to result in a reduced consumption rate for larval coccinellids only, suggesting an age-dependent response. The findings of this study suggest that, under drought conditions, a prey-mediated effect on predator consumption, and, therefore, biocontrol efficacy, is likely, with drought intensity and frequency playing an important role in determining the nature of the response. Full article
Figures

Figure 1

Open AccessArticle
How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings
Insects 2016, 7(4), 48; doi:10.3390/insects7040048 -
Abstract
(1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against [...] Read more.
(1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers’ options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies. Full article
Figures

Figure 1

Open AccessArticle
Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations
Insects 2016, 7(4), 47; doi:10.3390/insects7040047 -
Abstract
The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither [...] Read more.
The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. Full article
Figures

Figure 1

Open AccessReview
Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control
Insects 2016, 7(3), 46; doi:10.3390/insects7030046 -
Abstract
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but [...] Read more.
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs. Full article
Figures

Figure 1

Open AccessCommunication
Impact of an Invasive Insect and Plant Defense on a Native Forest Defoliator
Insects 2016, 7(3), 45; doi:10.3390/insects7030045 -
Abstract
Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines [...] Read more.
Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines of this conifer. Although these two insects co-occur in much of the adelgid’s invaded range, their interactions remain unstudied. We assessed looper performance and preference on both uninfested and adelgid-infested foliage from adelgid-susceptible hemlocks, as well as on uninfested foliage from an eastern hemlock that is naturally adelgid-resistant. Larvae reared on uninfested foliage from adelgid-susceptible hemlocks experienced 60% mortality within the first two weeks of the experiment, and pupated at a lower weight than larvae fed adelgid-infested foliage. Despite differences in foliage source, this first look and strong pattern suggests that the hemlock looper performs better (pupates earlier, weighs more) on adelgid-infested foliage. In addition, trends suggested that larvae reared on foliage from the adelgid-resistant tree survived better, pupated earlier, and weighed more than in the other treatments. Larvae preferred adelgid-resistant over adelgid-susceptible foliage. Our results suggest that looper perform slightly better on adelgid-infested foliage and that plant resistance to xylem-feeding adelgid may increase susceptibility to foliar-feeding looper larvae. Full article
Figures

Figure 1

Open AccessArticle
Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams
Insects 2016, 7(3), 44; doi:10.3390/insects7030044 -
Abstract
Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O2) achieved with low pressure under a vacuum, high carbon dioxide (CO2), and ozone (O[...] Read more.
Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O2) achieved with low pressure under a vacuum, high carbon dioxide (CO2), and ozone (O3). Results showed that both low O2 and high CO2 levels required exposures up to 144 h to kill 100% of all stages of red-legged ham beetle, Necrobia rufipes (De Geer) (Coleoptera: Cleridae) and ham mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) at 23 °C. In addition, both low O2 and high CO2 had no significant mortality against the ham beetle and ham mites at short exposures ranging from 12 to 48 h. Ham beetles were more tolerant than ham mites to an atmosphere of 75.1% CO2 and low pressure of 25 mm Hg, which imposed an atmosphere estimated at 0.9% O2. Both low O2 and high CO2 trials indicated that the egg stages of both species were more tolerant than other stages tested, but N. rufipes eggs and pupae were more susceptible than larvae and adults to high concentration ozone treatments. The results indicate that O3 has potential to control ham beetles and ham mites, particularly at ≈166 ppm in just a 24 h exposure period, but O3 is known from other work to have poor penetration ability, thus it may be more difficult to apply effectively than low O2 or high CO2. would be. CA treatment for arthropod pests of dry-cured hams show promise as components of integrated pest management programs after methyl bromide is no longer available for use. Full article
Open AccessArticle
Improving Efficacy of Beauveria bassiana against Stored Grain Beetles with a Synergistic Co-Formulant
Insects 2016, 7(3), 42; doi:10.3390/insects7030042 -
Abstract
The potential of a dry powder co-formulant, kaolin, to improve the control of storage beetles by the entomopathogenic fungus Beauveria bassiana, isolate IMI389521, was investigated. The response of Oryzaephilus surinamensis adults to the fungus when applied to wheat at 1 × [...] Read more.
The potential of a dry powder co-formulant, kaolin, to improve the control of storage beetles by the entomopathogenic fungus Beauveria bassiana, isolate IMI389521, was investigated. The response of Oryzaephilus surinamensis adults to the fungus when applied to wheat at 1 × 1010 conidia per kg with and without kaolin at 1.74 g per kg wheat was assessed. Addition of kaolin increased control from 46% to 88% at day 7 and from 81% to 99% at day 14 post-treatment. Following this the dose response of O. surinamensis and Tribolium confusum to both kaolin and the fungus was investigated. Synergistic effects were evident against O. surinamensis at ≥0.96 g of kaolin per kg of wheat when combined with the fungus at all concentrations tested. For T. confusum, adult mortality did not exceed 55%, however, the larvae were extremely susceptible with almost complete suppression of adult emergence at the lowest fungal rate tested even without the addition of kaolin. Finally, the dose response of Sitophilus granarius to the fungus at 15 and 25 °C, with and without kaolin at 1 g per kg of wheat, was examined. Improvements in efficacy were achieved by including kaolin at every fungal rate tested and by increasing the temperature. Kaolin by itself was not effective, only when combined with the fungus was an effect observed, indicating that kaolin was having a synergistic effect on the fungus. Full article
Figures

Figure 1

Open AccessArticle
Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite
Insects 2016, 7(3), 43; doi:10.3390/insects7030043 -
Abstract
We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment [...] Read more.
We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%–4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. Full article
Figures

Figure 1

Open AccessArticle
Flood Stress as a Technique to Assess Preventive Insecticide and Fungicide Treatments for Protecting Trees against Ambrosia Beetles
Insects 2016, 7(3), 40; doi:10.3390/insects7030040 -
Abstract
Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and [...] Read more.
Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and fungicide efficacy trials conducted in Ohio and Virginia. Since female ambrosia beetles will not begin ovipositing until their symbiotic fungus is established within the host, we also assessed pre-treatment of trees with permethrin, azoxystrobin, and potassium phosphite on fungal establishment and beetle colonization success. Permethrin reduced attacks on flooded trees, yet no attacks occurred on any of the non-flooded trees. Fewer galleries created within flooded trees pre-treated with permethrin, azoxystrobin, and potassium phosphite contained the purported symbiotic fungus; foundress’ eggs were only detected in flooded but untreated trees. While pre-treatment with permethrin, azoxystrobin, and potassium phosphite can disrupt colonization success, maintaining tree health continues to be the most effective and sustainable management strategy. Full article
Figures

Figure 1

Open AccessArticle
Evidence of Subterranean Termite Feeding Deterrent Produced by Brown Rot Fungus Fibroporia radiculosa (Peck) Parmasto 1968 (Polyporales, Fomitopsidaceae)
Insects 2016, 7(3), 41; doi:10.3390/insects7030041 -
Abstract
We found that decayed wood stakes with no termite damage collected from a termite-infested field exhibited a deterrent effect against the termite Reticulitermes speratus, Kolbe, 1885. The effect was observed to be lost or reduced by drying. After identification, it was [...] Read more.
We found that decayed wood stakes with no termite damage collected from a termite-infested field exhibited a deterrent effect against the termite Reticulitermes speratus, Kolbe, 1885. The effect was observed to be lost or reduced by drying. After identification, it was found that the decayed stakes were infected by brown rot fungus Fibroporia radiculosa (Peck) Parmasto, 1968. In a no-choice feeding test, wood blocks decayed by this fungus under laboratory condition deterred R. speratus feeding and n-hexane extract from the decayed stake and blocks induced termite mortality. These data provided an insight into the interaction between wood-rot fungi and wood-feeding termites. Full article
Figures

Figure 1

Open AccessReview
Lariophagus distinguendus (Hymenoptera: Pteromalidae) (Förster)—Past, Present, and Future: The History of a Biological Control Method Using L. distinguendus against Different Storage Pests
Insects 2016, 7(3), 39; doi:10.3390/insects7030039 -
Abstract
Legal requirements and consumer demands for residue-free products pose a big challenge for pest control in grain stores. One possible alternative to chemical insecticides is biological pest control with the pteromalid wasp Lariophagus distinguendus against the weevils Sitophilus granarius, S. oryzae[...] Read more.
Legal requirements and consumer demands for residue-free products pose a big challenge for pest control in grain stores. One possible alternative to chemical insecticides is biological pest control with the pteromalid wasp Lariophagus distinguendus against the weevils Sitophilus granarius, S. oryzae (Coleoptera: Dryophtoridae), and many other storage pest beetles. The use of this wasp as a biocontrol agent was already suggested in 1919 by Prof. Dr. Hase [1]. Despite many studies on host-finding and behavioral biology, the applied aspect was neglected until 1994. Nowadays the wasps are commercially available and can now even be reared on-site, facilitating their use tremendously. This review highlights the milestones in L. distinguendus research, gives insights in current studies, and ventures a glimpse into the future. Full article
Open AccessArticle
Nest-Gallery Development and Caste Composition of Isolated Foraging Groups of the Drywood Termite, Incisitermes minor (Isoptera: Kalotermitidae)
Insects 2016, 7(3), 38; doi:10.3390/insects7030038 -
Abstract
An X-ray computed-tomographic examination of nest-gallery development from timbers naturally infested by foraging groups of Incisitermes minor colonies was conducted. This study documents the colonization process of I. minor to new timbers and how the isolated groups maintain their nest-gallery system. The [...] Read more.
An X-ray computed-tomographic examination of nest-gallery development from timbers naturally infested by foraging groups of Incisitermes minor colonies was conducted. This study documents the colonization process of I. minor to new timbers and how the isolated groups maintain their nest-gallery system. The results suggested that development of a nest-gallery within a suitable wood item is not random, but shows selection for softer substrate and other adaptations to the different timber environments. Stigmergic coordinations were expressed in dynamic changes of the nest-gallery system; indicated by fortification behavior in sealing and re-opening a tunnel approaching the outer edge of the timber, and accumulating fecal pellets in particular chambers located beneath the timber surface. The study also examines the caste composition of isolated groups to discover how I. minor sustains colonies with and without primary reproductives. Full article
Figures

Figure 1

Open AccessArticle
Subterranean Termite Resistance of Polystyrene-Treated Wood from Three Tropical Wood Species
Insects 2016, 7(3), 37; doi:10.3390/insects7030037 -
Abstract
The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii) were treated with polystyrene at loading [...] Read more.
The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii) were treated with polystyrene at loading levels of 26.0%, 8.6%, and 7.7%, respectively. Treated and untreated samples were exposed to environmental conditions in the field for 3 months. Untreated specimens of sengon, mangium, and pine had resistance ratings of 3.0, 4.6, and 2.4, respectively, based on a 10-point scale from 0 (no resistance) to 10 (complete or near-complete resistance). Corresponding resistance values of 7.8, 7.2, and 8.2 were determined for specimens treated with polystyrene. Overall weight loss values of 50.3%, 23.3%, and 66.4% were found for untreated sengon, mangium, and pine samples, respectively; for treated samples, the values were 7.6%, 14.4%, and 5.1%, respectively. Based on the findings in this study, overall resistance to termite attack was higher for treated samples compared to untreated samples. Full article
Figures

Figure 1

Open AccessArticle
Effects of Decompression Treatment for Controlling the Powderpost Beetle, Lyctus africanus Lesne, (Coleoptera: Lyctinae)
Insects 2016, 7(3), 36; doi:10.3390/insects7030036 -
Abstract
The efficacy of decompression treatment as a non-destructive method to control larvae of the powderpost beetle, Lyctus africanus Lesne, was evaluated in the laboratory using various combinations of two pressure levels, 1.1 kPa and 40 kPa, and three temperature levels, 20, 25, [...] Read more.
The efficacy of decompression treatment as a non-destructive method to control larvae of the powderpost beetle, Lyctus africanus Lesne, was evaluated in the laboratory using various combinations of two pressure levels, 1.1 kPa and 40 kPa, and three temperature levels, 20, 25, and 40 °C. Larval mortality generally depended on weight reduction while decreases in the oxygen level had relatively little effect. The lower pressure, 1.1 kPa, significantly affected mortality, and no larvae survived after 12 h of this pressure treatment, at 25 °C. The average body weight was reduced with treatment time and temperature, and the reduction rate at 25 °C was higher than that at the lower temperature, 20 °C. Effects on larvae of the higher pressure treatment, 40 kPa, with a CO2 gas purge, were tested to determine the feasibility of decompression treatment in the manufacturing process. Although higher pressure resulted in low mortality, the body weight was dramatically decreased using the CO2 purge. These results present important information on the possibility of using decompression treatment for wood products. Full article
Figures

Figure 1

Open AccessArticle
Repellent Activity of Botanical Oils against Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
Insects 2016, 7(3), 35; doi:10.3390/insects7030035 -
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the insect vector of the pathogen causing huanglongbing. We selected three botanical oils to evaluate behavioral activity against D. citri. In laboratory olfactometer assays, fir oil was repellent to D. citri females, while [...] Read more.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the insect vector of the pathogen causing huanglongbing. We selected three botanical oils to evaluate behavioral activity against D. citri. In laboratory olfactometer assays, fir oil was repellent to D. citri females, while litsea and citronella oils elicited no response from D. citri females. In choice settling experiments, D. citri settled almost completely on control plants rather than on plants treated with fir oil at a 9.5 mg/day release rate. Therefore, we conducted field trials to determine if fir oil reduced D. citri densities in citrus groves. We found no repellency of D. citri from sweet orange resets that were treated with fir oil dispensers releasing 10.4 g/day/tree as compared with control plots. However, we found a two-week decrease in populations of D. citri as compared with controls when the deployment rate of these dispensers was doubled. Our results suggest that treatment of citrus with fir oil may have limited activity as a stand-alone management tool for D. citri and would require integration with other management practices. Full article
Figures

Figure 1

Open AccessArticle
Functional Responses of Three Neotropical Mirid Predators to Eggs of Tuta absoluta on Tomato
Insects 2016, 7(3), 34; doi:10.3390/insects7030034 -
Abstract
Tuta absoluta (Meyrick) has quickly developed into a significant tomato pest worldwide. While the recently found mirid predators Macrolophus basicornis (Stal), Engytatus varians (Distant) and Campyloneuropsis infumatus (Carvalho) of this pest are able to establish and reproduce on tomato, biological knowledge of [...] Read more.
Tuta absoluta (Meyrick) has quickly developed into a significant tomato pest worldwide. While the recently found mirid predators Macrolophus basicornis (Stal), Engytatus varians (Distant) and Campyloneuropsis infumatus (Carvalho) of this pest are able to establish and reproduce on tomato, biological knowledge of these mirids is still limited. Here we describe the functional response of the three mirid predators of the tomato pest T. absoluta when offered a range of prey densities (four, eight, 16, 32, 64, 128 and 256 eggs) during a 24 h period inside cylindrical plastic cages in the laboratory. Engytatus varians and M. basicornis showed a type III functional response, whereas C. infumatus showed a type II functional response. At the highest prey densities, C. infumatus consumed an average of 51.0 eggs, E. varians 91.1 eggs, and M. basicornis 100.8 eggs. Taking all information into account that we have collected of these three Neotropical mirid species, we predict that M. basicornis might be the best candidate for control of the tomato borer in Brazil: it has the highest fecundity, the largest maximum predation capacity, and it reacts in a density-dependent way to the widest prey range. Full article
Figures

Open AccessArticle
Methodology for Evaluating the Insect Growth Regulator (IGR) Methoprene on Packaging Films
Insects 2016, 7(3), 33; doi:10.3390/insects7030033 -
Abstract
The insect growth regulator methoprene can be mixed into the matrix used to comprise bags and other packaging materials. Different methodologies were utilized to evaluate the efficacy of different types of methoprene-treated packaging towards Tribolium castaneum (Herbst), the red flour beetle, and [...] Read more.
The insect growth regulator methoprene can be mixed into the matrix used to comprise bags and other packaging materials. Different methodologies were utilized to evaluate the efficacy of different types of methoprene-treated packaging towards Tribolium castaneum (Herbst), the red flour beetle, and T. confusum Jacquelin duVal, the confused flour beetle, two common insect species that infest stored products. Tests were conducted by creating arenas in which larvae were exposed on the packaging surface along with a flour food source, and assessments were made on adults emerging from the exposed progeny. Tests were also done by exposing adults, again with a flour food source, removing the adults after one week, and assessing adult emergence of progeny from those parental adults. In tests with larvae exposed on methoprene-treated birdseed bags, the outside surface had more activity compared to the inside surface, especially on T. confusum. In other studies with different types of packaging materials, there was generally 100% inhibition of adult emergence of exposed larvae or of progeny adults when parental adults were exposed on the methoprene-treated packaging. The best technique for evaluation was to expose late-stage larvae as the test life stage. Results show the potential of using methoprene-treated packaging for bagged storage of processed grains and grain products. Full article
Open AccessArticle
Pickleworm (Diaphania nitidalis Cramer) Neonate Feeding Preferences and the Implications for a Push-Pull Management System
Insects 2016, 7(3), 32; doi:10.3390/insects7030032 -
Abstract
Push-pull cropping approaches for pest management target the oviposition behavior of adult females. However, insect larvae may move from the natal host and undermine the effectiveness of this approach. We investigated the longevity and feeding preference of pickleworm neonates (Diaphania nitidalis[...] Read more.
Push-pull cropping approaches for pest management target the oviposition behavior of adult females. However, insect larvae may move from the natal host and undermine the effectiveness of this approach. We investigated the longevity and feeding preference of pickleworm neonates (Diaphania nitidalis Cramer (Lepidoptera: Crambidae)) in relation to a potential push-pull cropping approach incorporating squash as a trap crop (pull) and watermelon as a deterrent intercrop (push) to protect a main crop of cantaloupe. Neonates could survive between 24 to 64 h without food, indicating they have some initial energy reserves to keep alive while in search of a suitable feeding site. To assess neonate feeding preferences, naive neonates were given the choice of five foods; leaves of squash, cantaloupe, watermelon, bean, and a pinto bean-based artificial diet. To assess if previous feeding experience influences neonate food source preference, neonates were allowed to feed on one of the five foods for 24 h and then given the same choice of the five food sources. The neonates, with or without previous feeding experience, did not appear to have a significant preference for any of the cucurbits: squash, cantaloupe, or watermelon, but they did prefer a cucurbit to the bean leaf or artificial diet. Feeding experience on one of these non-host foods made neonates more accepting of these food sources in the choice arena even when host plant food sources became available. It appears that neonate feeding preferences of pickleworm would neither hinder nor enhance the potential success of the proposed cucurbits to be used in a potential push-pull cropping approach for pickleworm management. Full article
Figures

Figure 1