Open AccessArticle
Backbone-Substituted β-Ketoimines and Ketoiminate Clusters: Transoid Li2O2 Squares and D2-Symmetric Li4O4 Cubanes. Synthesis, Crystallography and DFT Calculations
Inorganics 2017, 5(2), 30; doi:10.3390/inorganics5020030 -
Abstract
The preparation and crystal structures of four β-ketoimines with bulky aryl nitrogen substituents (2,6-diisopropylphenyl and 2,4,6-trimethylphenyl) and varying degrees of backbone methyl substitution are reported. Backbone substitution “pinches” the chelate ring. Deprotonation with n-butyllithium leads to dimeric Li2O2 clusters,
[...] Read more.
The preparation and crystal structures of four β-ketoimines with bulky aryl nitrogen substituents (2,6-diisopropylphenyl and 2,4,6-trimethylphenyl) and varying degrees of backbone methyl substitution are reported. Backbone substitution “pinches” the chelate ring. Deprotonation with n-butyllithium leads to dimeric Li2O2 clusters, as primary laddered units, with an open transoid geometry as shown by crystal structures of three examples. The coordination sphere of each lithium is completed by one tetrahydrofuran ligand. NMR spectra undertaken in either C6D6 or 1:1 C6D6/d8-THF show free THF in solution and the chemical shifts of ligand methyl groups experience significant ring-shielding which can only occur from aryl rings on adjacent ligands. Both features point to conversion to higher-order aggregates when the THF concentration is reduced. Recrystallization of the materials from hydrocarbon solutions results in secondary laddering as tetrameric Li4O4 clusters with a cuboidal core, three examples of which have been crystallographically characterised. These clusters are relatively insoluble and melt up to 250 °C; a consideration of the solid-state structures indicates that the clusters with 2,6-diisopropylphenyl substituents form very uniform ball-like molecular structures that will only be weakly solvated. Full article
Figures

Open AccessArticle
Hydrogen Sorption in Erbium Borohydride Composite Mixtures with LiBH4 and/or LiH
Inorganics 2017, 5(2), 31; doi:10.3390/inorganics5020031 -
Abstract
Rare earth (RE) metal borohydrides have recently been receiving attention as possible hydrogen storage materials and solid-state Li-ion conductors. In this paper, the decomposition and reabsorption of Er(BH4)3 in composite mixtures with LiBH4 and/or LiH were investigated. The composite
[...] Read more.
Rare earth (RE) metal borohydrides have recently been receiving attention as possible hydrogen storage materials and solid-state Li-ion conductors. In this paper, the decomposition and reabsorption of Er(BH4)3 in composite mixtures with LiBH4 and/or LiH were investigated. The composite of 3LiBH4 + Er(BH4)3 + 3LiH has a theoretical hydrogen storage capacity of 9 wt %, nevertheless, only 6 wt % hydrogen are accessible due to the formation of thermally stable LiH. Hydrogen sorption measurements in a Sieverts-type apparatus revealed that during three desorption-absorption cycles of 3LiBH4 + Er(BH4)3 + 3LiH, the composite desorbed 4.2, 3.7 and 3.5 wt % H for the first, second and third cycle, respectively, and thus showed good rehydrogenation behavior. In situ synchrotron radiation powder X-ray diffraction (SR-PXD) after ball milling of Er(BH4)3 + 6LiH resulted in the formation of LiBH4, revealing that metathesis reactions occurred during milling in these systems. Impedance spectroscopy of absorbed Er(BH4)3 + 6LiH showed an exceptional high hysteresis of 40–60 K for the transition between the high and low temperature phases of LiBH4, indicating that the high temperature phase of LiBH4 is stabilized in the composite. Full article
Figures

Figure 1

Open AccessArticle
Methanediide Formation via Hydrogen Elimination in Magnesium versus Aluminium Hydride Complexes of a Sterically Demanding Bis(iminophosphoranyl)methanediide
Inorganics 2017, 5(2), 29; doi:10.3390/inorganics5020029 -
Abstract
Substituted bis(iminophosphoranyl)methanes are CH acidic compounds that can form complexes with formally dianionic central carbon centres. The reaction of H2C(Ph2P=NDip)2 (≡ H2L), Dip = 2,6-diisopropylphenyl, with one equivalent of di-n-butylmagnesium afforded the methanide complex
[...] Read more.
Substituted bis(iminophosphoranyl)methanes are CH acidic compounds that can form complexes with formally dianionic central carbon centres. The reaction of H2C(Ph2P=NDip)2 (≡ H2L), Dip = 2,6-diisopropylphenyl, with one equivalent of di-n-butylmagnesium afforded the methanide complex [HLMgnBu] 1. Treatment of Complex 1 with phenylsilane in aromatic solvents at elevated temperatures afforded the methanediide complex [(LMg)2] 2 presumably via the MgH intermediate [(HLMgH)n] (n = 1 or 2). The reaction of 1 with LiAlH4 in diethyl ether yielded the AlH complex [HLAlH2] 3. Alternatively, this complex was also obtained from the reaction of H2L with AlH3∙NMe3. The molecular structures of [HLMgnBu] 1, [(LMg)2] 2, and [HLAlH2] 3 are reported. Complex 3 shows no sign of H2 elimination to a methanediide species at elevated temperatures in contrast to the facile elimination of the putative reaction intermediate [(HLMgH)n] (n = 1 or 2) to form [(LMg)2] 2. The chemical properties of Complex 2 were investigated, and this complex appears to be stable against coordination with strong donor molecules. Full article
Figures

Open AccessArticle
Pulsed Current Electrodeposition of Silicon Thin Films Anodes for Lithium Ion Battery Applications
Inorganics 2017, 5(2), 27; doi:10.3390/inorganics5020027 -
Abstract
Electrodeposition of amorphous silicon thin films on Cu substrate from organic ionic electrolyte using pulsed electrodeposition conditions has been studied. Scanning electron microscopy analysis shows a drastic change in the morphology of these electrodeposited silicon thin films at different frequencies of 0, 500,
[...] Read more.
Electrodeposition of amorphous silicon thin films on Cu substrate from organic ionic electrolyte using pulsed electrodeposition conditions has been studied. Scanning electron microscopy analysis shows a drastic change in the morphology of these electrodeposited silicon thin films at different frequencies of 0, 500, 1000, and 5000 Hz studied due to the change in nucleation and the growth mechanisms. These electrodeposited films, when tested in a lithium ion battery configuration, showed improvement in stability and performance with an increase in pulse current frequency during deposition. XPS analysis showed variation in the content of Si and oxygen with the change in frequency of deposition and with the change in depth of these thin films. The presence of oxygen largely due to electrolyte decomposition during Si electrodeposition and the structural instability of these films during the first discharge–charge cycle are the primary reasons contributing to the first cycle irreversible (FIR) loss observed in the pulse electrodeposited Si–O–C thin films. Nevertheless, the silicon thin films electrodeposited at a pulse current frequency of 5000 Hz show a stable capacity of ~805 mAh·g−1 with a fade in capacity of ~0.056% capacity loss per cycle (a total loss of capacity ~246 mAh·g−1) at the end of 500 cycles. Full article
Figures

Open AccessArticle
Alkali and Alkaline Earth Metal Complexes Ligated by an Ethynyl Substituted Cyclopentadienyl Ligand
Inorganics 2017, 5(2), 28; doi:10.3390/inorganics5020028 -
Abstract
Sodium, potassium, and calcium compounds of trimethyl((2,3,4,5-tetramethylcyclopentadien-1-yl)ethynyl)silane (CpMe4(C≡CSiMe3)) were synthesized and characterized by X-ray diffraction and standard analytical methods. The sodium derivative was obtained by deprotonation of CpMe4(C≡CSiMe3)H with Na{N(SiMe3)2} to
[...] Read more.
Sodium, potassium, and calcium compounds of trimethyl((2,3,4,5-tetramethylcyclopentadien-1-yl)ethynyl)silane (CpMe4(C≡CSiMe3)) were synthesized and characterized by X-ray diffraction and standard analytical methods. The sodium derivative was obtained by deprotonation of CpMe4(C≡CSiMe3)H with Na{N(SiMe3)2} to give a monomeric complex [NaCpMe4(C≡CSiMe3)(THF)3]. In a similar reaction, starting from K{N(SiMe3)2} the corresponding potassium compound [KCpMe4(C≡CSiMe3)(THF)2]n, which forms a polymeric super sandwich structure in the solid state, was obtained. Subsequently, salt metathesis reactions were conducted in order to investigate the versatility of the CpMe4(C≡CSiMe3) ligand in alkaline earth chemistry. The reaction of [KCpMe4(C≡CSiMe3)(THF)2]n with CaI2 afforded the dimeric complex [CaCpMe4(C≡CSiMe3)I(THF)2]2, in which both CpMe4(C≡CSiMe3)Ca units are bridged by iodide in a μ2 fashion. In-depth NMR investigation indicates that [CaCpMe4(C≡CSiMe3)I(THF)2]2 is in a Schlenk equilibrium with [{CpMe4(C≡CSiMe3)}2Ca(THF)x] and CaI2(THF)2, as is already known for [CaCp*I(THF)2]. Full article
Figures

Open AccessArticle
Potassium C–F Interactions and the Structural Consequences in N,N′-Bis(2,6-difluorophenyl)formamidinate Complexes
Inorganics 2017, 5(2), 26; doi:10.3390/inorganics5020026 -
Abstract
Treatment of K[N(SiMe3)2] with N,N′-bis(2,6-difluorophenyl)formamidine (DFFormH) in toluene, resulted in the formation of [K(DFForm)]∞ (1) as a poorly soluble material. Upon dissolution in thf and layering with n-hexane, 1 was crystallised and identified as a two-dimensional polymer, in which all fluorine and nitrogen
[...] Read more.
Treatment of K[N(SiMe3)2] with N,N′-bis(2,6-difluorophenyl)formamidine (DFFormH) in toluene, resulted in the formation of [K(DFForm)]∞ (1) as a poorly soluble material. Upon dissolution in thf and layering with n-hexane, 1 was crystallised and identified as a two-dimensional polymer, in which all fluorine and nitrogen atoms, and also part of one aryl group, bridge between four symmetry equivalent potassium ions, giving rise to a completely unique μ4-(N,N′,F,F′):(N,N′):η4(Ar-C(2,3,4,5,6)):(F″,F′′′) DFForm coordination. The two-dimensional nature of the polymer could be deconstructed to one dimension by crystallisation from neat thf at −35 °C, giving [K2(DFForm)2(thf)2]∞ (2), where the thf molecules bridge the monomeric units. Complete polymer dissociation was observed when 1 was crystallised from toluene/n-hexane mixtures in the presence of 18-crown-6, giving [K(DFForm)(18-crown-6)] (3), which showed unprecedented κ(N,Cispo,F) DFForm coordination, rather than the expected κ(N,N′) coordination. Full article
Figures

Open AccessReview
Nanotechnology of Positive Electrodes for Li-Ion Batteries
Inorganics 2017, 5(2), 25; doi:10.3390/inorganics5020025 -
Abstract
This work presents the recent progress in nanostructured materials used as positive electrodes in Li-ion batteries (LIBs). Three classes of host lattices for lithium insertion are considered: transition-metal oxides V2O5, α-NaV2O5, α-MnO2, olivine-like
[...] Read more.
This work presents the recent progress in nanostructured materials used as positive electrodes in Li-ion batteries (LIBs). Three classes of host lattices for lithium insertion are considered: transition-metal oxides V2O5, α-NaV2O5, α-MnO2, olivine-like LiFePO4, and layered compounds LiNi0.55Co0.45O2, LiNi1/3Mn1/3Co1/3O2 and Li2MnO3. First, a brief description of the preparation methods shows the advantage of a green process, i.e., environmentally friendliness wet chemistry, in which the synthesis route using single and mixed chelators is used. The impact of nanostructure and nano-morphology of cathode material on their electrochemical performance is investigated to determine the synthesis conditions to obtain the best electrochemical performance of LIBs. Full article
Figures

Open AccessReview
Visible Light-Activated PhotoCORMs
Inorganics 2017, 5(2), 24; doi:10.3390/inorganics5020024 -
Abstract
Despite its well-known toxicity, carbon monoxide (CO) is now recognized as a potential therapeutic agent. Its inherent toxicity, however, has limited clinical applications because uncontrolled inhalation of the gas leads to severe systemic derangements in higher organisms. In order to obviate life-threatening effects
[...] Read more.
Despite its well-known toxicity, carbon monoxide (CO) is now recognized as a potential therapeutic agent. Its inherent toxicity, however, has limited clinical applications because uncontrolled inhalation of the gas leads to severe systemic derangements in higher organisms. In order to obviate life-threatening effects and administer the gas by bypassing the respiratory system, CO releasing molecules (CORMs) have emerged in the last decades as a plausible alternative to deliver controlled quantities of CO in cellular systems and tissues. As stable, solid-storage forms of CO, CORMs can be used to deliver the gas following activation by a stimulus. Light-activated CORMs, known as photoCORMs, are one such example. This class of molecules is particularly attractive because, for possible applications of CORMs, temporal and spatial control of CO delivery is highly desirable. However, systems triggered by visible light are rare. Most currently known photoCORMs are activated with UV light, but red light or even infrared photo-activation is required to ensure that structures deeper inside the body can be reached while minimizing photo-damage to healthy tissue. Thus, one of the most challenging chemical goals in the preparation of new photoCORMs is the reduction of radiation energy required for their activation, together with strategies to modulate the solubility, stability and nontoxicity of the organic or organometallic scaffolds. In this contribution, we review the latest advances in visible light-activated photoCORMs, and the first promising studies on near-infrared light activation of the same. Full article
Figures

Open AccessArticle
Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications
Inorganics 2017, 5(2), 23; doi:10.3390/inorganics5020023 -
Abstract
Cyclometalated Ir(III) complexes are of particular interest due to the wide tunability of their electronic structure via variation of their ligands. Here, a series of heteroleptic Ir-based photosensitizers with the general formula [Ir(C^N)2(N^N)]+ has been studied theoretically by means of an optimally-tuned long-range
[...] Read more.
Cyclometalated Ir(III) complexes are of particular interest due to the wide tunability of their electronic structure via variation of their ligands. Here, a series of heteroleptic Ir-based photosensitizers with the general formula [Ir(C^N)2(N^N)]+ has been studied theoretically by means of an optimally-tuned long-range separated density functional. Focusing on the steady-state absorption spectra, correlations between the chemical modification of both ligand types with the natures of the relevant dark and bright electronic states are revealed. Understanding such correlations builds up a basis for the rational design of efficient photocatalytic systems. Full article
Figures

Open AccessArticle
Insights into Molecular Beryllium–Silicon Bonds
Inorganics 2017, 5(2), 22; doi:10.3390/inorganics5020022 -
Abstract
We present the synthesis of two silyl beryllium halides HypSiBeX∙(thf) (HypSi = Si(SiMe3)3, X = Cl 2a, I 4a) and the molecular structure of 2a as determined by single crystal X-ray diffraction. Compounds 2a and 4a were characterized via multi-nuclear NMR spectroscopy (1H,
[...] Read more.
We present the synthesis of two silyl beryllium halides HypSiBeX∙(thf) (HypSi = Si(SiMe3)3, X = Cl 2a, I 4a) and the molecular structure of 2a as determined by single crystal X-ray diffraction. Compounds 2a and 4a were characterized via multi-nuclear NMR spectroscopy (1H, 9Be, 13C, 29Si), and the bonding situation was further investigated using quantum chemical calculations (with the addition of further halides X = F 1b, Cl 2b, Br 3b, I 4b). The nature of the beryllium silicon bond in the context of these compounds is highlighted and discussed. Full article
Figures

Open AccessArticle
Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction
Inorganics 2017, 5(2), 21; doi:10.3390/inorganics5020021 -
Abstract
A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with
[...] Read more.
A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution. Full article
Figures

Figure 1

Open AccessArticle
Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters
Inorganics 2017, 5(2), 20; doi:10.3390/inorganics5020020 -
Abstract
The Basin Hopping search method is used to find the global minima (GM) and map the energy landscapes of thiocyanate-water clusters, (SCN)(H2O)n with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be
[...] Read more.
The Basin Hopping search method is used to find the global minima (GM) and map the energy landscapes of thiocyanate-water clusters, (SCN)(H2O)n with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be noted that beyond n = 23, the lowest energy structures were only found in 1 out of 8 searches so they are unlikely to be the true GM but are indicative low energy structures.) As for pure water clusters, the low energy isomers of thiocyanate-water clusters show a preponderance of fused water cubes and pentagonal prisms, with the weakly solvated thiocyanate ion lying on the surface, replacing two water molecules along an edge of a water polyhedron and with the sulfur atom in lower coordinated sites than nitrogen. However, by comparison with Density Functional Theory (DFT) calculations, the empirical potential is found to overestimate the strength of the thiocyanate-water interaction, especially O–H⋯S, with low energy DFT structures having lower coordinate N and (especially) S atoms than for the empirical potential. In the case of these finite ion-water clusters, the chaotropic (“disorder-making”) thiocyanate ion weakens the water cluster structure but the water molecule arrangement is not significantly changed. Full article
Figures

Open AccessArticle
Na1+yVPO4F1+y (0 ≤ y≤ 0.5) as Cathode Materials for Hybrid Na/Li Batteries
Inorganics 2017, 5(2), 19; doi:10.3390/inorganics5020019 -
Abstract
Using Rietveld-refined X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electrochemical cycling, it was established that among sodium vanadium fluorophosphate compositions Na1+yVPO4F1+y (0 ≤ y ≤ 0.75), the single-phase material Na1.5VPO4F1.5 or Na3V2(PO4)2F3 with a tetragonal structure (the P42/mnm S.G.) is formed
[...] Read more.
Using Rietveld-refined X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electrochemical cycling, it was established that among sodium vanadium fluorophosphate compositions Na1+yVPO4F1+y (0 ≤ y ≤ 0.75), the single-phase material Na1.5VPO4F1.5 or Na3V2(PO4)2F3 with a tetragonal structure (the P42/mnm S.G.) is formed only for y = 0.5. The samples with y < 0.5 and y > 0.5 possessed different impurity phases. Na3V2(PO4)2F3 could be considered as a multifunctional cathode material for the fabrication of lithium-ion and sodium-ion high-energy batteries. The reversible discharge capacity of 116 mAh•g−1 was achieved upon cycling Na3V2(PO4)2F3 in a hybrid Na/Li cell. Decrease in discharge capacity for the other samples was in accordance with the amount of the electrochemically active phase Na3V2(PO4)2F3. Na3V2(PO4)2F3 showed good cycleability and a high rate of performance, presumably due to operation in the mixed Na/Li electrolyte. The study of the structure and composition of charged and discharged samples, and the analysis of differential capacity curves showed a negligible Na/Li electrochemical exchange, and a predominant sodium-based cathode reaction. To increase the degree of the Na/Li electrochemical exchange in Na3V2(PO4)2F3, it needs to be desodiated first in a Na cell, and then cycled in a lithium cell. In this case, the electrolyte would be enriched with the Li ions. Full article
Figures

Open AccessArticle
Adsorption and Oxidation of Aromatic Amines on Metal(II) Hexacyanocobaltate(III) Complexes: Implication for Oligomerization of Exotic Aromatic Compounds
Inorganics 2017, 5(2), 18; doi:10.3390/inorganics5020018 -
Abstract
Based on the hypothesis on the presence of double metal cyanides in the primordial oceans, a series of nano-sized metal(II) hexacyanocobaltate(III) (MHCCo) with the general formula: M3[Co(CN)6]2•xH2O (where M = Zn, Fe, Ni and Mn) has been synthesized. Surface interaction of aromatic amines,
[...] Read more.
Based on the hypothesis on the presence of double metal cyanides in the primordial oceans, a series of nano-sized metal(II) hexacyanocobaltate(III) (MHCCo) with the general formula: M3[Co(CN)6]2•xH2O (where M = Zn, Fe, Ni and Mn) has been synthesized. Surface interaction of aromatic amines, namely aniline, 4-chloroaniline, 4-methylaniline and 4-methoxyaniline with MHCCo particles has been carried out at the concentration range of 100–400 μM at pH~7.0. The percentage binding of aromatic amines on MHCCo surface was found to be in the range of 84%–44%. The trend in adsorption was in accordance to the relative basicity of the studied amines. At the experimental pH, amines reacted rapidly with the surface of the iron(II) hexacyanocobaltate, producing colored products that were analyzed by Gas Chromatography Mass Spectroscopy (GC-MS). GC-MS analysis of the colored products demonstrated the formation of dimers of the studied aromatic amines. Surface interaction of aromatic amines with MHCCo was studied by Fourier Transform Infrared (FT-IR) spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM). The change in amine characteristic frequencies, as observed by FT-IR, suggests that interaction took place through the NH2 group on amines with metal ions of hexacyanocobaltate complexes. FE-SEM studies revealed the adherence of 4-methoxyaniline on zinc hexacyanocobaltate particles surface. We proposed that MHCCo might have been formed under the conditions on primitive Earth and may be regarded as an important candidate for concentrating organic molecules through the adsorption process. Full article
Figures

Open AccessEditorial
Kudos and Renaissance of s-Block Metal Chemistry
Inorganics 2017, 5(1), 17; doi:10.3390/inorganics5010017 -
Abstract
In recent years, the organometallic and coordination chemistry of the alkali and alkaline earth metals has experienced tremendous progress to tackle the needs of today’s society. Enhanced ecological awareness and global availability favor research on the chemistry of the essential s-block metals. Nowadays,
[...] Read more.
In recent years, the organometallic and coordination chemistry of the alkali and alkaline earth metals has experienced tremendous progress to tackle the needs of today’s society. Enhanced ecological awareness and global availability favor research on the chemistry of the essential s-block metals. Nowadays, the s-block metals are conquering new chemical fields based on sophisticated theoretical and preparative achievements. Recent investigations show a huge impact of the s-block elements on stoichiometric and catalytic processes. Full article
Figures

Open AccessArticle
On Mineral Retrosynthesis of a Complex Biogenic Scaffold
Inorganics 2017, 5(1), 16; doi:10.3390/inorganics5010016 -
Abstract
Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a
[...] Read more.
Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid), poly(aspartic acid) and poly(4-styrenesulfonic acid-co-maleic acid)) as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules. Full article
Figures

Open AccessReview
Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania
Inorganics 2017, 5(1), 15; doi:10.3390/inorganics5010015 -
Abstract
Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of
[...] Read more.
Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light. Full article
Figures

Figure 1

Open AccessReview
Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes
Inorganics 2017, 5(1), 14; doi:10.3390/inorganics5010014 -
Abstract
Photocatalytic hydrogen generation is considered to be attractive due to its combination of solar energy conversion and storage. Currently-used systems are either based on homogeneous or on heterogeneous materials, which possess a light harvesting and a catalytic subunit. The subject of this review
[...] Read more.
Photocatalytic hydrogen generation is considered to be attractive due to its combination of solar energy conversion and storage. Currently-used systems are either based on homogeneous or on heterogeneous materials, which possess a light harvesting and a catalytic subunit. The subject of this review is a brief summary of homogeneous proton reduction systems using sacrificial agents with special emphasis on non-noble metal systems applying convenient iron(0) sources. Iridium photosensitizers, which were proven to have high quantum yields of up to 48% (415 nm), have been employed, as well as copper photosensitizers. In both cases, the addition or presence of a phosphine led to the transformation of the iron precursor with subsequently increased activities. Reaction pathways were investigated by photoluminescence, electron paramagnetic resonance (EPR), Raman, FTIR and mass spectroscopy, as well as time-dependent DFT-calculations. In the future, this knowledge will set the basis to design photo(electro)chemical devices with tailored electron transfer cascades and without the need for sacrificial agents. Full article
Figures

Figure 1

Open AccessArticle
K+···Cπ and K+···F Non-Covalent Interactions in π-Functionalized Potassium Fluoroalkoxides
Inorganics 2017, 5(1), 13; doi:10.3390/inorganics5010013 -
Abstract Secondary interactions stabilize coordinatively demanding complexes of s-block metals [...] Full article
Figures

Open AccessArticle
Structural Study of Mismatched Disila-Crown Ether Complexes
Inorganics 2017, 5(1), 11; doi:10.3390/inorganics5010011 -
Abstract
Mismatched complexes of the alkali metals cations Li+ and Na+ were synthesized from 1,2-disila[18]crown-6 (1 and 2) and of K+ from 1,2,4,5-tetrasila[18]crown-6 (4). In these alkali metal complexes, not all crown ether O atoms participate in
[...] Read more.
Mismatched complexes of the alkali metals cations Li+ and Na+ were synthesized from 1,2-disila[18]crown-6 (1 and 2) and of K+ from 1,2,4,5-tetrasila[18]crown-6 (4). In these alkali metal complexes, not all crown ether O atoms participate in the coordination, which depicts the coordination ability of the C-, Si/C-, and Si-bonded O atoms. Furthermore, the inverse case—the coordination of the large Ba2+ ion by the relatively small ligand 1,2-disila[15]crown-5—was investigated, yielding the dinuclear complex 5. This structure represents a first outlook on sandwich complexes based on hybrid crown ethers. Full article
Figures