Open AccessArticle
Influence of Fatty Acid Alkyl Chain Length on Anisotropy of Copper Nitride Nano-Crystallites
Inorganics 2017, 5(1), 6; doi:10.3390/inorganics5010006 -
Abstract
My group developed a simple method to prepare copper nitride fine particles from copper carboxylate in a solvent of long-chain alcohols without the use of high temperatures or high pressures. By selecting copper acetate or copper decanoate as the copper source, my group
[...] Read more.
My group developed a simple method to prepare copper nitride fine particles from copper carboxylate in a solvent of long-chain alcohols without the use of high temperatures or high pressures. By selecting copper acetate or copper decanoate as the copper source, my group demonstrated that the morphology of the copper nitride fine particles varied between cubic and plate-like, respectively. Although a hypothesis was proposed to explain the influence of the length of the alkyl chain on the copper decanoate, it is uncertain how much the chain length influences the shape of the fine particles. In this work, I demonstrated the effect of the length of the alkyl chain on particle shape by preparing fine particles from a series of copper sources with different alky chain lengths and characterizing the particles with x-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The main findings were as follows: (1) the fine particles were plate-like when the alkyl chain length exceeded 5; (2) the aspect ratio of the plate-like particles increased as the alkyl chain length increased; and (3) growth of the (110) and (111) planes of the copper nitride crystal were selectively inhibited. Full article
Figures

Open AccessArticle
P-Fluorous Phosphines as Electron-Poor/Fluorous Hybrid Functional Ligands for Precious Metal Catalysts: Synthesis of Rh(I), Ir(I), Pt(II), and Au(I) Complexes Bearing P-Fluorous Phosphine Ligands
Inorganics 2017, 5(1), 5; doi:10.3390/inorganics5010005 -
Abstract
P-Fluorous phosphine (R2PRf), in which the perfluoroalkyl group is directly bonded to the phosphorus atom, is a promising ligand because it has a hybrid functionality, i.e., electron-poor and fluorous ligands. However, examples of P-fluorous phosphine–metal complexes are
[...] Read more.
P-Fluorous phosphine (R2PRf), in which the perfluoroalkyl group is directly bonded to the phosphorus atom, is a promising ligand because it has a hybrid functionality, i.e., electron-poor and fluorous ligands. However, examples of P-fluorous phosphine–metal complexes are still rare, most probably because the P-fluorous group is believed to decrease the coordination ability of the phosphines dramatically. In contrast, however, we have succeeded in synthesizing a series of P-fluorous phosphine–coordinated metal complexes such as rhodium, iridium, platinum, and gold. Furthermore, the electronic properties of R2PnC10F21 are investigated by X-ray analysis of PtCl2(Ph2PnC10F21)2 and the infrared CO stretching frequency of RhCl(CO)(R2PnC10F21)2. IrCl(CO)(Ph2PnC10F21)2- and AuCl(R2PnC10F21)-catalyzed reactions are also demonstrated. Full article
Figures

Open AccessReview
Anticancer Applications and Recent Investigations of Metallodrugs Based on Gallium, Tin and Titanium
Inorganics 2017, 5(1), 4; doi:10.3390/inorganics5010004 -
Abstract
For more than 100 years metal complexes have been extensively used in therapy and since the discovery of cisplatin the research in this field has expanded exponentially. The scientific community is always in search of new alternatives to platinum compounds and a wide
[...] Read more.
For more than 100 years metal complexes have been extensively used in therapy and since the discovery of cisplatin the research in this field has expanded exponentially. The scientific community is always in search of new alternatives to platinum compounds and a wide variety of metallodrugs based on other metals have been reported with excellent therapeutic results. This short review focuses on the work that our research group has carried out since 2007 in collaboration with others and centers on the preparation of organogallium(III) compounds, organotin(IV) derivatives, and titanocene(IV) complexes together with the study of their cytotoxic anticancer properties. Full article
Figures

Open AccessEditorial
Acknowledgement to Reviewers of Inorganics in 2016
Inorganics 2017, 5(1), 3; doi:10.3390/inorganics5010003 -
Abstract The editors of Inorganics would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
The A-Type Ln4N2S3 Series: New Nitride Sulfides of the Light Lanthanoids (Ln = Ce–Nd)
Inorganics 2017, 5(1), 2; doi:10.3390/inorganics5010002 -
Abstract
The reaction of lanthanoid metal powders (Ln) with sulfur and cesium azide (CsN3) as a nitrogen source in the presence of lanthanoid tribromides (LnBr3) yields lanthanoid nitride sulfides with the composition Ln4N2
[...] Read more.
The reaction of lanthanoid metal powders (Ln) with sulfur and cesium azide (CsN3) as a nitrogen source in the presence of lanthanoid tribromides (LnBr3) yields lanthanoid nitride sulfides with the composition Ln4N2S3 (Ln = Ce–Nd) when appropriate molar ratios of the starting material are used. Additional cesium bromide (CsBr) as a flux secures quantitative conversion (7 days) at 900 °C in evacuated silica tubes as well as the formation of black single crystals. All compounds crystallize isotypically with the orthorhombic crystal structure of La4N2S3 (Pnnm, Z = 2) and their structures were determined from single-crystal X-ray diffraction data (Ce4N2S3: a = 644.31(4), b = 1554.13(9), c = 404.20(3) pm; Pr4N2S3: a = 641.23(4), b = 1542.37(9), c = 400.18(3) pm; Nd4N2S3: a = 635.19(4), b = 1536.98(9), c = 397.85(3) pm). Compared to La4N2S3 the a-axes do not fulfill the expectation of the lanthanide contraction. The main feature of the crystal structure comprises N3−-centered (Ln3+)4 tetrahedra arranging as pairs [N2Ln6]12+ of edge-shared [NLn4]9+ units, which are further connected via four vertices to form double chains 1{([NLn4/2]2)6+}. Bundled along [001] like a hexagonal rod packing, they are held together by two crystallographically different S2− anions. Two compounds of a second modification (B-type La4N2S3 and Pr4N2S3) will also be presented and discussed for comparison. Full article
Figures

Figure 1

Open AccessArticle
Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An Aberration-Corrected STEM Study
Inorganics 2017, 5(1), 1; doi:10.3390/inorganics5010001 -
Abstract
Molybdenum disulphide (MoS2) is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source
[...] Read more.
Molybdenum disulphide (MoS2) is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source with a lateral time-of-flight mass selector. Most of the deposited MoS2 nanoclusters, analysed by an aberration-corrected scanning transmission electron microscope (STEM) in high-angle annular dark field (HAADF) mode, showed poorly ordered layer structures with an average diameter of 5.5 nm. By annealing and the addition of sulphur to the clusters (by sublimation) in the cluster source, the clusters were transformed into larger, crystalline structures. Annealing alone did not lead to crystallization, only to a cluster size increase by decomposition and coalescence of the primary clusters. Sulphur addition alone led to a partially crystalline structure without a significant change in the size. Thus, both annealing and sulphur addition processes were needed to obtain highly crystalline MoS2 nanoclusters. Full article
Figures

Open AccessArticle
Single Crystal Growth and Anisotropic Magnetic Properties of Li2Sr[Li1 − xFexN]2
Inorganics 2016, 4(4), 42; doi:10.3390/inorganics4040042 -
Abstract
Up to now, investigation of physical properties of ternary and higher nitridometalates has been severely hampered by challenges concerning phase purity and crystal size. Employing a modified lithium flux technique, we are now able to prepare sufficiently large single crystals of the highly
[...] Read more.
Up to now, investigation of physical properties of ternary and higher nitridometalates has been severely hampered by challenges concerning phase purity and crystal size. Employing a modified lithium flux technique, we are now able to prepare sufficiently large single crystals of the highly air and moisture sensitive nitridoferrate Li2Sr[Li1xFexN]2 for anisotropic magnetization measurements. The magnetic properties are most remarkable: large anisotropy and coercivity fields of 7 Tesla at T=2 K indicate a significant orbital contribution to the magnetic moment of iron. Altogether, the novel growth method opens a route towards interesting phases in the comparatively recent research field of nitridometalates and should be applicable to various other materials. Full article
Figures

Open AccessArticle
Ammonothermal Synthesis and Crystal Structures of Diamminetriamidodizinc Chloride [Zn2(NH3)2(NH2)3]Cl and Diamminemonoamidozinc Bromide [Zn(NH3)2(NH2)]Br
Inorganics 2016, 4(4), 41; doi:10.3390/inorganics4040041 -
Abstract
The treatment of excess zinc in the presence of ammonium chloride under ammonothermal conditions of 873 K and 97 MPa leads to diamminetriamidodizinc chloride [Zn2(NH3)2(NH2)3]Cl with a two-dimensionally μ-amido-interconnected substructure. Similar reaction conditions
[...] Read more.
The treatment of excess zinc in the presence of ammonium chloride under ammonothermal conditions of 873 K and 97 MPa leads to diamminetriamidodizinc chloride [Zn2(NH3)2(NH2)3]Cl with a two-dimensionally μ-amido-interconnected substructure. Similar reaction conditions using ammonium bromide instead of the chloride (773 K, 230 MPa) result in diamminemonoamidozinc bromide [Zn(NH3)2(NH2)]Br with one-dimensional infinite μ-amido-bridged chains. Both compounds were obtained as colorless, very moisture sensitive crystals. Crystal structures and hydrogen bond schemes are analyzed. Raman spectroscopic data of the chloride are reported. Full article
Figures

Open AccessArticle
Synthesis and Characterization of a Sulfonyl- and Iminophosphoryl-Functionalized Methanide and Methandiide
Inorganics 2016, 4(4), 40; doi:10.3390/inorganics4040040 -
Abstract
The synthesis of [H2C(PPh2=NSiMe3)(SO2Ph)] (1) and its mono- and dimetalation are reported. Due to the strong anion-stabilizing abilities of the iminophosphoryl and the sulfonyl group monometalation to 1-K and dimetalation to 1-Li2
[...] Read more.
The synthesis of [H2C(PPh2=NSiMe3)(SO2Ph)] (1) and its mono- and dimetalation are reported. Due to the strong anion-stabilizing abilities of the iminophosphoryl and the sulfonyl group monometalation to 1-K and dimetalation to 1-Li2 proceed smoothly with potassium hydride and methyllithium, respectively. Both compounds could be isolated in high yields and were characterized by NMR spectroscopy as well as XRD analysis. The methanide 1-K forms a coordination polymer in the solid state, while in case of the methandiide a tetrameric structure is observed. The latter features an unusual structural motif consisting of two (SO2Li)2 eight-membered rings, which are connected with each other via the methandiide carbon atoms and additional lithium atoms. With increasing metalation a contraction of the P–C–S linkage is observed, which is well in line with the increased charge at the central carbon atom and involved electrostatic interactions. Full article
Figures

Open AccessArticle
Reduction of Bromo- and Iodo-2,6-bis(diphenylphosphanylmethyl)benzene with Magnesium and Calcium
Inorganics 2016, 4(4), 39; doi:10.3390/inorganics4040039 -
Abstract
Arylmagnesium and -calcium reagents are easily accessible; however, ether degradation processes limit storability, especially of the calcium-based heavy Grignard reagents. Ortho-bound substituents with phosphanyl donor sites usually block available coordination sites and stabilize such complexes. The reaction of bromo-2,6-bis(diphenylphosphanylmethyl)benzene (1a) with
[...] Read more.
Arylmagnesium and -calcium reagents are easily accessible; however, ether degradation processes limit storability, especially of the calcium-based heavy Grignard reagents. Ortho-bound substituents with phosphanyl donor sites usually block available coordination sites and stabilize such complexes. The reaction of bromo-2,6-bis(diphenylphosphanylmethyl)benzene (1a) with magnesium in tetrahydrofuran yields [Mg{C6H3-2,6-(CH2PPh2)2}2] (2) after recrystallization from 1,2-dimethoxyethane. However, the similarly performed reduction of bromo- (1a) and iodo-2,6-bis(diphenylphosphanylmethyl)benzene (1b) with calcium leads to ether cleavage and subsequent degradation products. α-Deprotonation of tetrahydrofuran (THF) yields 1,3-bis(diphenylphosphanylmethyl)benzene. Furthermore, the insoluble THF adducts of dimeric calcium diphenylphosphinate halides, [(thf)3Ca(X)(µ-O2PPh2)]2 [X = Br (3a), I (3b)], precipitate verifying ether decomposition and cleavage of P–C bonds. Ether adducts of calcium halides (such as [(dme)2(thf)CaBr2] (4)) form, supporting the initial Grignard reaction and a subsequent Schlenk-type dismutation reaction. Full article
Figures

Open AccessReview
Structural Classification of Quasi-One-Dimensional Ternary Nitrides
Inorganics 2016, 4(4), 37; doi:10.3390/inorganics4040037 -
Abstract
This review focuses on the crystal structural features of ternary (mixed-metal) quasi-one-dimensional nitrides i.e., nitrides containing (cation-N3−) coordination polyhedra sharing either corners, edges, or faces, arranged in linear chains, and intercalated by a counter ion. The current relevance of these nitrides,
[...] Read more.
This review focuses on the crystal structural features of ternary (mixed-metal) quasi-one-dimensional nitrides i.e., nitrides containing (cation-N3−) coordination polyhedra sharing either corners, edges, or faces, arranged in linear chains, and intercalated by a counter ion. The current relevance of these nitrides, and of quasi-one-dimensional compounds in general, lies in the fact that they are closely related to the pure one-dimensional systems (i.e., nanowires), which are vastly researched for their amazing properties closely related to their low dimensionality. A number of these properties were firstly discovered in quasi-one-dimensional compounds, highlighting the importance of expanding knowledge and research in this area. Furthermore, unlike oxides, nitrides and other non-oxide compounds are less developed, hence more difficult to categorise into structural classes that can then be related to other classes of compounds, leading to a fuller picture of structure–properties relationship. Within this context, this review aims to categorise and describe a number of ternary (mixed-metal) quasi-one-dimensional nitrides according to their structural features, specifically, the polyhedra forming the one-dimensional chains. Full article
Figures

Figure 1

Open AccessArticle
Steroid-Functionalized Titanocenes: Docking Studies with Estrogen Receptor Alpha
Inorganics 2016, 4(4), 38; doi:10.3390/inorganics4040038 -
Abstract
Estrogen receptor alpha (ERα) is a transcription factor that is activated by hormones, with 17β-estradiol being its most active agonist endogenous ligand. ERα is also activated or inactivated by exogenous ligands. ER is overexpressed in hormone-dependent breast cancer, and one of the treatments
[...] Read more.
Estrogen receptor alpha (ERα) is a transcription factor that is activated by hormones, with 17β-estradiol being its most active agonist endogenous ligand. ERα is also activated or inactivated by exogenous ligands. ER is overexpressed in hormone-dependent breast cancer, and one of the treatments for this type of cancer is the use of an ER antagonist to halt cell proliferation. We have previously reported four steroid-functionalized titanocenes: pregnenolone, dehydroepiandrosterone (DHEA), trans-androsterone, and androsterone. These steroids have hormonal activity as well as moderate antiproliferative activity, thus these steroids could act as vectors for the titanocene dichloride to target hormone-dependent cancers. Also, these steroids could increase the antiproliferative activity of the resulting titanocenes based on synergism. In order to elucidate which factors contribute to the enhanced antiproliferative activity of these steroid-functionalized titanocenes, we performed docking studies between ERα and the titanocenes and the steroids. The binding affinities and type of bonding interactions of the steroid-functionalized titanocenes with ERα are herein discussed. Full article
Figures

Open AccessArticle
PP-Rotation, P-Inversion and Metathesis in Diphosphines Studied by DFT Calculations: Comments on Some Literature Conflicts
Inorganics 2016, 4(4), 36; doi:10.3390/inorganics4040036 -
Abstract
The potential energy surface for internal rotation about the phosphorus–phosphorus bond was calculated at the PCMDCM/B3LYP/6-311++G(d,p) computational level for a set of eight symmetrical, unsymmetrical and P-stereogenic diphosphines; H4P2, Me4P2, (CF3
[...] Read more.
The potential energy surface for internal rotation about the phosphorus–phosphorus bond was calculated at the PCMDCM/B3LYP/6-311++G(d,p) computational level for a set of eight symmetrical, unsymmetrical and P-stereogenic diphosphines; H4P2, Me4P2, (CF3)4P2, Ph4P2, Me2P–P(CF3)2, Me2P–PPh2, and the meso- and dl-isomers of Me(CF3)P–PMe(CF3) and MePhP–PMePh. Certain trends in the data were elucidated and compared with conflicting data from the literature regarding the relative population of anti and gauche rotational isomers. The pyramidal inversion barriers (stereomutation barriers in P-stereogenic cases) for the same set of diphosphines was estimated through the inversion transition states and also compared to literature values. Finally, the Me4P2 + (CF3)4P2 → 2Me2(CF3)2P2 metathesis reaction was also explored to evaluate its feasibility versus inversion. The finding of larger barriers in the metathesis than in the inversion rules in favour of an inversion mechanism for the stereomutation of P-stereogenic diphosphines. Full article
Figures

Open AccessArticle
In Situ Studies and Magnetic Properties of the Cmcm Polymorph of LiCoPO4 with a Hierarchical Dumbbell-Like Morphology Synthesized by Easy Single-Step Polyol Synthesis
Inorganics 2016, 4(4), 35; doi:10.3390/inorganics4040035 -
Abstract
LiCoPO4 (LCP) exists in three different structural modifications: LCP-Pnma (olivine structure), LCP-Pn21a (KNiPO4 structure type), and LCP-Cmcm (Na2CrO4 structure type). The synthesis of the LCP-Cmcm polymorph has been reported via high
[...] Read more.
LiCoPO4 (LCP) exists in three different structural modifications: LCP-Pnma (olivine structure), LCP-Pn21a (KNiPO4 structure type), and LCP-Cmcm (Na2CrO4 structure type). The synthesis of the LCP-Cmcm polymorph has been reported via high pressure/temperature solid-state methods and by microwave-assisted solvothermal synthesis. Phase transitions from both LCP-Pn21a and LCP-Cmcm to LCP-Pnma upon heating indicates a metastable behavior. However, a precise study of the structural changes during the heating process and the magnetic properties of LCP-Cmcm are hitherto unknown. Herein, we present the synthesis and characterization of LCP-Cmcm via a rapid and facile soft-chemistry approach using two different kinetically controlled pathways, solvothermal and polyol syntheses, both of which only require relatively low temperatures (~200 °C). Additionally, by polyol, method a dumbbell-like morphology is obtained without the use of any additional surfactant or template. A temperature-dependent in situ powder XRD shows a transition from LCP-Cmcm at room temperature to LCP-Pnma and finally to LCP-Pn21a at 575 and 725 °C, respectively. In addition to that, the determination of the magnetic susceptibility as a function of temperature indicates a long-range antiferromagnetic order below TN = 11 K at 10 kOe and 9.1 K at 25 kOe. The magnetization curves suggests the presence of a metamagnetic transition. Full article
Figures

Open AccessCommunication
Metal-Free Reduction of Phosphine Oxides Using Polymethylhydrosiloxane
Inorganics 2016, 4(4), 34; doi:10.3390/inorganics4040034 -
Abstract
A simple protocol is presented here for the use of inexpensive polymethylhydrosiloxane (PMHS), a waste product of the silicon industry, as stoichiometric reducing agent for phosphine oxides to phosphines, a highly desirable reaction to recover P-based ligands from their spent form. The reactions
[...] Read more.
A simple protocol is presented here for the use of inexpensive polymethylhydrosiloxane (PMHS), a waste product of the silicon industry, as stoichiometric reducing agent for phosphine oxides to phosphines, a highly desirable reaction to recover P-based ligands from their spent form. The reactions were studied by screening parameters, such as substrate to reductant ratio, temperature and reaction time, achieving good conversions and selectivities. Full article
Figures

Open AccessArticle
Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization
Inorganics 2016, 4(4), 33; doi:10.3390/inorganics4040033 -
Abstract
The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the
[...] Read more.
The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials. Full article
Figures

Open AccessArticle
Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids
Inorganics 2016, 4(4), 32; doi:10.3390/inorganics4040032 -
Abstract
Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this
[...] Read more.
Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF). Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl) and Brønsted acidic (X = HSO4) anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration). Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation. Full article
Figures

Open AccessEditorial
Rare Earth and Actinide Complexes
Inorganics 2016, 4(4), 31; doi:10.3390/inorganics4040031 -
Abstract The rare earth metals (scandium, yttrium, lanthanum and the subsequent 4f elements) and actinides (actinium and the 5f elements) are vital components of our technology-dominated society.[...] Full article
Figures

Figure 1

Open AccessArticle
η12-P-Pyrazolylphosphaalkene Complexes of Ruthenium(0)
Inorganics 2016, 4(4), 30; doi:10.3390/inorganics4040030 -
Abstract
An extended range of novel ruthenium phosphaalkene complexes of the type [Ru{η1-N2-P,C-P(pz′)=CH(SiMe2R)}(CO)(PPh3)2] (R = Tol, C6H4CF3-p; pz′ = pz
[...] Read more.
An extended range of novel ruthenium phosphaalkene complexes of the type [Ru{η1-N2-P,C-P(pz′)=CH(SiMe2R)}(CO)(PPh3)2] (R = Tol, C6H4CF3-p; pz′ = pzMe2, pzCF3, pzMe,CF3; R = Me, C6H4CF3-p; pz′ = pzPh) have been prepared from the respective ruthenaphosphaalkenyls [Ru{P=CH(SiMe2R)}Cl(CO)(PPh3)2] upon treatment with Lipz′. Where R = C6H4CF3-p and pz′ = pzMe2 the complex is characterized by single crystal X-ray diffraction, only the second example of such species being structurally characterized. This indicates enhanced pyramidalisation of the alkenic carbon center when compared with precedent data (R = Me, pz′ = pz) implying an enhanced Ru→π*PC contribution, which can be correlated with the greater donor power of pzMe2. This is similarly reflected in spectroscopic data that reveal significant influence of the pyrazolyl substituents upon the phosphaalkene, stronger donors imparting significantly enhanced shielding to phosphorus; in contrast, a much lesser influence if noted for the silyl substituents. Full article
Figures

Open AccessArticle
Synthesis and Structure Determination of the Quaternary Zinc Nitride Halides Zn2NX1−yX′y (X, X′ = Cl, Br, I; 0 < y < 1)
Inorganics 2016, 4(4), 29; doi:10.3390/inorganics4040029 -
Abstract
The quaternary series Zn2NCl1−yBry and Zn2NBr1−yIy were synthesized from solid-liquid reactions between zinc nitride and the respective zinc halides in closed ampoules, and the evolution of their crystal structures was investigated
[...] Read more.
The quaternary series Zn2NCl1−yBry and Zn2NBr1−yIy were synthesized from solid-liquid reactions between zinc nitride and the respective zinc halides in closed ampoules, and the evolution of their crystal structures was investigated by single-crystal and powder X-ray diffraction. Zn2NX1−yX′y (X, X′ = Cl, Br, I) adopts the anti-β-NaFeO2 motif in which each nitride ion is tetrahedrally coordinated by four zinc cations, and the halide anions are located in the voids of the skeleton formed by corner-sharing [NZn4] tetrahedra. While Zn2NCl1−yBry crystallizes in the acentric orthorhombic space group Pna21 (No. 33), isotypic to Zn2NX (X = Cl, Br), the structure of Zn2NBr1−yIy is a function of the iodide concentration, namely, Zn2NBr (Pna21) for low iodine content and Zn2NI (Pnma) for higher (y ≥ 0.38). Full article
Figures