Open AccessArticle
Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors
Informatics 2018, 5(2), 26; https://doi.org/10.3390/informatics5020026 (registering DOI) -
Abstract
Human activity recognition (HAR) is a classification task for recognizing human movements. Methods of HAR are of great interest as they have become tools for measuring occurrences and durations of human actions, which are the basis of smart assistive technologies and manual processes
[...] Read more.
Human activity recognition (HAR) is a classification task for recognizing human movements. Methods of HAR are of great interest as they have become tools for measuring occurrences and durations of human actions, which are the basis of smart assistive technologies and manual processes analysis. Recently, deep neural networks have been deployed for HAR in the context of activities of daily living using multichannel time-series. These time-series are acquired from body-worn devices, which are composed of different types of sensors. The deep architectures process these measurements for finding basic and complex features in human corporal movements, and for classifying them into a set of human actions. As the devices are worn at different parts of the human body, we propose a novel deep neural network for HAR. This network handles sequence measurements from different body-worn devices separately. An evaluation of the architecture is performed on three datasets, the Oportunity, Pamap2, and an industrial dataset, outperforming the state-of-the-art. In addition, different network configurations will also be evaluated. We find that applying convolutions per sensor channel and per body-worn device improves the capabilities of convolutional neural network (CNNs). Full article
Figures

Figure 1

Open AccessArticle
Artificial Neural Networks and Particle Swarm Optimization Algorithms for Preference Prediction in Multi-Criteria Recommender Systems
Informatics 2018, 5(2), 25; https://doi.org/10.3390/informatics5020025 -
Abstract
Recommender systems are powerful online tools that help to overcome problems of information overload. They make personalized recommendations to online users using various data mining and filtering techniques. However, most of the existing recommender systems use a single rating to represent the preference
[...] Read more.
Recommender systems are powerful online tools that help to overcome problems of information overload. They make personalized recommendations to online users using various data mining and filtering techniques. However, most of the existing recommender systems use a single rating to represent the preference of user on an item. These techniques have several limitations as the preference of the user towards items may depend on several attributes of the items. Multi-criteria recommender systems extend the single rating recommendation techniques to incorporate multiple criteria ratings for improving recommendation accuracy. However, modeling the criteria ratings in multi-criteria recommender systems to determine the overall preferences of users has been considered as one of the major challenges in multi-criteria recommender systems. In other words, how to additionally take the multi-criteria rating information into account during the recommendation process is one of the problems of multi-criteria recommender systems. This article presents a methodological framework that trains artificial neural networks with particle swarm optimization algorithms and uses the neural networks for integrating the multi-criteria rating information and determining the preferences of users. The proposed neural network-based multi-criteria recommender system is integrated with k-nearest neighborhood collaborative filtering for predicting unknown criteria ratings. The proposed approach has been tested with a multi-criteria dataset for recommending movies to users. The empirical results of the study show that the proposed model has a higher prediction accuracy than the corresponding traditional recommendation technique and other multi-criteria recommender systems. Full article
Figures

Figure 1

Open AccessArticle
Fitness Activity Recognition on Smartphones Using Doppler Measurements
Informatics 2018, 5(2), 24; https://doi.org/10.3390/informatics5020024 -
Abstract
Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform
[...] Read more.
Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform fitness activities, or increase the amount of sports exercise. Thus far, most applications rely on accelerometers or gyroscopes that are integrated into the devices. They have to be worn on the body to track activities. In this work, we investigated the use of a speaker and a microphone that are integrated into a smartphone to track exercises performed close to it. We combined active sonar and Doppler signal analysis in the ultrasound spectrum that is not perceivable by humans. We wanted to measure the body weight exercises bicycles, toe touches, and squats, as these consist of challenging radial movements towards the measuring device. We have tested several classification methods, ranging from support vector machines to convolutional neural networks. We achieved an accuracy of 88% for bicycles, 97% for toe-touches and 91% for squats on our test set. Full article
Figures

Figure 1

Open AccessArticle
An Internet of Things Based Multi-Level Privacy-Preserving Access Control for Smart Living
Informatics 2018, 5(2), 23; https://doi.org/10.3390/informatics5020023 -
Abstract
The presence of the Internet of Things (IoT) in healthcare through the use of mobile medical applications and wearable devices allows patients to capture their healthcare data and enables healthcare professionals to be up-to-date with a patient’s status. Ambient Assisted Living (AAL), which
[...] Read more.
The presence of the Internet of Things (IoT) in healthcare through the use of mobile medical applications and wearable devices allows patients to capture their healthcare data and enables healthcare professionals to be up-to-date with a patient’s status. Ambient Assisted Living (AAL), which is considered as one of the major applications of IoT, is a home environment augmented with embedded ambient sensors to help improve an individual’s quality of life. This domain faces major challenges in providing safety and security when accessing sensitive health data. This paper presents an access control framework for AAL which considers multi-level access and privacy preservation. We focus on two major points: (1) how to use the data collected from ambient sensors and biometric sensors to perform the high-level task of activity recognition; and (2) how to secure the collected private healthcare data via effective access control. We achieve multi-level access control by extending Public Key Infrastructure (PKI) for secure authentication and utilizing Attribute-Based Access Control (ABAC) for authorization. The proposed access control system regulates access to healthcare data by defining policy attributes over healthcare professional groups and data classes classifications. We provide guidelines to classify the data classes and healthcare professional groups and describe security policies to control access to the data classes. Full article
Figures

Figure 1

Open AccessArticle
Building Realistic Mobility Models for Mobile Ad Hoc Networks
Informatics 2018, 5(2), 22; https://doi.org/10.3390/informatics5020022 -
Abstract
A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based
[...] Read more.
A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP) model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR), destination-sequenced distance-vector routing (DSDV), and ad hoc n-demand distance vector routing (AODV). The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To conclude, it is possible to develop a range of techniques for modelling scenarios applicable to MANETs, and these simulation models could be utilised for the evaluation of routing protocols. Full article
Figures

Figure 1

Open AccessArticle
Exploiting Rating Abstention Intervals for Addressing Concept Drift in Social Network Recommender Systems
Informatics 2018, 5(2), 21; https://doi.org/10.3390/informatics5020021 -
Abstract
One of the major problems that social networks face is the continuous production of successful, user-targeted information in the form of recommendations, which are produced exploiting technology from the field of recommender systems. Recommender systems are based on information about users’ past behavior
[...] Read more.
One of the major problems that social networks face is the continuous production of successful, user-targeted information in the form of recommendations, which are produced exploiting technology from the field of recommender systems. Recommender systems are based on information about users’ past behavior to formulate recommendations about their future actions. However, as time goes by, social network users may change preferences and likings: they may like different types of clothes, listen to different singers or even different genres of music and so on. This phenomenon has been termed as concept drift. In this paper: (1) we establish that when a social network user abstains from rating submission for a long time, it is a strong indication that concept drift has occurred and (2) we present a technique that exploits the abstention interval concept, to drop from the database ratings that do not reflect the current social network user’s interests, thus improving prediction quality. Full article
Figures

Figure 1

Open AccessArticle
Recognition of Physical Activities from a Single Arm-Worn Accelerometer: A Multiway Approach
Informatics 2018, 5(2), 20; https://doi.org/10.3390/informatics5020020 -
Abstract
In current clinical practice, functional limitations due to chronic musculoskeletal diseases are still being assessed subjectively, e.g., using questionnaires and function scores. Performance-based methods, on the other hand, offer objective insights. Hence, they recently attracted more interest as an additional source of information.
[...] Read more.
In current clinical practice, functional limitations due to chronic musculoskeletal diseases are still being assessed subjectively, e.g., using questionnaires and function scores. Performance-based methods, on the other hand, offer objective insights. Hence, they recently attracted more interest as an additional source of information. This work offers a step towards the shift to performance-based methods by recognizing standardized activities from continuous readings using a single accelerometer mounted on a patient’s arm. The proposed procedure consists of two steps. Firstly, activities are segmented, including rejection of non-informative segments. Secondly, the segments are associated to predefined activities using a multiway pattern matching approach based on higher order discriminant analysis (HODA). The two steps are combined into a multi-layered framework. Experiments on data recorded from 39 patients with spondyloarthritis show results with a classification accuracy of 94.34% when perfect segmentation is assumed. Automatic segmentation has 89.32% overlap with this ideal scenario. However, combining both drops performance to 62.34% due to several badly-recognized subjects. Still, these results are shown to significantly outperform a more traditional pattern matching approach. Overall, the work indicates promising viability of the technique to automate recognition and, through future work, assessment, of functional capacity. Full article
Figures

Figure 1

Open AccessEditorial
Quality Management in Big Data
Informatics 2018, 5(2), 19; https://doi.org/10.3390/informatics5020019 -
Abstract
Due to the importance of quality issues in Big Data, Big Data quality management has attracted significant research attention on how to measure, improve and manage the quality for Big Data. This special issue in the Journal of Informatics thus tends to address
[...] Read more.
Due to the importance of quality issues in Big Data, Big Data quality management has attracted significant research attention on how to measure, improve and manage the quality for Big Data. This special issue in the Journal of Informatics thus tends to address the quality problems in Big Data as well as promote further research for Big Data quality. Our editorial describes the state-of-the-art research challenges in the Big Data quality research, and highlights the contributions of each paper accepted in this special issue. Full article
Open AccessArticle
Data Provenance for Agent-Based Models in a Distributed Memory
Informatics 2018, 5(2), 18; https://doi.org/10.3390/informatics5020018 -
Abstract
Agent-Based Models (ABMs) assist with studying emergent collective behavior of individual entities in social, biological, economic, network, and physical systems. Data provenance can support ABM by explaining individual agent behavior. However, there is no provenance support for ABMs in a distributed setting. The
[...] Read more.
Agent-Based Models (ABMs) assist with studying emergent collective behavior of individual entities in social, biological, economic, network, and physical systems. Data provenance can support ABM by explaining individual agent behavior. However, there is no provenance support for ABMs in a distributed setting. The Multi-Agent Spatial Simulation (MASS) library provides a framework for simulating ABMs at fine granularity, where agents and spatial data are shared application resources in a distributed memory. We introduce a novel approach to capture ABM provenance in a distributed memory, called ProvMASS. We evaluate our technique with traditional data provenance queries and performance measures. Our results indicate that a configurable approach can capture provenance that explains coordination of distributed shared resources, simulation logic, and agent behavior while limiting performance overhead. We also show the ability to support practical analyses (e.g., agent tracking) and storage requirements for different capture configurations. Full article
Figures

Figure 1

Open AccessArticle
A Recommender System for Programming Online Judges Using Fuzzy Information Modeling
Informatics 2018, 5(2), 17; https://doi.org/10.3390/informatics5020017 -
Abstract
Programming online judges (POJs) are an emerging application scenario in e-learning recommendation areas. Specifically, they are e-learning tools usually used in programming practices for the automatic evaluation of source code developed by students when they are solving programming problems. Usually, they contain a
[...] Read more.
Programming online judges (POJs) are an emerging application scenario in e-learning recommendation areas. Specifically, they are e-learning tools usually used in programming practices for the automatic evaluation of source code developed by students when they are solving programming problems. Usually, they contain a large collection of such problems, to be solved by students at their own personalized pace. The more problems in the POJ the harder the selection of the right problem to solve according to previous users performance, causing information overload and a widespread discouragement. This paper presents a recommendation framework to mitigate this issue by suggesting problems to solve in programming online judges, through the use of fuzzy tools which manage the uncertainty related to this scenario. The evaluation of the proposal uses real data obtained from a programming online judge, and shows that the new approach improves previous recommendation strategies which do not consider uncertainty management in the programming online judge scenarios. Specifically, the best results were obtained for short recommendation lists. Full article
Figures

Figure 1

Open AccessArticle
Detecting Transitions in Manual Tasks from Wearables: An Unsupervised Labeling Approach
Informatics 2018, 5(2), 16; https://doi.org/10.3390/informatics5020016 -
Abstract
Authoring protocols for manual tasks such as following recipes, manufacturing processes or laboratory experiments requires significant effort. This paper presents a system that estimates individual procedure transitions from the user’s physical movement and gestures recorded with inertial motion sensors. Combined with egocentric or
[...] Read more.
Authoring protocols for manual tasks such as following recipes, manufacturing processes or laboratory experiments requires significant effort. This paper presents a system that estimates individual procedure transitions from the user’s physical movement and gestures recorded with inertial motion sensors. Combined with egocentric or external video recordings, this facilitates efficient review and annotation of video databases. We investigate different clustering algorithms on wearable inertial sensor data recorded on par with video data, to automatically create transition marks between task steps. The goal is to match these marks to the transitions given in a description of the workflow, thus creating navigation cues to browse video repositories of manual work. To evaluate the performance of unsupervised algorithms, the automatically-generated marks are compared to human expert-created labels on two publicly-available datasets. Additionally, we tested the approach on a novel dataset in a manufacturing lab environment, describing an existing sequential manufacturing process. The results from selected clustering methods are also compared to some supervised methods. Full article
Figures

Graphical abstract

Open AccessArticle
A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems
Informatics 2018, 5(1), 15; https://doi.org/10.3390/informatics5010015 -
Abstract
When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node
[...] Read more.
When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on the distance from the sink node and transmits data by setting different buffer thresholds to each group. This method reduces energy consumption of sensor devices located near the sink node and enhances the IoT system’s general energy efficiency. When a sensor device is moved and, thus, becomes unable to transmit data, it is allocated to a new group so that it can continue transmitting data to the sink node. Full article
Figures

Figure 1

Open AccessArticle
Utilizing Provenance in Reusable Research Objects
Informatics 2018, 5(1), 14; https://doi.org/10.3390/informatics5010014 -
Abstract
Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes
[...] Read more.
Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. Computational provenance is often the key to enable such reuse. In this paper, we show how reusable research objects can utilize provenance to correctly repeat a previous reference execution, to construct a subset of a research object for partial reuse, and to reuse existing contents of a research object for modified reuse. We describe two methods to summarize provenance that aid in understanding the contents and past executions of a research object. The first method obtains a process-view by collapsing low-level system information, and the second method obtains a summary graph by grouping related nodes and edges with the goal to obtain a graph view similar to application workflow. Through detailed experiments, we show the efficacy and efficiency of our algorithms. Full article
Figures

Figure 1

Open AccessArticle
A Novel Three-Stage Filter-Wrapper Framework for miRNA Subset Selection in Cancer Classification
Informatics 2018, 5(1), 13; https://doi.org/10.3390/informatics5010013 -
Abstract
Micro-Ribonucleic Acids (miRNAs) are small non-coding Ribonucleic Acid (RNA) molecules that play an important role in the cancer growth. There are a lot of miRNAs in the human body and not all of them are responsible for cancer growth. Therefore, there is a
[...] Read more.
Micro-Ribonucleic Acids (miRNAs) are small non-coding Ribonucleic Acid (RNA) molecules that play an important role in the cancer growth. There are a lot of miRNAs in the human body and not all of them are responsible for cancer growth. Therefore, there is a need to propose the novel miRNA subset selection algorithms to remove irrelevant and redundant miRNAs and find miRNAs responsible for cancer development. This paper tries to propose a novel three-stage miRNAs subset selection framework for increasing the cancer classification accuracy. In the first stage, multiple filter algorithms are used for ranking the miRNAs according to their relevance with the class label, and then generating a miRNA pool obtained based on the top-ranked miRNAs of each filter algorithm. In the second stage, we first rank the miRNAs of the miRNA pool by multiple filter algorithms and then this ranking is used to weight the probability of selecting each miRNA. In the third stage, Competitive Swarm Optimization (CSO) tries to find an optimal subset from the weighed miRNAs of the miRNA pool, which give us the most information about the cancer patients. It should be noted that the balance between exploration and exploitation in the proposed algorithm is accomplished by a zero-order Fuzzy Inference System (FIS). Experiments on several miRNA cancer datasets indicate that the proposed three-stage framework has a great performance in terms of both the low error rate of the cancer classification and minimizing the number of miRNAs. Full article
Figures

Figure 1

Open AccessArticle
Using Introspection to Collect Provenance in R
Informatics 2018, 5(1), 12; https://doi.org/10.3390/informatics5010012 -
Abstract
Data provenance is the history of an item of data from the point of its creation to its present state. It can support science by improving understanding of and confidence in data. RDataTracker is an R package that collects data provenance from R
[...] Read more.
Data provenance is the history of an item of data from the point of its creation to its present state. It can support science by improving understanding of and confidence in data. RDataTracker is an R package that collects data provenance from R scripts (https://github.com/End-to-end-provenance/RDataTracker). In addition to details on inputs, outputs, and the computing environment collected by most provenance tools, RDataTracker also records a detailed execution trace and intermediate data values. It does this using R’s powerful introspection functions and by parsing R statements prior to sending them to the interpreter so it knows what provenance to collect. The provenance is stored in a specialized graph structure called a Data Derivation Graph, which makes it possible to determine exactly how an output value is computed or how an input value is used. In this paper, we provide details about the provenance RDataTracker collects and the mechanisms used to collect it. We also speculate about how this rich source of information could be used by other tools to help an R programmer gain a deeper understanding of the software used and to support reproducibility. Full article
Figures

Figure 1

Open AccessArticle
LabelFlow Framework for Annotating Workflow Provenance
Informatics 2018, 5(1), 11; https://doi.org/10.3390/informatics5010011 -
Abstract
Scientists routinely analyse and share data for others to use. Successful data (re)use relies on having metadata describing the context of analysis of data. In many disciplines the creation of contextual metadata is referred to as reporting. One method of implementing analyses
[...] Read more.
Scientists routinely analyse and share data for others to use. Successful data (re)use relies on having metadata describing the context of analysis of data. In many disciplines the creation of contextual metadata is referred to as reporting. One method of implementing analyses is with workflows. A stand-out feature of workflows is their ability to record provenance from executions. Provenance is useful when analyses are executed with changing parameters (changing contexts) and results need to be traced to respective parameters. In this paper we investigate whether provenance can be exploited to support reporting. Specifically; we outline a case-study based on a real-world workflow and set of reporting queries. We observe that provenance, as collected from workflow executions, is of limited use for reporting, as it supports queries partially. We identify that this is due to the generic nature of provenance, its lack of domain-specific contextual metadata. We observe that the required information is available in implicit form, embedded in data. We describe LabelFlow, a framework comprised of four Labelling Operators for decorating provenance with domain-specific Labels. LabelFlow can be instantiated for a domain by plugging it with domain-specific metadata extractors. We provide a tool that takes as input a workflow, and produces as output a Labelling Pipeline for that workflow, comprised of Labelling Operators. We revisit the case-study and show how Labels provide a more complete implementation of reporting queries. Full article
Figures

Figure 1

Open AccessArticle
From Offshore Operation to Onshore Simulator: Using Visualized Ethnographic Outcomes to Work with Systems Developers
Informatics 2018, 5(1), 10; https://doi.org/10.3390/informatics5010010 -
Abstract
This paper focuses on the process of translating insights from a Computer Supported Cooperative Work (CSCW)-based study, conducted on a vessel at sea, into a model that can assist systems developers working with simulators, which are used by vessel operators for training purposes
[...] Read more.
This paper focuses on the process of translating insights from a Computer Supported Cooperative Work (CSCW)-based study, conducted on a vessel at sea, into a model that can assist systems developers working with simulators, which are used by vessel operators for training purposes on land. That is, the empirical study at sea brought about rich insights into cooperation, which is important for systems developers to know about and consider in their designs. In the paper, we establish a model that primarily consists of a ‘computational artifact’. The model is designed to support researchers working with systems developers. Drawing on marine examples, we focus on the translation process and investigate how the model serves to visualize work activities; how it addresses relations between technical and computational artifacts, as well as between functions in technical systems and functionalities in cooperative systems. In turn, we link design back to fieldwork studies. Full article
Figures

Figure 1

Open AccessArticle
Bus Operations Scheduling Subject to Resource Constraints Using Evolutionary Optimization
Informatics 2018, 5(1), 9; https://doi.org/10.3390/informatics5010009 -
Abstract
In public transport operations, vehicles tend to bunch together due to the instability of passenger demand and traffic conditions. Fluctuation of the expected waiting times of passengers at bus stops due to bus bunching is perceived as service unreliability and degrades the overall
[...] Read more.
In public transport operations, vehicles tend to bunch together due to the instability of passenger demand and traffic conditions. Fluctuation of the expected waiting times of passengers at bus stops due to bus bunching is perceived as service unreliability and degrades the overall quality of service. For assessing the performance of high-frequency bus services, transportation authorities monitor the daily operations via Transit Management Systems (TMS) that collect vehicle positioning information in near real-time. This work explores the potential of using Automated Vehicle Location (AVL) data from the running vehicles for generating bus schedules that improve the service reliability and conform to various regulatory constraints. The computer-aided generation of optimal bus schedules is a tedious task due to the nonlinear and multi-variable nature of the bus scheduling problem. For this reason, this work develops a two-level approach where (i) the regulatory constraints are satisfied and (ii) the waiting times of passengers are optimized with the introduction of an evolutionary algorithm. This work also discusses the experimental results from the implementation of such an approach in a bi-directional bus line operated by a major bus operator in northern Europe. Full article
Figures

Figure 1

Open AccessArticle
Embracing First-Person Perspectives in Soma-Based Design
Informatics 2018, 5(1), 8; https://doi.org/10.3390/informatics5010008 -
Abstract
A set of prominent designers embarked on a research journey to explore aesthetics in movement-based design. Here we unpack one of the design sensitivities unique to our practice: a strong first person perspective—where the movements, somatics and aesthetic sensibilities of the designer, design
[...] Read more.
A set of prominent designers embarked on a research journey to explore aesthetics in movement-based design. Here we unpack one of the design sensitivities unique to our practice: a strong first person perspective—where the movements, somatics and aesthetic sensibilities of the designer, design researcher and user are at the forefront. We present an annotated portfolio of design exemplars and a brief introduction to some of the design methods and theory we use, together substantiating and explaining the first-person perspective. At the same time, we show how this felt dimension, despite its subjective nature, is what provides rigor and structure to our design research. Our aim is to assist researchers in soma-based design and designers wanting to consider the multiple facets when designing for the aesthetics of movement. The applications span a large field of designs, including slow introspective, contemplative interactions, arts, dance, health applications, games, work applications and many others. Full article
Figures

Figure 1

Open AccessArticle
Internet of Tangible Things (IoTT): Challenges and Opportunities for Tangible Interaction with IoT
Informatics 2018, 5(1), 7; https://doi.org/10.3390/informatics5010007 -
Abstract
In the Internet of Things era, an increasing number of everyday objects are able to offer innovative services to the user. However, most of these devices provide only smartphone or web user interfaces. As a result, the interaction is disconnected from the physical
[...] Read more.
In the Internet of Things era, an increasing number of everyday objects are able to offer innovative services to the user. However, most of these devices provide only smartphone or web user interfaces. As a result, the interaction is disconnected from the physical world, decreasing the user experience and increasing the risk of user alienation from the physical world. We argue that tangible interaction can counteract this trend and this article discusses the potential benefits and the still open challenges of tangible interaction applied to the Internet of Things. After an analysis of open challenges for Human-Computer Interaction in IoT, we summarize current trends in tangible interaction and extrapolate eight tangible interaction properties that could be exploited for designing novel interactions with IoT objects. Through a systematic review of tangible interaction applied to IoT, we show what has been already explored in the systems that pioneered the field and the future explorations that still have to be conducted. In order to guide future work in this field, we propose a design card set for supporting the generation of tangible interfaces for IoT objects. The card set has been evaluated during a workshop with 21 people and the results are discussed. Full article
Figures

Figure 1