Open AccessArticle
Characterization of a Sea Buckthorn Extract and Its Effect on Free and Encapsulated Lactobacillus casei
Int. J. Mol. Sci. 2017, 18(12), 2513; doi:10.3390/ijms18122513 -
Abstract
Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea buckthorn lipid extract were studied during heat treatment
[...] Read more.
Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea buckthorn lipid extract were studied during heat treatment and with an in vitro gastrointestinal model. The characterization of the lipid extract was also done using the UV-Vis spectrometry (UV-Vis), high-performance liquid chromatography photodiode array detection method (HPLC-PDA), gas chromatography coupled with mass spectrometry (GS-MS) and Cryo scanning electron microscopy (Cryo-SEM). During heat treatment, the entrapped probiotic cells proved high viability (>6 CFU log/g), even at temperatures above 50 °C. The rich in monounsaturated fatty acids sea buckthorn fraction improved the in vitro digestion passage regarding the probiotic viability. The survival of the probiotic cells was 15% higher after 2 h in the acidic medium of the simulated gastric fluid in the sample where L. casei was encapsulated with the sea buckthorn extract compared with the samples where no extract was added. Thus, this approach may be effective for the future development of probiotic-supplemented foods as foods with health welfare for the consumers. Full article
Figures

Open AccessReview
Models in the Research Process of Psoriasis
Int. J. Mol. Sci. 2017, 18(12), 2514; doi:10.3390/ijms18122514 -
Abstract
Psoriasis is an ancient, universal chronic skin disease with a significant geographical variability, with the lowest incidence rate at the equator, increasing towards the poles. Insights into the mechanisms responsible for psoriasis have generated an increasing number of druggable targets and molecular drugs.
[...] Read more.
Psoriasis is an ancient, universal chronic skin disease with a significant geographical variability, with the lowest incidence rate at the equator, increasing towards the poles. Insights into the mechanisms responsible for psoriasis have generated an increasing number of druggable targets and molecular drugs. The development of relevant in vitro and in vivo models of psoriasis is now a priority and an important step towards its cure. In this review, we summarize the current cellular and animal systems suited to the study of psoriasis. We discuss the strengths and limitations of the various models and the lessons learned. We conclude that, so far, there is no one model that can meet all of the research needs. Therefore, the choice model system will depend on the questions being addressed. Full article
Figures

Figure 1

Open AccessArticle
The Evaluation of Pro-Cognitive and Antiamnestic Properties of Berberine and Magnoflorine Isolated from Barberry Species by Centrifugal Partition Chromatography (CPC), in Relation to QSAR Modelling
Int. J. Mol. Sci. 2017, 18(12), 2511; doi:10.3390/ijms18122511 -
Abstract
Civilization diseases associated with memory disorders are important health problems occurring due to a prolonged life span. The manuscript shows the results of an in vivo study targeting the emergence of two drug candidates with anti-amnestic properties. The preceding quantitative structure–activity relationship (QSAR)
[...] Read more.
Civilization diseases associated with memory disorders are important health problems occurring due to a prolonged life span. The manuscript shows the results of an in vivo study targeting the emergence of two drug candidates with anti-amnestic properties. The preceding quantitative structure–activity relationship (QSAR) studies provided information on the ability of berberine and magnoflorine to cross the blood–brain barrier (BBB). In the light of these findings, both compounds were purified from crude plant extracts of barberries: berberine—from Berberis siberica using a method published earlier, and magnoflorine—from Berberis cretica by centrifugal partition chromatography (solvent system: ethyl acetate:butanol:water-0.6:1.5:3 v/v/v). Both the compounds were evaluated for their memory enhancing and scopolamine inhibitory properties in an in vivo passive avoidance (PA) test on mice towards short-term and long-term memory. Cognition enhancing properties were observed at the following doses: 5 mg/kg (i.p.) for berberine and 20 mg/kg (i.p.) for magnoflorine. In addition, both the tested isoquinolines with the co-administered scopolamine were found to block long-term but not short-term memory impairment. No influence on the locomotor activity was observed for the tested doses. The results confirmed a marked central activity of magnoflorine and showed the necessity to lower the dosage of berberine. Optimized purification conditions have been elaborated for magnoflorine. Full article
Figures

Open AccessArticle
Identifying the Epitope Regions of Therapeutic Antibodies Based on Structure Descriptors
Int. J. Mol. Sci. 2017, 18(12), 2457; doi:10.3390/ijms18122457 (registering DOI) -
Abstract
Therapeutic antibodies are widely used for disease detection and specific treatments. However, as an exogenous protein, these antibodies can be detected by the human immune system and elicit a response that can lead to serious illnesses. Therapeutic antibodies can be engineered through antibody
[...] Read more.
Therapeutic antibodies are widely used for disease detection and specific treatments. However, as an exogenous protein, these antibodies can be detected by the human immune system and elicit a response that can lead to serious illnesses. Therapeutic antibodies can be engineered through antibody humanization, which aims to maintain the specificity and biological function of the original antibodies, and reduce immunogenicity. However, the antibody drug effect is synchronously reduced as more exogenous parts are replaced by human antibodies. Hence, a major challenge in this area is to precisely detect the epitope regions in immunogenic antibodies and guide point mutations of exogenous antibodies to balance both humanization level and drug effect. In this article, the latest dataset of immunoglobulin complexes was collected from protein data bank (PDB) to discover the spatial features of immunogenic antibody. Furthermore, a series of structure descriptors were generated to characterize and distinguish epitope residues from non-immunogenic regions. Finally, a computational model was established based on structure descriptors, and results indicated that this model has the potential to precisely predict the epitope regions of therapeutic antibodies. With rapid accumulation of immunoglobulin complexes, this methodology could be used to improve and guide future antibody humanization and potential clinical applications. Full article
Figures

Figure 1

Open AccessArticle
Altered Leukocyte Sphingolipid Pathway in Breast Cancer
Int. J. Mol. Sci. 2017, 18(12), 2521; doi:10.3390/ijms18122521 -
Abstract
Sphingolipid metabolism pathway is essential in membrane homeostasis, and its dysfunction has been associated with favorable tumor microenvironment, disease progression, and chemotherapy resistance. Its major components have key functions on survival and proliferation, with opposing effects. We have profiled the components of the
[...] Read more.
Sphingolipid metabolism pathway is essential in membrane homeostasis, and its dysfunction has been associated with favorable tumor microenvironment, disease progression, and chemotherapy resistance. Its major components have key functions on survival and proliferation, with opposing effects. We have profiled the components of the sphingolipid pathway on leukocytes of breast cancer (BC) patients undergoing chemotherapy treatment and without, including the five sphingosine 1-phosphate (S1P) receptors, the major functional genes, and cytokines, in order to better understand the S1P signaling in the immune cells of these patients. To the best of our knowledge, this is the first characterization of the sphingolipid pathway in whole blood of BC patients. Skewed gene profiles favoring high SPHK1 expression toward S1P production during BC development was observed, which was reversed by chemotherapy treatment, and reached similar levels to those found in healthy donors. Such levels were also correlated with high levels of TNF-α. Our data revealed an important role of the sphingolipid pathway in immune cells in BC with skewed signaling of S1P receptors, which favored cancer development even under chemotherapy, and may probably be a trigger of cancer resistance. Thus, these molecules must be considered as a target pathway for combined BC therapeutics. Full article
Figures

Open AccessArticle
Screening In Vitro Targets Related to Diabetes in Herbal Extracts from Peru: Identification of Active Compounds in Hypericum laricifolium Juss. by Offline High-Performance Liquid Chromatography
Int. J. Mol. Sci. 2017, 18(12), 2512; doi:10.3390/ijms18122512 (registering DOI) -
Abstract
This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss.
[...] Read more.
This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss. (HL) was the herb which showed more than 50% inhibition in all assays, presenting 97.2 ± 2.0%, 56.9 ± 5.6%, 81.9 ± 2.5%, and 58.8 ± 4.6% inhibition for the α-glucosidase, AR, DPPH, and ABTS assays, respectively. Finally, six bioactive compounds, namely, protocatechuic acid, chlorogenic acid, caffeic acid, kaempferol 3-O-glucuronide, quercetin, and kaempferol were identified in HL by offline high-performance liquid chromatography (HPLC). Quercetin exhibited the strongest inhibition in all enzyme assays and the strongest antioxidant activity. The results suggest that HL shows great potential for the complementary treatment of diabetes and its complications. Full article
Figures

Open AccessArticle
Impact of Antibiotics on the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells
Int. J. Mol. Sci. 2017, 18(12), 2522; doi:10.3390/ijms18122522 -
Abstract
Adipose tissue is a promising source of mesenchymal stem cells. Their potential to differentiate and regenerate other types of tissues may be affected by several factors. This may be due to in vitro cell-culture conditions, especially the supplementation with antibiotics. The aim of
[...] Read more.
Adipose tissue is a promising source of mesenchymal stem cells. Their potential to differentiate and regenerate other types of tissues may be affected by several factors. This may be due to in vitro cell-culture conditions, especially the supplementation with antibiotics. The aim of our study was to evaluate the effects of a penicillin-streptomycin mixture (PS), amphotericin B (AmB), a complex of AmB with copper (II) ions (AmB-Cu2+) and various combinations of these antibiotics on the proliferation and differentiation of adipose-derived stem cells in vitro. Normal human adipose-derived stem cells (ADSC, Lonza) were routinely maintained in a Dulbecco’s Modified Eagle Medium (DMEM) that was either supplemented with selected antibiotics or without antibiotics. The ADSC that were used for the experiment were at the second passage. The effect of antibiotics on proliferation was analyzed using the 3-[4,5,[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine-B (SRB) tests. Differentiation was evaluated based on Alizarin Red staining, Oil Red O staining and determination of the expression of ADSC, osteoblast and adipocyte markers by real-time RT-qPCR. The obtained results indicate that the influence of antibiotics on adipose-derived stem cells depends on the duration of exposure and on the combination of applied compounds. We show that antibiotics alter the proliferation of cells and also promote natural osteogenesis, and adipogenesis, and that this effect is also noticeable in stimulated osteogenesis. Full article
Open AccessReview
Molecular Mechanisms of GPCR Signaling: A Structural Perspective
Int. J. Mol. Sci. 2017, 18(12), 2519; doi:10.3390/ijms18122519 -
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies
[...] Read more.
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential. Full article
Figures

Figure 1

Open AccessConference Report
Report of the International Society for Zinc Biology 5th Meeting, in Collaboration with Zinc-Net (COST Action TD1304)—UCLan Campus, Pyla, Cyprus
Int. J. Mol. Sci. 2017, 18(12), 2518; doi:10.3390/ijms18122518 (registering DOI) -
Abstract
From 18 to 22 June 2017, the fifth biennial meeting of the International Society for Zinc Biology was held in conjunction with the final dissemination meeting of the Network for the Biology of Zinc (Zinc-Net) at the University of Central Lancashire, Cyprus campus.
[...] Read more.
From 18 to 22 June 2017, the fifth biennial meeting of the International Society for Zinc Biology was held in conjunction with the final dissemination meeting of the Network for the Biology of Zinc (Zinc-Net) at the University of Central Lancashire, Cyprus campus. The meeting attracted over 160 participants, had 17 scientific symposia, 4 plenary speakers and 2 poster discussion sessions. In this report, we give an overview of the key themes of the meeting and some of the highlights from the scientific programme. Full article
Open AccessArticle
Whole-Genome Re-Alignment Facilitates Development of Specific Molecular Markers for Races 1 and 4 of Xanthomonas campestris pv. campestris, the Cause of Black rot Disease in Brassica oleracea
Int. J. Mol. Sci. 2017, 18(12), 2523; doi:10.3390/ijms18122523 (registering DOI) -
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc),is a seed borne disease of Brassicaceae. Eleven pathogenic races have been identified based on the phenotype interaction pattern of differential brassica cultivars inoculated with different strains. Race 1 and 4
[...] Read more.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc),is a seed borne disease of Brassicaceae. Eleven pathogenic races have been identified based on the phenotype interaction pattern of differential brassica cultivars inoculated with different strains. Race 1 and 4 are the two most frequent races found in Brassica oleracea crops.In this study,a PCR molecular diagnostic tool was developed for the identification of Xcc races 1 and 4 of this pathogen. Whole genomic sequences of races 1, 3, 4 and 9 and sequences of three other Xanthomonas pathovars/species (X. campestris pv. incanae (Xci), X. campestris pv. raphani (Xcr)and X. euvesicatoria(Xev) were aligned to identify variable regions among races. To develop specific markers for races 1 and 4, primers were developed from a region where sequences were dissimilar in other races. Sequence-characterized amplified regions (SCAR) and insertion or deletion of bases (InDel) were used to develop each specific set of primers. The specificity of the selected primers was confirmed by PCR tests using genomic DNA of seven different Xcc races, two strains of X. campestris pathovars and other species of bacteria. Bacterial samples of the races 1 and 4 isolates were collected from artificially inoculated cabbage leaves to conduct bio-PCR. Bio-PCR successfully detected the two Xcc isolates. By using our race-specific markers, a potential race 1 strain from the existing Korean Xcc collection was identified. The Xcc race 1 and 4-specific markers developed in this study are novel and can potentially be used for rapid detection of Xcc races through PCR. Full article
Figures

Open AccessArticle
The Silencing of Carotenoid β-Hydroxylases by RNA Interference in Different Maize Genetic Backgrounds Increases the β-Carotene Content of the Endosperm
Int. J. Mol. Sci. 2017, 18(12), 2515; doi:10.3390/ijms18122515 (registering DOI) -
Abstract
Maize (Zea mays L.) is a staple food in many parts of Africa, but the endosperm generally contains low levels of the pro-vitamin A carotenoid β-carotene, leading to vitamin A deficiency disease in populations relying on cereal-based diets. However, maize endosperm does
[...] Read more.
Maize (Zea mays L.) is a staple food in many parts of Africa, but the endosperm generally contains low levels of the pro-vitamin A carotenoid β-carotene, leading to vitamin A deficiency disease in populations relying on cereal-based diets. However, maize endosperm does accumulate high levels of other carotenoids, including zeaxanthin, which is derived from β-carotene via two hydroxylation reactions. Blocking these reactions could therefore improve the endosperm β-carotene content. Accordingly, we used RNA interference (RNAi) to silence the endogenous ZmBCH1 and ZmBCH2 genes, which encode two non-heme di-iron carotenoid β-hydroxylases. The genes were silenced in a range of maize genetic backgrounds by introgressing the RNAi cassette, allowing us to determine the impact of ZmBCH1/ZmBCH2 silencing in diverse hybrids. The β-carotene content of the endosperm increased substantially in all hybrids in which ZmBCH2 was silenced, regardless of whether or not ZmBCH1 was silenced simultaneously. However, the β-carotene content did not change significantly in C17 hybrids (M7 × C17 and M13 × C17) compared to C17 alone, because ZmBCH2 is already expressed at negligible levels in the C17 parent. Our data indicate that ZmBCH2 is primarily responsible for the conversion of β-carotene to zeaxanthin in maize endosperm. Full article
Figures

Open AccessReview
The POZ/BTB and AT-Hook Containing Zinc Finger 1 (PATZ1) Transcription Regulator: Physiological Functions and Disease Involvement
Int. J. Mol. Sci. 2017, 18(12), 2524; doi:10.3390/ijms18122524 (registering DOI) -
Abstract
PATZ1 is a zinc finger protein, belonging to the POZ domain Krüppel-like zinc finger (POK) family of architectural transcription factors, first discovered in 2000 by three independent groups. Since that time accumulating evidences have shown its involvement in a variety of biological processes
[...] Read more.
PATZ1 is a zinc finger protein, belonging to the POZ domain Krüppel-like zinc finger (POK) family of architectural transcription factors, first discovered in 2000 by three independent groups. Since that time accumulating evidences have shown its involvement in a variety of biological processes (i.e., embryogenesis, stemness, apoptosis, senescence, proliferation, T-lymphocyte differentiation) and human diseases. Here we summarize these studies with a focus on the PATZ1 emerging and controversial role in cancer, where it acts as either a tumor suppressor or an oncogene. Finally, we give some insight on clinical perspectives using PATZ1 as a prognostic marker and therapeutic target. Full article
Open AccessArticle
Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study
Int. J. Mol. Sci. 2017, 18(12), 2520; doi:10.3390/ijms18122520 (registering DOI) -
Abstract
The molecular weights of lignosulfonates (LSs) are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C) and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one
[...] Read more.
The molecular weights of lignosulfonates (LSs) are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C) and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare controlled molecular weight LSs in the range of 30,000 to 3500 Da based on the average mass molecular weight. The LS depolymerisation was monitored via reverse-phase and size-exclusion chromatography. It has been shown that the combination of O2, H2O2 and Cu as a catalyst in alkaline conditions at 80 °C induces a high LS depolymerisation. The depolymerisation was systemically accompanied by a vanillin production, the yields of which reached 1.4 wt % (weight percentage on LS raw basis) in such conditions. Also, the average molecular weight and vanillin concentration were correlated and depended linearly on the temperature and reaction duration. Full article
Open AccessReview
Aptamer Bioinformatics
Int. J. Mol. Sci. 2017, 18(12), 2516; doi:10.3390/ijms18122516 (registering DOI) -
Abstract
Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are
[...] Read more.
Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS) data and in silico aptamer optimization. Full article
Figures

Open AccessArticle
Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts
Int. J. Mol. Sci. 2017, 18(12), 2517; doi:10.3390/ijms18122517 (registering DOI) -
Abstract
The accumulation of senescent cells is implicated in the pathology of several age-related diseases. While the clearance of senescent cells has been suggested as a therapeutic target for patients with osteoarthritis (OA), cellular senescence of bone-resident osteoblasts (OB) remains poorly explored. Since oxidative
[...] Read more.
The accumulation of senescent cells is implicated in the pathology of several age-related diseases. While the clearance of senescent cells has been suggested as a therapeutic target for patients with osteoarthritis (OA), cellular senescence of bone-resident osteoblasts (OB) remains poorly explored. Since oxidative stress is a well-known inducer of cellular senescence, we here investigated the effect of antioxidant supplementation on the isolation efficiency, expansion, differentiation potential, and transcriptomic profile of OB from osteoarthritic subchondral bone. Bone chips were harvested from sclerotic and non-sclerotic regions of the subchondral bone of human OA joints. The application of 0.1 mM ascorbic acid-2-phosphate (AA) significantly increased the number of outgrowing cells and their proliferation capacity. This enhanced proliferative capacity showed a negative correlation with the amount of senescent cells and was accompanied by decreased expression of reactive oxygen species (ROS) in cultured OB. Expanded cells continued to express differentiated OB markers independently of AA supplementation and demonstrated no changes in their capacity to osteogenically differentiate. Transcriptomic analyses revealed that apoptotic, cell cycle–proliferation, and catabolic pathways were the main pathways affected in the presence of AA during OB expansion. Supplementation with AA can thus help to expand subchondral bone OB in vitro while maintaining their special cellular characteristics. The clearance of such senescent OB could be envisioned as a potential therapeutic target for the treatment of OA. Full article
Figures

Figure 1a

Open AccessReview
Long Non-Coding RNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Regulation, Functions, and Underlying Mechanisms
Int. J. Mol. Sci. 2017, 18(12), 2505; doi:10.3390/ijms18122505 -
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death in the world. Hepatitis B virus (HBV) and its X gene-encoded protein (HBx) play important roles in the progression of HCC. Although long non-coding RNAs (lncRNAs)
[...] Read more.
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death in the world. Hepatitis B virus (HBV) and its X gene-encoded protein (HBx) play important roles in the progression of HCC. Although long non-coding RNAs (lncRNAs) cannot encode proteins, growing evidence indicates that they play essential roles in HCC progression, and contribute to cell proliferation, invasion and metastasis, autophagy, and apoptosis by targeting a large number of pivotal protein-coding genes, miRNAs, and signaling pathways. In this review, we briefly outline recent findings of differentially expressed lncRNAs in HBV-related HCC, with particular focus on several key lncRNAs, and discuss their regulation by HBV/HBx, their functions, and their underlying molecular mechanisms in the progression of HCC. Full article
Figures

Open AccessArticle
Ionic Liquid-Mediated Homogeneous Esterification of Cinnamic Anhydride to Xylans
Int. J. Mol. Sci. 2017, 18(12), 2502; doi:10.3390/ijms18122502 -
Abstract
A new functional biopolymer was synthesized through an ionic liquid-mediated homogeneous grafting of cinnamic anhydride to xylans. The ionic liquid used was 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid. Xylans with degrees of substitution (DS) between 0.11 and 0.57 were accessible in a completely homogeneous
[...] Read more.
A new functional biopolymer was synthesized through an ionic liquid-mediated homogeneous grafting of cinnamic anhydride to xylans. The ionic liquid used was 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid. Xylans with degrees of substitution (DS) between 0.11 and 0.57 were accessible in a completely homogeneous system by changing catalysts (NaOH, KOH and LiOH), time, reaction temperature, and cinnamic anhydride/xylan molar ratio. The chemical structure and the thermal stability of the derivatives were characterized by Fourier transform infrared spectroscopy (FT-IR), 13C-NMR spectroscopy, and thermogravimetry. The thermal stability of the derivatives was reduced compared with the original xylan. Possible applications of the cinnamic anhydride-acylated xylan derivatives include wet-end papermaking, organic–inorganic composite films, and hydrogels. Full article
Figures

Open AccessArticle
Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson’s Disease
Int. J. Mol. Sci. 2017, 18(12), 2507; doi:10.3390/ijms18122507 -
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate,
[...] Read more.
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism. Full article
Figures

Open AccessReview
Microtubule Depolymerization by Kinase Inhibitors: Unexpected Findings of Dual Inhibitors
Int. J. Mol. Sci. 2017, 18(12), 2508; doi:10.3390/ijms18122508 -
Abstract
Microtubule-targeting agents are widely used as clinical drugs in the treatment of cancer. However, some kinase inhibitors can also disrupt microtubule organization by directly binding to tubulin. These unexpected effects may result in a plethora of harmful events and/or a misinterpretation of the
[...] Read more.
Microtubule-targeting agents are widely used as clinical drugs in the treatment of cancer. However, some kinase inhibitors can also disrupt microtubule organization by directly binding to tubulin. These unexpected effects may result in a plethora of harmful events and/or a misinterpretation of the experimental results. Thus, further studies are needed to understand these dual inhibitors. In this review, I discuss the roles of dual inhibitors of kinase activity and microtubule function as well as describe the properties underlining their dual roles. Since both kinase and microtubule inhibitors cause cell toxicity and cell cycle arrest, it is difficult to determine which inhibitor is responsible for each phenotype. A discrimination of cell cycle arrest at G0/G1 or G2/M and/or image analyses of cellular phenotype may eventually lead to new insights on drug duality. Because of the indispensable roles of microtubules in mitosis and vesicle transport, I propose a simple and easy method to identify microtubule depolymerizing compounds. Full article
Figures

Open AccessReview
Coxiella burnetii Lipopolysaccharide: What Do We Know?
Int. J. Mol. Sci. 2017, 18(12), 2509; doi:10.3390/ijms18122509 -
Abstract
A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among
[...] Read more.
A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved in this immune hijacking because of its atypical composition and structure. Thus, the aim of this mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity of cells. Full article