Open AccessArticle
Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice
Int. J. Mol. Sci. 2018, 19(4), 1247; doi:10.3390/ijms19041247 (registering DOI) -
Abstract
The space radiation environment includes helium (4He) ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1
[...] Read more.
The space radiation environment includes helium (4He) ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with 4He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. 4He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to 4He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses. Full article
Figures

Figure 1

Open AccessReview
Human Cancer and Platelet Interaction, a Potential Therapeutic Target
Int. J. Mol. Sci. 2018, 19(4), 1246; doi:10.3390/ijms19041246 (registering DOI) -
Abstract
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect
[...] Read more.
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction. Full article
Figures

Open AccessReview
NF-κB-Mediated Inflammation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage. Does Autophagy Play a Role?
Int. J. Mol. Sci. 2018, 19(4), 1245; doi:10.3390/ijms19041245 (registering DOI) -
Abstract
The rupture of saccular intracranial aneurysms (IA) is the commonest cause of non-traumatic subarachnoid hemorrhage (SAH)—the most serious form of stroke with a high mortality rate. Aneurysm walls are usually characterized by an active inflammatory response, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated
[...] Read more.
The rupture of saccular intracranial aneurysms (IA) is the commonest cause of non-traumatic subarachnoid hemorrhage (SAH)—the most serious form of stroke with a high mortality rate. Aneurysm walls are usually characterized by an active inflammatory response, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) has been identified as the main transcription factor regulating the induction of inflammation-related genes in IA lesions. This transcription factor has also been related to IA rupture and resulting SAH. We and others have shown that autophagy interacts with inflammation in many diseases, but there is no information of such interplay in IA. Moreover, NF-κB, which is a pivotal factor controlling inflammation, is regulated by autophagy-related proteins, and autophagy is regulated by NF-κB signaling. It was also shown that autophagy mediates the normal functioning of vessels, so its disturbance can be associated with vessel-related disorders. Early brain injury, delayed brain injury, and associated cerebral vasospasm are among the most serious consequences of IA rupture and are associated with impaired function of the autophagy–lysosomal system. Further studies on the role of the interplay between autophagy and NF-κB-mediated inflammation in IA can help to better understand IA pathogenesis and to identify IA patients with an increased SAH risk. Full article
Figures

Figure 1

Open AccessArticle
Molecular Modeling Studies on Carbazole Carboxamide Based BTK Inhibitors Using Docking and Structure-Based 3D-QSAR
Int. J. Mol. Sci. 2018, 19(4), 1244; doi:10.3390/ijms19041244 (registering DOI) -
Abstract
Rheumatoid arthritis (RA) is the second common rheumatic immune disease with chronic, invasive inflammatory characteristics. Non-steroidal anti-inflammatory drugs (NSAIDs), slow-acting anti-rheumatic drugs (SAARDs), or glucocorticoid drugs can improve RA patients’ symptoms, but fail to cure. Broton’s tyrosine kinase (BTK) inhibitors have been proven
[...] Read more.
Rheumatoid arthritis (RA) is the second common rheumatic immune disease with chronic, invasive inflammatory characteristics. Non-steroidal anti-inflammatory drugs (NSAIDs), slow-acting anti-rheumatic drugs (SAARDs), or glucocorticoid drugs can improve RA patients’ symptoms, but fail to cure. Broton’s tyrosine kinase (BTK) inhibitors have been proven to be an efficacious target against autoimmune indications and B-cell malignancies. Among the current 11 clinical drugs, only BMS-986142, classified as a carbazole derivative, is used for treating RA. To design novel and highly potent carbazole inhibitors, molecular docking and three dimensional quantitative structure–activity relationship (3D-QSAR) were applied to explore a dataset of 132 new carbazole carboxamide derivatives. The established comparative molecular field analysis (CoMFA) (q2 = 0.761, r2 = 0.933) and comparative molecular similarity indices analysis (CoMSIA) (q2 = 0.891, r2 = 0.988) models obtained high predictive and satisfactory values. CoMFA/CoMSIA contour maps demonstrated that bulky substitutions and hydrogen-bond donors were preferred at R1 and 1-position, respectively, and introducing hydrophilic substitutions at R1 and R4 was important for improving BTK inhibitory activities. These results will contribute to the design of novel and highly potent BTK inhibitors. Full article
Figures

Figure 1

Open AccessArticle
4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H3 Receptor Antagonist: Further Structure–Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation
Int. J. Mol. Sci. 2018, 19(4), 1243; doi:10.3390/ijms19041243 (registering DOI) -
Abstract
Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and
[...] Read more.
Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and there is a great interest for potent, brain-penetrating H3 receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H3 receptor (jejunum), with pA2 = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA2 = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA2 value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H3 receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H3 receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H3 antagonist Ciproxifan. Full article
Figures

Figure 1

Open AccessArticle
Proteomic Identification of the Galectin-1-Involved Molecular Pathways in Urinary Bladder Urothelial Carcinoma
Int. J. Mol. Sci. 2018, 19(4), 1242; doi:10.3390/ijms19041242 (registering DOI) -
Abstract
Among various heterogeneous types of bladder tumors, urothelial carcinoma is the most prevalent lesion. Some of the urinary bladder urothelial carcinomas (UBUCs) develop local recurrence and may cause distal invasion. Galectin-1 de-regulation significantly affects cell transformation, cell proliferation, angiogenesis, and cell invasiveness. In
[...] Read more.
Among various heterogeneous types of bladder tumors, urothelial carcinoma is the most prevalent lesion. Some of the urinary bladder urothelial carcinomas (UBUCs) develop local recurrence and may cause distal invasion. Galectin-1 de-regulation significantly affects cell transformation, cell proliferation, angiogenesis, and cell invasiveness. In continuation of our previous investigation on the role of galectin-1 in UBUC tumorigenesis, in this study, proteomics strategies were implemented in order to find more galectin-1-associated signaling pathways. The results of this study showed that galectin-1 knockdown could induce 15 down-regulated proteins and two up-regulated proteins in T24 cells. These de-regulated proteins might participate in lipid/amino acid/energy metabolism, cytoskeleton, cell proliferation, cell-cell interaction, cell apoptosis, metastasis, and protein degradation. The aforementioned dys-regulated proteins were confirmed by western immunoblotting. Proteomics results were further translated to prognostic markers by analyses of biopsy samples. Results of cohort studies demonstrated that over-expressions of glutamine synthetase, alcohol dehydrogenase (NADP+), fatty acid binding protein 4, and toll interacting protein in clinical specimens were all significantly associated with galectin-1 up-regulation. Univariate analyses showed that de-regulations of glutamine synthetase and fatty acid binding protein 4 in clinical samples were respectively linked to disease-specific survival and metastasis-free survival. Full article
Figures

Open AccessReview
HIV Vaccination: A Roadmap among Advancements and Concerns
Int. J. Mol. Sci. 2018, 19(4), 1241; doi:10.3390/ijms19041241 (registering DOI) -
Abstract
Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly
[...] Read more.
Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly active antiretroviral therapy and its availability to an increasing number of people worldwide, with a considerable effect on survival. However, a safe and effective vaccine able to prevent and eradicate the HIV pandemic is still lacking. Clinical trials and preclinical proof-of-concept studies in nonhuman primate (NHP) models have provided insights into potential correlates of protection against the HIV-1 infection, which include broadly neutralizing antibodies (bnAbs), non-neutralizing antibodies targeting the variable loops 1 and 2 (V1V2) regions of the HIV-1 envelope (Env), polyfunctional antibody, and Env-specific T-cell responses. In this review, we provide a brief overview of different HIV-1 vaccine approaches and discuss the current understanding of the cellular and humoral correlates of HIV-1 immunity. Full article
Figures

Figure 1

Open AccessArticle
Activation of ER Stress-Dependent miR-216b Has a Critical Role in Salviamiltiorrhiza Ethanol-Extract-Induced Apoptosis in U266 and U937 Cells
Int. J. Mol. Sci. 2018, 19(4), 1240; doi:10.3390/ijms19041240 (registering DOI) -
Abstract
Although Salviamiltiorrhiza has been reported to have anti-cancer mechanisms, such as caspase activation, cell cycle arrest, an anti-angiogenesis effect, and Bcl-2 family regulation, its underlying mechanism of endoplasmic reticulum (ER) stress-mediated apoptosis has never been demonstrated. Thus, in this current study, ER
[...] Read more.
Although Salviamiltiorrhiza has been reported to have anti-cancer mechanisms, such as caspase activation, cell cycle arrest, an anti-angiogenesis effect, and Bcl-2 family regulation, its underlying mechanism of endoplasmic reticulum (ER) stress-mediated apoptosis has never been demonstrated. Thus, in this current study, ER stress-related apoptosis via miR-216b of the ethanol extract of Salviamiltiorrhiza (SM) is elucidated for the first time. SM treatment inhibited the viability of U266 and U937 cells in a concentration-dependent manner. However, SM-exposed Raw264.7 cells were intact compared to U266 or U937 cells. Treatment with SM significantly elevated the generation of reactive oxygen species (ROS). The anti-proliferative effect of SM was reversed by pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), compared to cells treated only with SM. Also, SM treatment increased the ER stress by elevation of phosphorylated activating transcription factor 4 (p-ATF4), phosphorylated eukaryotic Initiation Factor 2 (p-eIF2), and phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK) expression. Caspase-3 and Poly (ADP-ribose) polymerase (PARP) were cleaved and CCAAT-enhancer-binding protein homologous protein (CHOP) was activated by SM treatment. PARP cleavage and CHOP activation were attenuated by NAC pretreatment. Furthermore, SM increased the tumor suppressor, miR-216b, and suppressed its target, c-Jun. miR-216b inhibitor attenuated the apoptotic effect of SM. Taken together, SM treatment induced apoptosis through regulation of miR-216b and ROS/ER stress pathways. SM could be a potential drug for treatment of multiple myeloma and myeloid leukemia. Full article
Figures

Open AccessArticle
Telomerase Inhibition by a New Synthetic Derivative of the Aporphine Alkaloid Boldine
Int. J. Mol. Sci. 2018, 19(4), 1239; doi:10.3390/ijms19041239 (registering DOI) -
Abstract
Telomerase, the enzyme responsible for cell immortality, is an important target in anti-cancer drug discovery. Boldine, an abundant aporphine alkaloid of Peumus boldus, is known to inhibit telomerase at non-toxic concentrations. Cytotoxicity of N-benzylsecoboldine hydrochloride (BSB), a synthetic derivative of boldine,
[...] Read more.
Telomerase, the enzyme responsible for cell immortality, is an important target in anti-cancer drug discovery. Boldine, an abundant aporphine alkaloid of Peumus boldus, is known to inhibit telomerase at non-toxic concentrations. Cytotoxicity of N-benzylsecoboldine hydrochloride (BSB), a synthetic derivative of boldine, was determined using the MTT method in MCF7 and MDA-MB231 cells. Aliquots of cell lysates were incubated with various concentrations of BSB in qTRAP (quantitative telomere repeat amplification protocol)-ligand experiments before substrate elongation by telomerase or amplification by hot-start Taq polymerase. The crystal structure of TERT, the catalytic subunit of telomerase from Tribolium castaneum, was used for docking and molecular dynamics analysis. The qTRAP-ligand data gave an IC50 value of about 0.17 ± 0.1 µM for BSB, roughly 400 times stronger than boldine, while the LD50 in the cytotoxicity assays were 12.5 and 21.88 µM, respectively, in cells treated for 48 h. Although both compounds interacted well with the active site, MD analysis suggests a second binding site with which BSB interacts via two hydrogen bonds, much more strongly than boldine. Theoretical analyses also evaluated the IC50 for BSB as submicromolar. BSB, with greater hydrophobicity and flexibility than boldine, represents a promising structure to inhibit telomerase at non-toxic concentrations. Full article
Figures

Figure 1

Open AccessArticle
PIN7 Auxin Carrier Has a Preferential Role in Terminating Radial Root Expansion in Arabidopsis thaliana
Int. J. Mol. Sci. 2018, 19(4), 1238; doi:10.3390/ijms19041238 (registering DOI) -
Abstract
Directional growth of lateral roots is critical for radial expansion and soil coverage. Despite its importance, almost nothing is known about its molecular determinants. Initially, young lateral roots (LRs) grow away from the parental root, maintaining the angle acquired shortly after emergence. A
[...] Read more.
Directional growth of lateral roots is critical for radial expansion and soil coverage. Despite its importance, almost nothing is known about its molecular determinants. Initially, young lateral roots (LRs) grow away from the parental root, maintaining the angle acquired shortly after emergence. A second downwards bending response to gravity terminates the so-called plateau phase and thereby limits radial root expansion. Here, we show that the exit from the plateau phase correlates with an increase in auxin signalling at the tip of the LRs. Moreover, the increase in auxin levels induces the termination of the plateau phase, which requires PIN-FORMED (PIN) auxin efflux carriers. Our data suggests that the developmental increase in auxin triggers the preferential derepression of PIN7 in gravity-sensing columella cells. The subsequent polarization of PIN7 heralds the bending towards gravity and, hence, the exit from the plateau phase. This developmental framework reveals the distinct roles of PIN auxin efflux carriers in controlling the radial growth of root systems. Full article
Figures

Figure 1

Open AccessReview
Calcium and Nuclear Signaling in Prostate Cancer
Int. J. Mol. Sci. 2018, 19(4), 1237; doi:10.3390/ijms19041237 (registering DOI) -
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in
[...] Read more.
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest. Full article
Figures

Open AccessArticle
CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization
Int. J. Mol. Sci. 2018, 19(4), 1236; doi:10.3390/ijms19041236 (registering DOI) -
Abstract
Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm–egg membrane fusion. The importance of these two proteins during the early stages
[...] Read more.
Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm–egg membrane fusion. The importance of these two proteins during the early stages of fertilization is supported by the complete sterility of CD9/CD81 double null female mice. In this study, the putative mechanism of CD9/CD81 involvement in tetraspanin web formation in sperm and its activity prior to fertilization was addressed. Confocal microscopy and colocalization assay was used to determine a mutual CD9/CD81 localization visualised in detail by super-resolution microscopy, and their interaction was address by co-immunoprecipitation. The species-specific traits in CD9 and CD81 distribution during sperm maturation were compared between mice and humans. A mutual position of CD9/CD81 is shown in human spermatozoa in the acrosomal cap, however in mice, CD9 and CD81 occupy a distinct area. During the acrosome reaction in human sperm, only CD9 is relocated, compared to the relocation of both proteins in mice. The structural modelling of CD9 and CD81 homologous and possibly heterologous network formation was used to propose their lateral Cis as well as Trans interactions within the sperm membrane and during sperm–egg membrane fusion. Full article
Figures

Open AccessArticle
Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut (Arachis hypogaea L.) Seed Development through Comparative Proteome Analysis
Int. J. Mol. Sci. 2018, 19(4), 1235; doi:10.3390/ijms19041235 -
Abstract
Peanuts (Arachis hypogaea L.) are an important oilseed crop, containing high contents of protein and fatty acids (FA). The major components of FA found in peanut oil are unsaturated FAs, including oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). Moreover, the
[...] Read more.
Peanuts (Arachis hypogaea L.) are an important oilseed crop, containing high contents of protein and fatty acids (FA). The major components of FA found in peanut oil are unsaturated FAs, including oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). Moreover, the high content of OA in peanut oil is beneficial for human health and long-term storage due to its antioxidant activity. However, the dynamic changes in proteomics related to OA accumulation during seed development still remain largely unexplored. In the present study, a comparative proteome analysis based on iTRAQ (isobaric Tags for Relative and Absolute Quantification) was performed to identify the critical candidate factors involved in OA formation. A total of 389 differentially expressed proteins (DEPs) were identified between high-oleate cultivar Kainong176 and low-oleate cultivar Kainong70. Among these DEPs, 201 and 188 proteins were upregulated and downregulated, respectively. In addition, these DEPs were categorized into biosynthesis pathways of unsaturated FAs at the early stage during the high-oleic peanut seed development, and several DEPs involved in lipid oxidation pathway were found at the stage of seed maturation. Meanwhile, 28 DEPs were sporadically distributed in distinct stages of seed formation, and their molecular functions were directly correlated to FA biosynthesis and degradation. Fortunately, the expression of FAB2 (stearoyl-acyl carrier protein desaturase), the rate-limiting enzyme in the upstream biosynthesis process of OA, was significantly increased in the early stage and then decreased in the late stage of seed development in the high-oleate cultivar Kainong176. Furthermore, real-time PCR verified the expression pattern of FAB2 at the mRNA level, which was consistent with its protein abundance. However, opposite results were found for the low-oleate cultivar Kainong70. Overall, the comparative proteome analysis provided valuable insight into the molecular dynamics of OA accumulation during peanut seed development. Full article
Figures

Figure 1

Open AccessArticle
Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans
Int. J. Mol. Sci. 2018, 19(4), 1234; doi:10.3390/ijms19041234 -
Abstract
Bacterial ClpB is an ATP-dependent Hsp100 chaperone that reactivates aggregated proteins in cooperation with the DnaK chaperone system and promotes survival of bacteria under stress conditions. A large number of publications also indicate that ClpB supports the virulence of bacteria, including a pathogenic
[...] Read more.
Bacterial ClpB is an ATP-dependent Hsp100 chaperone that reactivates aggregated proteins in cooperation with the DnaK chaperone system and promotes survival of bacteria under stress conditions. A large number of publications also indicate that ClpB supports the virulence of bacteria, including a pathogenic spirochaete Leptospira interrogans responsible for leptospirosis in both animals and humans. However, the exact role of ClpB in bacterial pathogenicity remains poorly characterized. It can be assumed that ClpB, due to its role as the molecular chaperone, mediates refolding of essential bacterial proteins, including the known virulence factors, which may become prone to aggregation under infection-induced stresses. In this study, we identified putative substrates of ClpB from L. interrogans (ClpBLi). For this purpose, we used a proteomic approach combining the ClpB-Trap affinity pull-down assays, Liquid chromatography-tandem mass spectrometry (LC-MS-MS/MS), and bioinformatics analyses. Most of the identified proteins were enzymes predominantly associated with major metabolic pathways like the tricarboxylic acid (TCA) cycle, glycolysis–gluconeogenesis and amino acid and fatty acid metabolism. Based on our proteomic study, we suggest that ClpB can support the virulence of L.interrogans by protecting the conformational integrity and catalytic activity of multiple metabolic enzymes, thus maintaining energy homeostasis in pathogen cells. Full article
Figures

Open AccessArticle
Testosterone-Dependent miR-26a-5p and let-7g-5p Act as Signaling Mediators to Regulate Sperm Apoptosis via Targeting PTEN and PMAIP1
Int. J. Mol. Sci. 2018, 19(4), 1233; doi:10.3390/ijms19041233 -
Abstract
Recent evidence suggests that testosterone deficiency can dramatically decrease the quality of sperm. MicroRNAs (miRNAs) are conserved mediators of post-transcriptional gene regulation in eukaryotes. However, the systemic regulation and function of miRNAs in sperm quality decline induced by testosterone deficiency has not been
[...] Read more.
Recent evidence suggests that testosterone deficiency can dramatically decrease the quality of sperm. MicroRNAs (miRNAs) are conserved mediators of post-transcriptional gene regulation in eukaryotes. However, the systemic regulation and function of miRNAs in sperm quality decline induced by testosterone deficiency has not been investigated. Here, we found that the sperm apoptosis was significantly enhanced and the sperm motility was dramatically decreased in hemicastrated pigs. We then used small RNA sequencing to detect miRNA profiles of sperm from pigs with prepubertal hemicastration (HC) and compared them with control libraries. We identified 16 differentially expressed (DE) miRNAs between the sperm of prepubertal HC and control (CT) pigs. Functional enrichment analysis indicated that the target genes of these DE miRNAs were mainly enriched in apoptosis-related pathways including the p53, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. Furthermore, gain- and loss-of-function analyses demonstrated potential anti-apoptotic effects of the DE miRNAs miR-26a-5p and let-7g-5p on sperm cells. The luciferase reporter assay confirmed that PTEN and PMAIP1 are targets of miR-26a-5p and let-7g-5p, respectively. Spearman’s correlation analysis revealed significantly positive correlations between the sperm and its corresponding seminal plasma exosomes regarding the miRNA expression levels. In conclusion, testosterone deficiency-induced changes in the miRNA components of seminal plasma exosomes secreted by the genital tract may partially elucidate sperm miRNAome alterations, which are further responsible for the decline of sperm motility. Full article
Figures

Open AccessReview
Resistance to Anti-Angiogenic Therapy in Cancer—Alterations to Anti-VEGF Pathway
Int. J. Mol. Sci. 2018, 19(4), 1232; doi:10.3390/ijms19041232 -
Abstract
Anti-angiogenic therapy is one of the promising strategies for many types of solid cancers. Bevacizumab (Avastin), a recombinant humanized monoclonal antibody of vascular endothelial growth factor (VEGF) A, was approved for the first time as an anti-angiogenic drug for the treatment of metastatic
[...] Read more.
Anti-angiogenic therapy is one of the promising strategies for many types of solid cancers. Bevacizumab (Avastin), a recombinant humanized monoclonal antibody of vascular endothelial growth factor (VEGF) A, was approved for the first time as an anti-angiogenic drug for the treatment of metastatic colorectal cancer (CRC) by the Food and Drug Administration (FDA) in 2004. In addition, the other VEGF pathway inhibitors including small molecule tyrosine kinase inhibitors (sunitinib, sorafenib, and pazopanib), a soluble VEGF decoy receptor (aflibercept), and a humanized monoclonal antibody of VEGF receptor 2 (VEGFR2) (ramucirumab) have been approved for cancer therapy. Although many types of VEGF pathway inhibitors can improve survival in most cancer patients, some patients have little or no beneficial effect from them. The primary or acquired resistance towards many oncological drugs, including anti-VEGF inhibitors, is a common problem in cancer treatment. This review summarizes the proposed alternative mechanisms of angiogenesis other than the VEGF pathway. These mechanisms are involved in the development of resistance to anti-VEGF therapies in cancer patients. Full article
Figures

Figure 1

Open AccessReview
Expression and Regulation of Thymic Stromal Lymphopoietin and Thymic Stromal Lymphopoietin Receptor Heterocomplex in the Innate–Adaptive Immunity of Pediatric Asthma
Int. J. Mol. Sci. 2018, 19(4), 1231; doi:10.3390/ijms19041231 -
Abstract
Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the epithelium
[...] Read more.
Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the epithelium from childhood, which causes asthma. The pathogenesis of asthma includes pathways of innate stimulation by environmental microbes and irritant pathogens. Damaged epithelial cells produce thymic stromal lymphopoietin (TSLP) and stimulate myeloid dendritic cell maturation through the thymic stromal lymphopoietin receptor (TSLPR) heterocomplex. TSLP-activated myeloid dendritic cells promote naive CD4+ T cells to differentiate into T helper type 2 (Th2) phenotype CD4+ T cells. Re-exposure to allergens or environmental stimuli causes an adaptive immune response. TSLP-activated dendritic cells expressing the OX40 ligand (OX40L; CD252) trigger naive CD4+ T cells to differentiate into inflammatory Th2 effector cells secreting the cytokines interleukin-4, 5, 9, and 13 (IL-4, IL-5, IL-9 and IL-13), and the dendritic cells (DCs) promote the proliferation of allergen-specific Th2 memory cells. Allergen presentation by Th2 cells through its interaction with their receptors in the presence of major histocompatibility complex (MHC) class II on B cells and through costimulation involving CD40 and CD40L interactions results in immunoglobulin class switching from IgM to IgE. DCs and other blood cell subsets express the TSLPR heterocomplex. The regulatory mechanism of the TSLPR heterocomplex on these different cell subsets remains unclear. The TSLPR heterocomplex is composed of the IL-7Rα chain and TSLPR chain. Moreover, two isoforms of TSLP, short isoform TSLP (sfTSLP) and long isoform TSLP (lfTSLP), have roles in atopic and allergic development. Identifying and clarifying the regulation of TSLPR and IL-7Rα in pediatric asthma are still difficult, because the type of blood cell and the expression for each blood cell in different stages of atopic diseases are poorly understood. We believe that further integrated assessments of the regulation mechanism of the TSLP–TSLPR heterocomplex axis in vitro and in vivo can provide a faster and earlier diagnosis of pediatric asthma and promote the development of more effective preventive strategies at the onset of allergies. Full article
Figures

Figure 1

Open AccessArticle
Three-Dimensional Architecture and Mechanical Properties of Bovine Bone Mixed with Autologous Platelet Liquid, Blood, or Physiological Water: An In Vitro Study
Int. J. Mol. Sci. 2018, 19(4), 1230; doi:10.3390/ijms19041230 -
Abstract
In recent years, several techniques and material options have been investigated and developed for bone defect repair and regeneration. The progress in studies of composite graft materials and autologous platelet-derived growth factors for bone regeneration in dentistry and their biological and biomechanical properties
[...] Read more.
In recent years, several techniques and material options have been investigated and developed for bone defect repair and regeneration. The progress in studies of composite graft materials and autologous platelet-derived growth factors for bone regeneration in dentistry and their biological and biomechanical properties has improved clinical strategies and results. The aim of this study was to evaluate the three-dimensional architecture and mechanical properties of three different combinations of composite bovine graft, adding autologous platelet liquid (APL), blood, or physiological water. One experimental group for each combination of biomaterials was created. In particular, in Group I, the bovine graft was mixed with APL; in Group II, it was mixed with blood, and in Group III, the biomaterial graft was combined with physiological water. Then, the composite biomaterials were evaluated by scanning electron microscopy (SEM), and a compression-loading test was conducted. The evaluation showed a statistical significance (p < 0.01) of the elastic regime of deformation resistance, in which the combination of APL with bone graft resulted in an 875% increase in the mechanical resistance. The protocol of APL mixed with bovine bone graft produced a composite sticky graft block that was capable of increasing the mechanical properties in order to improve its clinical use in the treatment of the maxillary bone defects. Full article
Figures

Figure 1

Open AccessArticle
Identification of Placental Aspartic Proteinase in the Eurasian Beaver (Castor fiber L.)
Int. J. Mol. Sci. 2018, 19(4), 1229; doi:10.3390/ijms19041229 -
Abstract
Aspartic proteinases (AP) form a multigenic group widely distributed in various organisms and includes pepsins (pep), cathepsins D and E, pregnancy associated glycoproteins (PAGs) as well as plant, fungal, and retroviral proteinases. This study describes the transcript identification and expression localization of the
[...] Read more.
Aspartic proteinases (AP) form a multigenic group widely distributed in various organisms and includes pepsins (pep), cathepsins D and E, pregnancy associated glycoproteins (PAGs) as well as plant, fungal, and retroviral proteinases. This study describes the transcript identification and expression localization of the AP within the discoid placenta of the Castor fiber. We identified 1257 bp of the AP cDNA sequence, encoding 391 amino acids (aa) of the polypeptide precursor composed of 16 aa signal peptide, 46 aa pro-piece, and 329 aa of the mature protein. Within the AP precursor, one site of potential N-glycosylation (NPS119–121) and two Asp residues (D) specific for the catalytic cleft of AP were identified (VLFDTGSSNLWV91–102 and GIVDTGTSLLTV277–288). The highest homology of the identified placental AP nucleotide and aa sequence was to mouse pepsinogen C (75.8% and 70.1%, respectively). Identified AP also shared high homology with other superfamily members: PAGs, cathepsins, and napsins. The AP identified in this study was named as pepsinogen/PAG-Like (pep/PAG-L). Diversified pep/PAG-L protein profiles with a dominant 58 kDa isoform were identified. Immune reactive signals of the pep/PAG-L were localized within the trophectodermal cells of the beaver placenta. This is the first report describing the placental AP (pep/PAG-L) in the C. fiber. Full article
Figures

Figure 1

Open AccessArticle
The Adenosine A3 Receptor Regulates Differentiation of Glioblastoma Stem-Like Cells to Endothelial Cells under Hypoxia
Int. J. Mol. Sci. 2018, 19(4), 1228; doi:10.3390/ijms19041228 -
Abstract
Glioblastoma (GBM) is a neoplasm characterized by an extensive blood vessel network. Hypoxic niches of GBM can induce tumorigenic properties of a small cell subpopulation called Glioblastoma stem-like cells (GSCs) and can also increase extracellular adenosine generation which activates the A3 adenosine
[...] Read more.
Glioblastoma (GBM) is a neoplasm characterized by an extensive blood vessel network. Hypoxic niches of GBM can induce tumorigenic properties of a small cell subpopulation called Glioblastoma stem-like cells (GSCs) and can also increase extracellular adenosine generation which activates the A3 adenosine receptor (A3AR). Moreover, GSCs potentiates the persistent neovascularization in GBM. The aim of this study was to determine if A3AR blockade can reduce the vasculogenesis mediated by the differentiation of GSCs to Endothelial Cells (ECs) under hypoxia. We evaluated the expression of endothelial cell markers (CD31, CD34, CD144, and vWF) by fluorescence-activated cell sorting (FACS), and vascular endothelial growth factor (VEGF) secretion by ELISA using MRS1220 (A3AR antagonist) under hypoxia. We validate our results using U87MG-GSCs A3AR knockout (GSCsA3-KO). The effect of MRS1220 on blood vessel formation was evaluated in vivo using a subcutaneous GSCs-tumor model. GSCs increased extracellular adenosine production and A3AR expression under hypoxia. Hypoxia also increased the percentage of GSCs positive for endothelial cell markers and VEGF secretion, which was in turn prevented when using MRS1220 and in GSCsA3-KO. Finally, in vivo treatment with MRS1220 reduced tumor size and blood vessel formation. Blockade of A3AR decreases the differentiation of GSCs to ECs under hypoxia and in vivo blood vessel formation. Full article
Figures