Open AccessReview
Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome
Int. J. Mol. Sci. 2016, 17(10), 1638; doi:10.3390/ijms17101638 -
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage [...] Read more.
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator. Full article
Figures

Open AccessArticle
MicroRNA-375 Functions as a Tumor-Suppressor Gene in Gastric Cancer by Targeting Recepteur d’Origine Nantais
Int. J. Mol. Sci. 2016, 17(10), 1633; doi:10.3390/ijms17101633 -
Abstract
Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON), a receptor [...] Read more.
Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON), a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3′-untranslated regions (3′-UTR) of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3′-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3′-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb). Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer. Full article
Figures

Open AccessArticle
Urine Levels of Defensin α1 Reflect Kidney Injury in Leptospirosis Patients
Int. J. Mol. Sci. 2016, 17(10), 1637; doi:10.3390/ijms17101637 -
Abstract
Leptospirosis is a zoonotic disease whose severe forms are often accompanied by kidney dysfunction. In the present study, urinary markers were studied for potential prediction of disease severity. Urine samples from 135 patients with or without leptospirosis at San Lazaro Hospital, the [...] Read more.
Leptospirosis is a zoonotic disease whose severe forms are often accompanied by kidney dysfunction. In the present study, urinary markers were studied for potential prediction of disease severity. Urine samples from 135 patients with or without leptospirosis at San Lazaro Hospital, the Philippines, were analyzed. Urine levels of defensin α1 (uDA1) were compared with those of neutrophil gelatinase-associated lipocalin (uNGAL) and N-acetyl-β-d-glucosidase (uNAG). Serum creatinine (Cr) was used as a marker of kidney injury. The levels of uDA1/Cr, uNGAL/Cr, and uNAG/Cr were positive in 46%, 90%, and 80% of leptospirosis patients, and 69%, 70%, and 70% of non-leptospirosis patients, respectively. In leptospirosis patients, the correlation of uDA1/Cr, uNGAL/Cr and uNAG/Cr levels with serum Cr were r = 0.3 (p < 0.01), r = 0.29 (p < 0.01), and r = 0.02 (p = 0.81), respectively. uDA1/Cr levels were correlated with uNGAL/Cr levels (r = 0.49, p < 0.01) and uNAG/Cr levels (r = 0.47, p < 0.0001) in leptospirosis patients. These findings suggest that uDA1, uNGAL, and uNAG were elevated in leptospirosis patients and reflected various types of kidney damage. uDA1 and uNGAL can be used to track kidney injury in leptospirosis patients because of their correlation with the serum Cr level. Full article
Figures

Figure 1

Open AccessArticle
Elevated Expression of Calpain-4 Predicts Poor Prognosis in Patients with Gastric Cancer after Gastrectomy
Int. J. Mol. Sci. 2016, 17(10), 1612; doi:10.3390/ijms17101612 -
Abstract
Calpain-4 belongs to the calpain family of calcium-dependent cysteine proteases, and functions as a small regulatory subunit of the calpains. Recent evidence indicates that calpain-4 plays critical roles in tumor migration and invasion. However, the roles of calpain-4 in gastric tumorigenesis remain [...] Read more.
Calpain-4 belongs to the calpain family of calcium-dependent cysteine proteases, and functions as a small regulatory subunit of the calpains. Recent evidence indicates that calpain-4 plays critical roles in tumor migration and invasion. However, the roles of calpain-4 in gastric tumorigenesis remain poorly understood. Herein, we examined calpain-4 expression by immunohistochemical staining on tissue microarrays containing tumor samples of 174 gastric cancer patients between 2004 and 2008 at a single center. The Kaplan-Meier method was used to compare survival curves, and expression levels were correlated to clinicopathological factors and overall survival. Our data demonstrated that calpain-4 was generally increased in gastric cancer cell lines and primary tumor tissues. High expression of calpain-4 was positively associated with vessel invasion, lymph node metastasis, and advanced TNM (Tumor Node Metastasis) stage. Multivariate analysis identified calpain-4 as an independent prognostic factor for poor prognosis. A predictive nomogram integrating calpain-4 expression with other independent prognosticators was constructed, which generated a better prognostic value for overall survival of gastric cancer patients than a TNM staging system. In conclusion, calpain-4 could be regarded as a potential prognosis indicator for clinical outcomes in gastric cancer. Full article
Figures

Open AccessArticle
Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease
Int. J. Mol. Sci. 2016, 17(10), 1595; doi:10.3390/ijms17101595 -
Abstract
Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD) and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met), the major form of [...] Read more.
Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD) and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met), the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD). In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB) of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-regulated amyloid precursor protein (APP) processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (CDK5). Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD. Full article
Figures

Open AccessArticle
Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study
Int. J. Mol. Sci. 2016, 17(10), 1639; doi:10.3390/ijms17101639 -
Abstract
Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for [...] Read more.
Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. Full article
Figures

Open AccessArticle
MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer
Int. J. Mol. Sci. 2016, 17(10), 1493; doi:10.3390/ijms17101493 -
Abstract
MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 [...] Read more.
MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC. Full article
Figures

Figure 1

Open AccessArticle
The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury
Int. J. Mol. Sci. 2016, 17(10), 1616; doi:10.3390/ijms17101616 -
Abstract
Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in [...] Read more.
Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in mice. The animals were treated daily with alcohol and fruit juices for fifteen days. Chronic treatment with alcohol increased the levels of aspartate transaminase (AST), alanine transaminase (ALT), total bilirubin (TBIL), triglyceride (TG), malondialdehyde (MDA), and decreased total protein (TP). Histopathological evaluation also showed that ethanol induced extensive fat droplets in hepatocyte cytoplasm. Syzygium samarangense and Passiflora edulis normalized various biochemical parameters. Solanum muricatum increased the level of ALT and induced infiltration of inflammatory cells in the liver. These results strongly suggest that treatment with Syzygium samarangense and Passiflora edulis could protect liver from the injury of alcohol, while Solanum muricatum could aggravate the damage. Full article
Figures

Figure 1

Open AccessReview
Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R
Int. J. Mol. Sci. 2016, 17(10), 1635; doi:10.3390/ijms17101635 -
Abstract
Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and [...] Read more.
Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R) has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of GnRH neurons, gonadotrophs, and lactotrophs, which are regulated mainly by kisspeptin, GnRH, and TRH, respectively. Full article
Figures

Figure 1

Open AccessArticle
Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds
Int. J. Mol. Sci. 2016, 17(10), 1631; doi:10.3390/ijms17101631 -
Abstract
Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion [...] Read more.
Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions. Full article
Figures

Open AccessArticle
Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana
Int. J. Mol. Sci. 2016, 17(10), 1632; doi:10.3390/ijms17101632 -
Abstract
Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression [...] Read more.
Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. Full article
Figures

Open AccessCommunication
Disruption of Membranes of Extracellular Vesicles Is Necessary for ELISA Determination of Urine AQP2: Proof of Disruption and Epitopes of AQP2 Antibodies
Int. J. Mol. Sci. 2016, 17(10), 1634; doi:10.3390/ijms17101634 -
Abstract
Aquaporin-2 (AQP2) is present in urine extracellular vesicles (EVs) and is a useful biomarker for water balance disorders. We previously found that pre-treatment of urine with alkali/detergent or storage at −25 °C is required for enzyme-linked immunosorbent assay (ELISA) measurement. We speculated [...] Read more.
Aquaporin-2 (AQP2) is present in urine extracellular vesicles (EVs) and is a useful biomarker for water balance disorders. We previously found that pre-treatment of urine with alkali/detergent or storage at −25 °C is required for enzyme-linked immunosorbent assay (ELISA) measurement. We speculated that disruptions of EVs membranes are necessary to allow for the direct contact of antibodies with their epitopes. Human urine EVs were prepared using an ultracentrifugation method. Urine EV samples were stored at different temperatures for a week. Electron microscopy showed abundant EVs with diameters of 20–100 nm, consistent with those of exosomes, in normal urine, whereas samples from alkali/detergent pre-treated urine showed fewer EVs with large swollen shapes and frequent membrane disruptions. The abundance and structures of EVs were maintained during storage at −80 °C, but were severely damaged at −25 °C. Binding and competitive inhibition assays showed that epitopes of monoclonal antibody and polyclonal antibody were the hydrophilic Loop D and C-terminus of AQP2, respectively, both of which are present on the inner surface of EVs. Thus, urine storage at −25 °C or pre-treatment with alkali/detergent disrupt EVs membranes and allow AQP2 antibodies to bind to their epitopes located inside EVs. Full article
Figures

Open AccessArticle
Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information
Int. J. Mol. Sci. 2016, 17(10), 1623; doi:10.3390/ijms17101623 -
Abstract
Identification of protein–protein interactions (PPIs) is a difficult and important problem in biology. Since experimental methods for predicting PPIs are both expensive and time-consuming, many computational methods have been developed to predict PPIs and interaction networks, which can be used to complement [...] Read more.
Identification of protein–protein interactions (PPIs) is a difficult and important problem in biology. Since experimental methods for predicting PPIs are both expensive and time-consuming, many computational methods have been developed to predict PPIs and interaction networks, which can be used to complement experimental approaches. However, these methods have limitations to overcome. They need a large number of homology proteins or literature to be applied in their method. In this paper, we propose a novel matrix-based protein sequence representation approach to predict PPIs, using an ensemble learning method for classification. We construct the matrix of Amino Acid Contact (AAC), based on the statistical analysis of residue-pairing frequencies in a database of 6323 protein–protein complexes. We first represent the protein sequence as a Substitution Matrix Representation (SMR) matrix. Then, the feature vector is extracted by applying algorithms of Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the SMR matrix. Finally, we feed the feature vector into a Random Forest (RF) for judging interaction pairs and non-interaction pairs. Our method is applied to several PPI datasets to evaluate its performance. On the S.cerevisiae dataset, our method achieves 94.83% accuracy and 92.40% sensitivity. Compared with existing methods, and the accuracy of our method is increased by 0.11 percentage points. On the H.pylori dataset, our method achieves 89.06% accuracy and 88.15% sensitivity, the accuracy of our method is increased by 0.76%. On the Human PPI dataset, our method achieves 97.60% accuracy and 96.37% sensitivity, and the accuracy of our method is increased by 1.30%. In addition, we test our method on a very important PPI network, and it achieves 92.71% accuracy. In the Wnt-related network, the accuracy of our method is increased by 16.67%. The source code and all datasets are available at https://figshare.com/s/580c11dce13e63cb9a53. Full article
Figures

Figure 1

Open AccessReview
Extracts of Magnolia Species-Induced Prevention of Diabetic Complications: A Brief Review
Int. J. Mol. Sci. 2016, 17(10), 1629; doi:10.3390/ijms17101629 -
Abstract
Diabetic complications are the major cause of mortality for the patients with diabetes. Oxidative stress and inflammation have been recognized as important contributors for the development of many diabetic complications, such as diabetic nephropathy, hepatopathy, cardiomyopathy, and other cardiovascular diseases. Several studies [...] Read more.
Diabetic complications are the major cause of mortality for the patients with diabetes. Oxidative stress and inflammation have been recognized as important contributors for the development of many diabetic complications, such as diabetic nephropathy, hepatopathy, cardiomyopathy, and other cardiovascular diseases. Several studies have established the anti-inflammatory and oxidative roles of bioactive constituents in Magnolia bark, which has been widely used in the traditional herbal medicines in Chinese society. These findings have attracted various scientists to investigate the effect of bioactive constituents in Magnolia bark on diabetic complications. The aim of this review is to present a systematic overview of bioactive constituents in Magnolia bark that induce the prevention of obesity, hyperglycemia, hyperlipidemia, and diabetic complications, including cardiovascular, liver, and kidney. Full article
Figures

Open AccessArticle
Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids
Int. J. Mol. Sci. 2016, 17(10), 1624; doi:10.3390/ijms17101624 -
Abstract
The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed [...] Read more.
The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα−/− male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand. Full article
Figures

Figure 1

Open AccessArticle
Autoimmunity and Cytokine Imbalance in Inherited Epidermolysis Bullosa
Int. J. Mol. Sci. 2016, 17(10), 1625; doi:10.3390/ijms17101625 -
Abstract
In order to evaluate the serum anti-skin autoantibodies and cytokine concentrations in patients with different epidermolysis bullosa (EB) types and severity, 42 EB patients and 38 controls were enrolled. Serum anti-skin antibodies were significantly higher in the patients than in the controls [...] Read more.
In order to evaluate the serum anti-skin autoantibodies and cytokine concentrations in patients with different epidermolysis bullosa (EB) types and severity, 42 EB patients and 38 controls were enrolled. Serum anti-skin antibodies were significantly higher in the patients than in the controls (p = 0.008, p < 0.001, p < 0.001, p < 0.001 and p < 0.001 for desmoglein 1 (DSG1) desmoglein 3 (DSG3), bullous pemphigoid 180 (BP180), BP230 and type VII collagen (COL7), respectively). The same trend was observed for interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor-β, and interferon-γ (p < 0.001, p < 0.001, p < 0.001, p = 0.008, p < 0.001 and p = 0.002, respectively). Increases in anti-skin antibodies and cytokine concentrations were higher in patients with recessive dystrophic EB than in those with different types of EB, in generalized cases than in localized ones, and in patients with higher Birmingham Epidermolysis Bullosa Severity (BEBS) scores than in those with a lower score. The BEBS score was directly correlated with BP180, BP230, COL7 (p = 0.015, p = 0.008 and p < 0.001, respectively) and IL-6 (p = 0.03), whereas IL-6 appeared significantly associated with DSG1, DSG3, BP180, BP230 and COL7 (p = 0.015, p = 0.023, p = 0.023, p = 0.015 and p = 0.005, respectively). This study showed that autoimmunity and inflammatory responses are frequently activated in EB, mainly in severe forms, suggesting the use of immunosuppressive drugs or biologicals that are active against pro-inflammatory cytokines to reduce clinical signs and symptoms of disease. Full article
Open AccessArticle
New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry
Int. J. Mol. Sci. 2016, 17(10), 1628; doi:10.3390/ijms17101628 -
Abstract
In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid–liquid [...] Read more.
In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid–liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M − H] as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days. Full article
Figures

Open AccessArticle
miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease
Int. J. Mol. Sci. 2016, 17(10), 1620; doi:10.3390/ijms17101620 -
Abstract
Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of [...] Read more.
Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese women with NAFLD. We measured miR122 and miR33a/b* expression in liver samples from 62 morbidly obese (MO), 30 moderately obese (ModO), and eight normal-weight controls. MiR122 and miR33a/b* expression was analyzed by qRT-PCR. Additionally, miR122 and miR33b* circulating levels were analyzed in 122 women. Hepatic miR33b* expression was increased in MO compared to ModO and controls, whereas miR122 expression was decreased in the MO group compared to ModO. In obese cohorts, miR33b* expression was increased in nonalcoholic steatohepatitis (NASH). Regarding circulating levels, MO patients with NASH showed higher miR122 levels than MO with simple steatosis (SS). These circulating levels are good predictors of histological features associated with disease severity. MO is associated with altered hepatic miRNA expression. In obese women, higher miR33b* liver expression is associated with NASH. Moreover, multiple correlations between miRNAs and the expression of genes related to lipid metabolism were found, that would suggest a miRNA-host gene circuit. Finally, miR122 circulating levels could be included in a panel of different biomarkers to improve accuracy in the non-invasive diagnosis of NASH. Full article
Figures

Open AccessArticle
Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya
Int. J. Mol. Sci. 2016, 17(10), 1630; doi:10.3390/ijms17101630 -
Abstract
Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex [...] Read more.
Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source. Full article
Figures

Open AccessArticle
Potential of LC Coupled to Fluorescence Detection in Food Metabolomics: Determination of Phenolic Compounds in Virgin Olive Oil
Int. J. Mol. Sci. 2016, 17(10), 1627; doi:10.3390/ijms17101627 -
Abstract
A powerful chromatographic method coupled to a fluorescence detector was developed to determine the phenolic compounds present in virgin olive oil (VOO), with the aim to propose an appropriate alternative to liquid chromatography-mass spectrometry. An excitation wavelength of 285 nm was selected [...] Read more.
A powerful chromatographic method coupled to a fluorescence detector was developed to determine the phenolic compounds present in virgin olive oil (VOO), with the aim to propose an appropriate alternative to liquid chromatography-mass spectrometry. An excitation wavelength of 285 nm was selected and four different emission wavelengths (316, 328, 350 and 450 nm) were simultaneously recorded, working therefore on “multi-emission” detection mode. With the use of commercially available standards and other standards obtained by semipreparative high performance liquid chromatography, it was possible to identify simple phenols, lignans, several complex phenols, and other phenolic compounds present in the matrix under study. A total of 26 phenolic compounds belonging to different chemical families were identified (23 of them were susceptible of being quantified). The proposed methodology provided detection and quantification limits within the ranges of 0.004–7.143 μg·mL−1 and 0.013–23.810 μg·mL−1, respectively. As far as the repeatability is concerned, the relative standard deviation values were below 0.43% for retention time, and 9.05% for peak area. The developed methodology was applied for the determination of phenolic compounds in ten VOOs, both monovarietals and blends. Secoiridoids were the most abundant fraction in all the samples, followed by simple phenolic alcohols, lignans, flavonoids, and phenolic acids (being the abundance order of the latter chemical classes logically depending on the variety and origin of the VOOs). Full article
Figures