Open AccessCommunication
Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7)
Genes 2016, 7(12), 116; doi:10.3390/genes7120116 -
Abstract
Our understanding of the highly specialized functions for small non-coding single-stranded RNA (ssRNA) in the transcriptome of the human central nervous system (CNS) continues to evolve. Circular RNAs (circRNAs), a recently discovered class of ssRNA enriched in the brain and retina, are extremely
[...] Read more.
Our understanding of the highly specialized functions for small non-coding single-stranded RNA (ssRNA) in the transcriptome of the human central nervous system (CNS) continues to evolve. Circular RNAs (circRNAs), a recently discovered class of ssRNA enriched in the brain and retina, are extremely stable and intrinsically resilient to degradation by exonuclease. Conventional methods of ssRNA, microRNA (miRNA), or messenger RNA (mRNA) detection and quantitation requiring free ribonucleotide ends may have considerably underestimated the quantity and significance of CNS circRNA in the CNS. Highly-specific small ssRNAs, such as the ~23 nucleotide (nt) Homo sapien microRNA-7 (hsa-miRNA-7; chr 9q21.32), are not only abundant in the human limbic system but are, in addition, associated with a ~1400 nt circRNA for miRNA-7 (ciRS-7) in the same anatomical region. Structurally, ciRS-7 contains about ~70 tandem anti-miRNA-7 sequences and acts as an endogenous, anti-complementary miRNA-7 “sponge” that attracts, binds, and, hence, quenches, natural miRNA-7 functions. Using a combination of DNA and miRNA array technologies, enhanced LED-Northern and Western blot hybridization, and the magnesium-dependent exoribonuclease and circRNA-sensitive probe RNaseR, here we provide evidence of a significantly misregulated ciRS-7-miRNA-7-UBE2A circuit in sporadic Alzheimer’s disease (AD) neocortex (Brodmann A22) and hippocampal CA1. Deficits in ciRS-7-mediated “sponging events”, resulting in excess ambient miRNA-7 appear to drive the selective down-regulation in the expression of miRNA-7-sensitive mRNA targets, such as that encoding the ubiquitin conjugating enzyme E2A (UBE2A; chr Xq24). UBE2A, which normally serves as a central effector in the ubiquitin-26S proteasome system, coordinates the clearance of amyloid peptides via proteolysis, is known to be depleted in sporadic AD brain and, hence, contributes to amyloid accumulation and the formation of senile plaque deposits. Dysfunction of circRNA-miRNA-mRNA regulatory systems appears to represent another important layer of epigenetic control over pathogenic gene expression programs in the human CNS that are targeted by the sporadic AD process. Full article
Open AccessCommunication
New Oligonucleotide Probes for ND-FISH Analysis to Identify Barley Chromosomes and to Investigate Polymorphisms of Wheat Chromosomes
Genes 2016, 7(12), 118; doi:10.3390/genes7120118 -
Abstract
Oligonucleotide probes that can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) analysis are convenient tools for identifying chromosomes of wheat (Triticum aestivum L.) and its relatives. New oligonucleotide probes, Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.1, Oligo-s120.2, Oligo-s120.3, Oligo-275.1, Oligo-275.2, Oligo-k566 and Oligo-713, were
[...] Read more.
Oligonucleotide probes that can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) analysis are convenient tools for identifying chromosomes of wheat (Triticum aestivum L.) and its relatives. New oligonucleotide probes, Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.1, Oligo-s120.2, Oligo-s120.3, Oligo-275.1, Oligo-275.2, Oligo-k566 and Oligo-713, were designed based on the repetitive sequences HVT01, pTa71, pTa-s120, pTa-275, pTa-k566 and pTa-713. All these probes can be used for ND-FISH analysis and some of them can be used to detect polymorphisms of wheat chromosomes. Probes Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.3, Oligo-275.1, Oligo-k566 and Oligo-713 can, respectively, replace the roles of their original sequences to identify chromosomes of some barley (Hordeum vulgare ssp. vulgare) and the common wheat variety Chinese Spring. Oligo-s120.1, Oligo-s120.2 and Oligo-275.2 produced different hybridization patterns from the ones generated by their original sequences. In addition, Oligo-s120.1, Oligo-s120.2 and Oligo-s120.3, which were derived from pTa-s120, revealed different signal patterns. Likewise, Oligo-275.1 and Oligo-275.2, which were derived from pTa-275, also displayed different hybridization patterns. These results imply that differently arranged or altered structural statuses of tandem repeats might exist on different chromosome regions. These new oligonucleotide probes provide extra convenience for identifying some wheat and barley chromosomes, and they can display polymorphisms of wheat chromosomes. Full article
Open AccessReview
A Review of Computational Methods for Finding Non-Coding RNA Genes
Genes 2016, 7(12), 113; doi:10.3390/genes7120113 -
Abstract
Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover,
[...] Read more.
Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools. Full article
Figures

Figure 1

Open AccessReview
Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes
Genes 2016, 7(12), 117; doi:10.3390/genes7120117 -
Abstract
Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant.
[...] Read more.
Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant. Here we review studies that have assessed DNA methylation in cord blood following maternal exposures that may impact neurodevelopment of the child. We also highlight some key studies to illustrate the potential for DNA methylation to successfully identify infants at risk for poor outcomes. While the current evidence is limited, in that observations to date are largely correlational, in time and with larger cohorts analyzed and longer term follow-up completed, we may be able to develop epigenetic biomarkers that not only indicate adverse early life exposures but can also be used to identify individuals likely to be at an increased risk of impaired neurodevelopment even in the absence of detailed information regarding prenatal environment. Full article
Open AccessArticle
Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island, Sea of East Japan, Based on Chloroplast Genome Sequencing
Genes 2016, 7(12), 115; doi:10.3390/genes7120115 -
Abstract
Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum
[...] Read more.
Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island. Full article
Figures

Figure 1

Open AccessArticle
Transcriptome Analysis of the Tadpole Shrimp (Triops longicaudatus) by Illumina Paired-End Sequencing: Assembly, Annotation, and Marker Discovery
Genes 2016, 7(12), 114; doi:10.3390/genes7120114 -
Abstract
The tadpole shrimp (Triops longicaudatus) is an aquatic crustacean that helps control pest populations. It inhabits freshwater ponds and pools and has been described as a living fossil. T. longicaudatus was officially declared an endangered species South Korea in 2005; however, through
[...] Read more.
The tadpole shrimp (Triops longicaudatus) is an aquatic crustacean that helps control pest populations. It inhabits freshwater ponds and pools and has been described as a living fossil. T. longicaudatus was officially declared an endangered species South Korea in 2005; however, through subsequent protection and conservation management, it was removed from the endangered species list in 2012. The limited number of available genetic resources on T. longicaudatus makes it difficult to obtain valuable genetic information for marker-aided selection programs. In this study, whole-transcriptome sequencing of T. longicaudatus generated 39.74 GB of clean data and a total of 269,822 contigs using the Illumina HiSeq 2500 platform. After clustering, a total of 208,813 unigenes with an N50 length of 1089 bp were generated. A total of 95,105 unigenes were successfully annotated against Protostome (PANM), Unigene, Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using BLASTX with a cut-off of 1E−5. A total of 57,731 unigenes were assigned to GO terms, and 7247 unigenes were mapped to 129 KEGG pathways. Furthermore, 1595 simple sequence repeats (SSRs) were detected from the unigenes with 1387 potential SSR markers. This is the first report of high-throughput transcriptome analysis of T. longicaudatus, and it provides valuable insights for genetic research and molecular-assisted breeding of this important species. Full article
Figures

Figure 1

Open AccessArticle
Divergent Expression Patterns in Two Vernicia Species Revealed the Potential Role of the Hub Gene VmAP2/ERF036 in Resistance to Fusarium oxysporum in Vernicia montana
Genes 2016, 7(12), 109; doi:10.3390/genes7120109 -
Abstract
Tung oil tree (Vernicia fordii) is a promising industrial oil crop; however, this tree is highly susceptible to Fusarium wilt disease. Conversely, Vernicia montana is resistant to the pathogen. The APETALA2/ethylene-responsive element binding factor (AP2/ERF) transcription factor superfamily has been reported
[...] Read more.
Tung oil tree (Vernicia fordii) is a promising industrial oil crop; however, this tree is highly susceptible to Fusarium wilt disease. Conversely, Vernicia montana is resistant to the pathogen. The APETALA2/ethylene-responsive element binding factor (AP2/ERF) transcription factor superfamily has been reported to play a significant role in resistance to Fusarium oxysporum. In this study, comprehensive analysis identified 75 and 81 putative Vf/VmAP2/ERF transcription factor-encoding genes in V. fordii and V. montana, respectively, which were divided into AP2, ERF, related to ABI3 and VP1 (RAV) and Soloist families. After F. oxysporum infection, a majority of AP2/ERF superfamily genes showed strong patterns of repression in both V. fordii and V. montana. We then identified 53 pairs of one-to-one orthologs in V. fordii and V. montana, with most pairs of orthologous genes exhibiting similar expression in response to the pathogen. Further investigation of Vf/VmAP2/ERF gene expression in plant tissues indicated that the pairs of genes with different expression patterns in response to F. oxysporum tended to exhibit different tissue profiles in the two species. In addition, VmAP2/ERF036, showing the strongest interactions with 666 genes, was identified as a core hub gene mediating resistance. Moreover, qRT-PCR results indicated VmAP2/ERF036 showed repressed expression while its orthologous gene VfAP2/ERF036 had the opposite expression pattern during pathogen infection. Overall, comparative analysis of the Vf/VmAP2/ERF superfamily and indication of a potential hub resistance gene in resistant and susceptible Vernicia species provides valuable information for understanding the molecular basis and selection of essential functional genes for V. fordii genetic engineering to control Fusarium wilt disease. Full article
Figures

Figure 1

Open AccessArticle
Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars
Genes 2016, 7(12), 111; doi:10.3390/genes7120111 -
Abstract
Trichomes, which are widely used as an important diagnostic characteristic in plant species delimitation, play important roles in plant defense and adaptation to adverse environments. In this study, we used two sister poplar species, Populus pruinosa and Populus euphratica—which have, respectively, dense
[...] Read more.
Trichomes, which are widely used as an important diagnostic characteristic in plant species delimitation, play important roles in plant defense and adaptation to adverse environments. In this study, we used two sister poplar species, Populus pruinosa and Populus euphratica—which have, respectively, dense and sparse trichomes—to examine the genetic differences associated with these contrasting phenotypes. The results showed that 42 and 45 genes could be identified as candidate genes related to trichomes in P. pruinosa and P. euphratica, respectively; most of these genes possessed high degrees of diversification in their coding sequences, but they were similar in intron/exon structure in the two species. We also found that most of the candidate trichome genes were expressed at higher levels in P. pruinosa, which has dense trichomes, than in P. euphratica, where there are few trichomes. Based on analyses of transcriptional profiles, a total of 195 genes, including many transcription factors, were found to show distinct differences in expression. The results of gene function annotation suggested that the genes identified as having contrasting levels of expression level are mainly associated with trichome elongation, ATPase activity, and hormone transduction. Changes in the expression of these and other related genes with high sequence diversification may have contributed to the contrast in the pattern of trichome phenotypes between the two species. Full article
Figures

Figure 1

Open AccessReview
H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species
Genes 2016, 7(12), 112; doi:10.3390/genes7120112 -
Abstract
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue
[...] Read more.
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations
Genes 2016, 7(12), 110; doi:10.3390/genes7120110 -
Abstract
The identification of a trinucleotide (CGG) expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a
[...] Read more.
The identification of a trinucleotide (CGG) expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation”) as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion. Full article
Figures

Figure 1

Open AccessArticle
Cucumber Metallothionein-Like 2 (CsMTL2) Exhibits Metal-Binding Properties
Genes 2016, 7(12), 106; doi:10.3390/genes7120106 -
Abstract
We identified a novel member of the metallothionein (MT) family, Cucumis sativus metallothionein-like 2 (CsMTL2), by screening a young cucumber fruit complementary DNA (cDNA) library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys)-rich domains separated
[...] Read more.
We identified a novel member of the metallothionein (MT) family, Cucumis sativus metallothionein-like 2 (CsMTL2), by screening a young cucumber fruit complementary DNA (cDNA) library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys)-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb), and phytochelatin-like (PCL) heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta. Full article
Figures

Figure 1

Open AccessArticle
In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma
Genes 2016, 7(12), 107; doi:10.3390/genes7120107 (registering DOI) -
Abstract
The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies
[...] Read more.
The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA–miRNA relationships suggestive of a novel ceRNA network with relevance in MM. Full article
Figures

Figure 1

Open AccessArticle
Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder
Genes 2016, 7(12), 105; doi:10.3390/genes7120105 (registering DOI) -
Abstract
Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized
[...] Read more.
Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation) knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV) encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia. Full article
Figures

Figure 1

Open AccessCase Report
Novel PIGT Variant in Two Brothers: Expansion of the Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 Phenotype
Genes 2016, 7(12), 108; doi:10.3390/genes7120108 (registering DOI) -
Abstract
Biallelic PIGT variants were previously reported in seven patients from three families with Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 (MCAHS3), characterized by epileptic encephalopathy, hypotonia, global developmental delay/intellectual disability, cerebral and cerebellar atrophy, craniofacial dysmorphisms, and skeletal, ophthalmological, cardiac, and genitourinary abnormalities. We
[...] Read more.
Biallelic PIGT variants were previously reported in seven patients from three families with Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 (MCAHS3), characterized by epileptic encephalopathy, hypotonia, global developmental delay/intellectual disability, cerebral and cerebellar atrophy, craniofacial dysmorphisms, and skeletal, ophthalmological, cardiac, and genitourinary abnormalities. We report a novel homozygous PIGT missense variant c.1079G>T (p.Gly360Val) in two brothers with several of the typical features of MCAHS3, but in addition, pyramidal tract neurological signs. Notably, they are the first patients with MCAHS3 without skeletal, cardiac, or genitourinary anomalies. PIGT encodes a crucial subunit of the glycosylphosphatidylinositol (GPI) transamidase complex, which catalyzes the attachment of proteins to GPI-anchors, attaching the proteins to the cell membrane. In vitro studies in cells from the two brothers showed reduced levels of GPI-anchors and GPI-anchored proteins on the cell surface, supporting the pathogenicity of the novel PIGT variant. Full article
Figures

Figure 1

Open AccessReview
The Future is The Past: Methylation QTLs in Schizophrenia
Genes 2016, 7(12), 104; doi:10.3390/genes7120104 -
Abstract
Genome-wide association studies (GWAS) have remarkably advanced insight into the genetic basis of schizophrenia (SCZ). Still, most of the functional variance in disease risk remains unexplained. Hence, there is a growing need to map genetic variability-to-genes-to-functions for understanding the pathophysiology of SCZ and
[...] Read more.
Genome-wide association studies (GWAS) have remarkably advanced insight into the genetic basis of schizophrenia (SCZ). Still, most of the functional variance in disease risk remains unexplained. Hence, there is a growing need to map genetic variability-to-genes-to-functions for understanding the pathophysiology of SCZ and the development of better treatments. Genetic variation can regulate various cellular functions including DNA methylation, an epigenetic mark with important roles in transcription and the mediation of environmental influences. Methylation quantitative trait loci (meQTLs) are derived by mapping levels of DNA methylation in genetically different, genotyped individuals and define loci at which DNA methylation is influenced by genetic variation. Recent evidence points to an abundance of meQTLs in brain tissues whose functional contributions to development and mental diseases are still poorly understood. Interestingly, fetal meQTLs reside in regulatory domains affecting methylome reconfiguration during early brain development and are enriched in loci identified by GWAS for SCZ. Moreover, fetal meQTLs are preserved in the adult brain and could trace early epigenomic deregulation during vulnerable periods. Overall, these findings highlight the role of fetal meQTLs in the genetic risk for and in the possible neurodevelopmental origin of SCZ. Full article
Figures

Figure 1

Open AccessArticle
Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers
Genes 2016, 7(11), 103; doi:10.3390/genes7110103 -
Abstract
Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell
[...] Read more.
Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions. Full article
Figures

Figure 1

Open AccessArticle
Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia
Genes 2016, 7(11), 102; doi:10.3390/genes7110102 -
Abstract
A higher-than-expected frequency of schizophrenia in patients with 22q11.2 deletion syndrome suggests that chromosome 22q11.2 harbors the responsive genes related to the pathophysiology of schizophrenia. The TBX1 gene, which maps to the region on chromosome 22q11.2, plays a vital role in neuronal functions.
[...] Read more.
A higher-than-expected frequency of schizophrenia in patients with 22q11.2 deletion syndrome suggests that chromosome 22q11.2 harbors the responsive genes related to the pathophysiology of schizophrenia. The TBX1 gene, which maps to the region on chromosome 22q11.2, plays a vital role in neuronal functions. Haploinsufficiency of the TBX1 gene is associated with schizophrenia endophenotype. This study aimed to investigate whether the TBX1 gene is associated with schizophrenia. We searched for mutations in the TBX1 gene in 652 patients with schizophrenia and 567 control subjects using a re-sequencing method and conducted a reporter gene assay. We identified six SNPs and 25 rare mutations with no association with schizophrenia from Taiwan. Notably, we identified two rare schizophrenia-specific mutations (c.-123G>C and c.-11delC) located at 5′ UTR of the TBX1 gene. The reporter gene assay showed that c.-123C significantly decreased promoter activity, while c.-11delC increased promoter activity compared with the wild-type. Our findings suggest that the TBX1 gene is unlikely a major susceptible gene for schizophrenia in an ethnic Chinese population for Taiwan, but a few rare mutations in the TBX1 gene may contribute to the pathogenesis of schizophrenia in some patients. Full article
Figures

Figure 1

Open AccessArticle
A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens
Genes 2016, 7(11), 100; doi:10.3390/genes7110100 -
Abstract
The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest
[...] Read more.
The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. Full article
Figures

Figure 1

Open AccessArticle
Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health
Genes 2016, 7(11), 101; doi:10.3390/genes7110101 -
Abstract
Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female
[...] Read more.
Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive–compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions. Full article
Figures

Figure 1

Open AccessReview
The Cell Killing Mechanisms of Hydroxyurea
Genes 2016, 7(11), 99; doi:10.3390/genes7110099 -
Abstract
Hydroxyurea is a well-established inhibitor of ribonucleotide reductase that has a long history of scientific interest and clinical use for the treatment of neoplastic and non-neoplastic diseases. It is currently the staple drug for the management of sickle cell anemia and chronic myeloproliferative
[...] Read more.
Hydroxyurea is a well-established inhibitor of ribonucleotide reductase that has a long history of scientific interest and clinical use for the treatment of neoplastic and non-neoplastic diseases. It is currently the staple drug for the management of sickle cell anemia and chronic myeloproliferative disorders. Due to its reversible inhibitory effect on DNA replication in various organisms, hydroxyurea is also commonly used in laboratories for cell cycle synchronization or generating replication stress. However, incubation with high concentrations or prolonged treatment with low doses of hydroxyurea can result in cell death and the DNA damage generated at arrested replication forks is generally believed to be the direct cause. Recent studies in multiple model organisms have shown that oxidative stress and several other mechanisms may contribute to the majority of the cytotoxic effect of hydroxyurea. This review aims to summarize the progress in our understanding of the cell-killing mechanisms of hydroxyurea, which may provide new insights towards the improvement of chemotherapies that employ this agent. Full article
Figures

Figure 1