Open AccessArticle
Differential Expression Patterns of Pleurotus ostreatus Catalase Genes during Developmental Stages and under Heat Stress
Genes 2017, 8(11), 335; doi:10.3390/genes8110335 (registering DOI) -
Abstract
Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes. They participate in fungal growth and development, such as mycelial growth and cellular differentiation, and in protecting fungi from oxidative damage under stressful conditions. To investigate the potential functions of catalases in Pleurotus ostreatus, we obtained
[...] Read more.
Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes. They participate in fungal growth and development, such as mycelial growth and cellular differentiation, and in protecting fungi from oxidative damage under stressful conditions. To investigate the potential functions of catalases in Pleurotus ostreatus, we obtained two catalase genes from a draft genome sequence of P. ostreatus, and cloned and characterized them (Po-cat1 and Po-cat2). Po-cat1 (group II) and Po-cat2 (group III) encoded putative peptides of 745 and 528 amino acids, respectively. Furthermore, the gene structures were variant between Po-cat1 and Po-cat2. Further research revealed that these two catalase genes have divergent expression patterns during different developmental stages. Po-cat1/Po-cat1 was at a barely detectable level in mycelia, accumulated gradually during reproductive growth, and was maximal in separated spores. But no catalase activity of Po-cat1 was detected by native-PAGE during any part of the developmental stages. In contrast, high Po-cat2/Po-cat2 expression and Po-cat2 activity found in mycelia were gradually lost during reproductive growth, and at a minimal level in separated spores. In addition, these two genes responded differentially under 32 °C and 40 °C heat stresses. Po-cat1 was up-regulated under both temperature conditions, while Po-cat2 was up-regulated at 32 °C but down-regulated at 40 °C. The accumulation of catalase proteins correlated with gene expression. These results indicate that the two divergent catalases in P. ostreatus may play different roles during development and under heat stress. Full article
Figures

Figure 1

Open AccessArticle
Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts
Genes 2017, 8(11), 334; doi:10.3390/genes8110334 (registering DOI) -
Abstract
In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R) family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons,
[...] Read more.
In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R) family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair. Full article
Figures

Figure 1

Open AccessArticle
Assessment of Bifidobacterium Species Using groEL Gene on the Basis of Illumina MiSeq High-Throughput Sequencing
Genes 2017, 8(11), 336; doi:10.3390/genes8110336 (registering DOI) -
Abstract
The next-generation high-throughput sequencing techniques have introduced a new way to assess the gut’s microbial diversity on the basis of 16S rRNA gene-based microbiota analysis. However, the precise appraisal of the biodiversity of Bifidobacterium species within the gut remains a challenging task because
[...] Read more.
The next-generation high-throughput sequencing techniques have introduced a new way to assess the gut’s microbial diversity on the basis of 16S rRNA gene-based microbiota analysis. However, the precise appraisal of the biodiversity of Bifidobacterium species within the gut remains a challenging task because of the limited resolving power of the 16S rRNA gene in different species. The groEL gene, a protein-coding gene, evolves quickly and thus is useful for differentiating bifidobacteria. Here, we designed a Bifidobacterium-specific primer pair which targets a hypervariable sequence region within the groEL gene that is suitable for precise taxonomic identification and detection of all recognized species of the genus Bifidobacterium so far. The results showed that the novel designed primer set can specifically differentiate Bifidobacterium species from non-bifidobacteria, and as low as 104 cells of Bifidobacterium species can be detected using the novel designed primer set on the basis of Illumina Miseq high-throughput sequencing. We also developed a novel protocol to assess the diversity of Bifidobacterium species in both human and rat feces through high-throughput sequencing technologies using groEL gene as a discriminative marker. Full article
Open AccessArticle
Gene-Based Pathogen Detection: Can We Use qPCR to Predict the Outcome of Diagnostic Metagenomics?
Genes 2017, 8(11), 332; doi:10.3390/genes8110332 (registering DOI) -
Abstract
In microbial food safety, molecular methods such as quantitative PCR (qPCR) and next-generation sequencing (NGS) of bacterial isolates can potentially be replaced by diagnostic shotgun metagenomics. However, the methods for pre-analytical sample preparation are often optimized for qPCR, and do not necessarily perform
[...] Read more.
In microbial food safety, molecular methods such as quantitative PCR (qPCR) and next-generation sequencing (NGS) of bacterial isolates can potentially be replaced by diagnostic shotgun metagenomics. However, the methods for pre-analytical sample preparation are often optimized for qPCR, and do not necessarily perform equally well for qPCR and sequencing. The present study investigates, through screening of methods, whether qPCR can be used as an indicator for the optimization of sample preparation for NGS-based shotgun metagenomics with a diagnostic focus. This was used on human fecal samples spiked with 103 or 106 colony-forming units (CFU)/g Campylobacter jejuni, as well as porcine fecal samples spiked with 103 or 106 CFU/g Salmonella typhimurium. DNA was extracted from the samples using variations of two widely used kits. The following quality parameters were measured: DNA concentration, qPCR, DNA fragmentation during library preparation, amount of DNA available for sequencing, amount of sequencing data, distribution of data between samples in a batch, and data insert size; none showed any correlation with the target ratio of the spiking organism detected in sequencing data. Surprisingly, diagnostic metagenomics can have better detection sensitivity than qPCR for samples spiked with 103 CFU/g C. jejuni. The study also showed that qPCR and sequencing results may be different due to inhibition in one of the methods. In conclusion, qPCR cannot uncritically be used as an indicator for the optimization of sample preparation for diagnostic metagenomics. Full article
Open AccessArticle
Differentially Expressed tRNA-Derived Small RNAs Co-Sediment Primarily with Non-Polysomal Fractions in Drosophila
Genes 2017, 8(11), 333; doi:10.3390/genes8110333 (registering DOI) -
Abstract
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing
[...] Read more.
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing reads from unfractionated and fractionated Drosophila embryos has revealed that tRFs, which are detected mainly from the 5’ends of tRNAs, co-sediment with the non-polysomal fractions. Interestingly, the expression levels of a subset of tRFs change temporally following the maternal-to-zygotic transition in embryos. We detected non-polysomal association of tRFs in S2 cells as well. Differential tRF expression pattern points to developmental significance at the organismal level. These results suggest that tRFs are associated primarily with the non-polysomal complexes in Drosophila embryos and S2 cells. Full article
Figures

Figure 1

Open AccessArticle
Flanking Variation Influences Rates of Stutter in Simple Repeats
Genes 2017, 8(11), 329; doi:10.3390/genes8110329 -
Abstract
It has been posited that the longest uninterrupted stretch (LUS) of tandem repeats, as defined by the number of exactly matching repeating motif units, is a better predictor of rates of stutter than the parental allele length (PAL). While there are cases where
[...] Read more.
It has been posited that the longest uninterrupted stretch (LUS) of tandem repeats, as defined by the number of exactly matching repeating motif units, is a better predictor of rates of stutter than the parental allele length (PAL). While there are cases where this hypothesis is likely correct, such as the 9.3 allele in the TH01 locus, there can be situations where it may not apply as well. For example, the PAL may capture flanking indel variations while remaining insensitive to polymorphisms in the repeat, and these haplotypic changes may impact the stutter rate. To address this, rates of stutter were contrasted against the LUS as well as the PAL on different flanking haplotypic backgrounds. This study shows that rates of stutter can vary substantially depending on the flanking haplotype, and while there are cases where the LUS is a better predictor of stutter than the PAL, examples to the contrary are apparent in commonly assayed forensic markers. Further, flanking variation that is 7 bp from the repeat region can impact rates of stutter. These findings suggest that non-proximal effects, such as DNA secondary structure, may be impacting the rates of stutter in common forensic short tandem repeat markers. Full article
Figures

Figure 1

Open AccessArticle
Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Genes 2017, 8(11), 326; doi:10.3390/genes8110326 -
Abstract
Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living
[...] Read more.
Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis. Full article
Figures

Figure 1

Open AccessArticle
Evolutionarily Distant Streptophyta Respond Differently to Genotoxic Stress
Genes 2017, 8(11), 331; doi:10.3390/genes8110331 (registering DOI) -
Abstract
Research in algae usually focuses on the description and characterization of morpho—and phenotype as a result of adaptation to a particular habitat and its conditions. To better understand the evolution of lineages we characterized responses of filamentous streptophyte green algae of the genera
[...] Read more.
Research in algae usually focuses on the description and characterization of morpho—and phenotype as a result of adaptation to a particular habitat and its conditions. To better understand the evolution of lineages we characterized responses of filamentous streptophyte green algae of the genera Klebsormidium and Zygnema, and of a land plant—the moss Physcomitrella patens—to genotoxic stress that might be relevant to their environment. We studied the induction and repair of DNA double strand breaks (DSBs) elicited by the radiomimetic drug bleomycin, DNA single strand breaks (SSB) as consequence of base modification by the alkylation agent methyl methanesulfonate (MMS) and of ultra violet (UV)-induced photo-dimers, because the mode of action of these three genotoxic agents is well understood. We show that the Klebsormidium and Physcomitrella are similarly sensitive to introduced DNA lesions and have similar rates of DSBs repair. In contrast, less DNA damage and higher repair rate of DSBs was detected in Zygnema, suggesting different mechanisms of maintaining genome integrity in response to genotoxic stress. Nevertheless, contrary to fewer detected lesions is Zygnema more sensitive to genotoxic treatment than Klebsormidium and PhyscomitrellaFull article
Figures

Figure 1

Open AccessArticle
Identification of the Caprine Keratin-Associated Protein 20-2 (KAP20-2) Gene and Its Effect on Cashmere Traits
Genes 2017, 8(11), 328; doi:10.3390/genes8110328 -
Abstract
The gene encoding the high glycine/tyrosine keratin-associated protein 20-2 (KAP20-2) gene has been described in humans, but has not been identified in any livestock species. A search for similar sequences in the caprine genome using the human KAP20-2 gene (KRTAP20-2) revealed
[...] Read more.
The gene encoding the high glycine/tyrosine keratin-associated protein 20-2 (KAP20-2) gene has been described in humans, but has not been identified in any livestock species. A search for similar sequences in the caprine genome using the human KAP20-2 gene (KRTAP20-2) revealed a homologous sequence on chromosome 1. Three different banding patterns representing distinct sequences (AC) in Longdong cashmere goats were identified using polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analysis. These sequences shared high sequence similarity with the human and mouse KRTAP20-2 sequences, suggesting that AC are caprine variants of the human and mouse genes. Four single nucleotide polymorphisms (SNPs) were identified, and three of them were non-synonymous. KRTAP20-2 was found to be expressed in secondary hair follicles, but not in heart, liver, lung, kidney, spleen, or longissimus dorsi muscle. The presence of A was associated with increased cashmere fibre weight, while the presence of B was associated with a decrease in cashmere fibre weight and curly fibre length. Goats with genotype AA had a higher cashmere fibre weight and a higher curly fibre length than those with genotypes AB or BB. These results indicate that caprine KRTAP20-2 variation may have value as a genetic marker for improving cashmere fibre weight. Full article
Figures

Figure 1

Open AccessArticle
Development of Novel Polymorphic EST-SSR Markers in Bailinggu (Pleurotus tuoliensis) for Crossbreeding
Genes 2017, 8(11), 325; doi:10.3390/genes8110325 -
Abstract
Identification of monokaryons and their mating types and discrimination of hybrid offspring are key steps for the crossbreeding of Pleurotus tuoliensis (Bailinggu). However, conventional crossbreeding methods are troublesome and time consuming. Using RNA-seq technology, we developed new expressed sequence tag-simple sequence repeat (EST-SSR)
[...] Read more.
Identification of monokaryons and their mating types and discrimination of hybrid offspring are key steps for the crossbreeding of Pleurotus tuoliensis (Bailinggu). However, conventional crossbreeding methods are troublesome and time consuming. Using RNA-seq technology, we developed new expressed sequence tag-simple sequence repeat (EST-SSR) markers for Bailinggu to easily and rapidly identify monokaryons and their mating types, genetic diversity and hybrid offspring. We identified 1110 potential EST-based SSR loci from a newly-sequenced Bailinggu transcriptome and then randomly selected 100 EST-SSRs for further validation. Results showed that 39, 43 and 34 novel EST-SSR markers successfully identified monokaryons from their parent dikaryons, differentiated two different mating types and discriminated F1 and F2 hybrid offspring, respectively. Furthermore, a total of 86 alleles were detected in 37 monokaryons using 18 highly informative EST-SSRs. The observed number of alleles per locus ranged from three to seven. Cluster analysis revealed that these monokaryons have a relatively high level of genetic diversity. Transfer rates of the EST-SSRs in the monokaryons of closely-related species Pleurotuseryngii var. ferulae and Pleurotus ostreatus were 72% and 64%, respectively. Therefore, our study provides new SSR markers and an efficient method to enhance the crossbreeding of Bailinggu and closely-related species. Full article
Figures

Figure 1

Open AccessArticle
The HMGA1 Pseudogene 7 Induces miR-483 and miR-675 Upregulation by Activating Egr1 through a ceRNA Mechanism
Genes 2017, 8(11), 330; doi:10.3390/genes8110330 -
Abstract
Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role
[...] Read more.
Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role in cancer progression, acting as micro RNA (miRNA) sponges for HMGA1 and other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human carcinomas, and their expression levels positively correlate with an advanced cancer stage and a poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene 7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675 that have been described as key regulators in cancer progression. Here, we report that HMGA1P7 upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1, a transcriptional factor that positively regulates miR-483 and miR-675 expression. Full article
Figures

Figure 1

Open AccessArticle
New Insights into Phasmatodea Chromosomes
Genes 2017, 8(11), 327; doi:10.3390/genes8110327 -
Abstract
Currently, approximately 3000 species of stick insects are known; however, chromosome numbers, which range between 21 and 88, are known for only a few of these insects. Also, centromere banding staining (C-banding) patterns were described for fewer than 10 species, and fluorescence in
[...] Read more.
Currently, approximately 3000 species of stick insects are known; however, chromosome numbers, which range between 21 and 88, are known for only a few of these insects. Also, centromere banding staining (C-banding) patterns were described for fewer than 10 species, and fluorescence in situ hybridization (FISH) was applied exclusively in two Leptynia species. Interestingly, 10–25% of stick insects (Phasmatodea) are obligatory or facultative parthenogenetic. As clonal and/or bisexual reproduction can affect chromosomal evolution, stick insect karyotypes need to be studied more intensely. Chromosome preparation from embryos of five Phasmatodea species (Medauroidea extradentata, Sungaya inexpectata, Sipyloidea sipylus, Phaenopharos khaoyaiensis, and Peruphasma schultei) from four families were studied here by C-banding and FISH applying ribosomal deoxyribonucleic acid (rDNA) and telomeric repeat probes. For three species, data on chromosome numbers and structure were obtained here for the first time, i.e., S. inexpectata, P. khaoyaiensis, and P. schultei. Large C-positive regions enriched with rDNA were identified in all five studied, distantly related species. Some of these C-positive blocks were enriched for telomeric repeats, as well. Chromosomal evolution of stick insects is characterized by variations in chromosome numbers as well as transposition and amplification of repetitive DNA sequences. Here, the first steps were made towards identification of individual chromosomes in Phasmatodea. Full article
Figures

Figure 1

Open AccessArticle
The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae
Genes 2017, 8(11), 324; doi:10.3390/genes8110324 -
Abstract
Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of
[...] Read more.
Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna, Spirodela, Wolffiella, Wolffia, Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus. In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region. Full article
Figures

Figure 1

Open AccessArticle
Transmission Dynamics of HIV-1 Drug Resistance among Treatment-Naïve Individuals in Greece: The Added Value of Molecular Epidemiology to Public Health
Genes 2017, 8(11), 322; doi:10.3390/genes8110322 -
Abstract
The presence of human immunodeficiency virus type 1 (HIV-1) drug resistance among drug-naïve patients remains stable, although the proportion of patients with virological failure to therapy is decreasing. The dynamics of transmitted resistance among drug-naïve patients remains largely unknown. The prevalence of non-nucleoside
[...] Read more.
The presence of human immunodeficiency virus type 1 (HIV-1) drug resistance among drug-naïve patients remains stable, although the proportion of patients with virological failure to therapy is decreasing. The dynamics of transmitted resistance among drug-naïve patients remains largely unknown. The prevalence of non-nucleoside reverse transcriptase inhibitors (NNRTI) resistance was 16.9% among treatment-naïve individuals in Greece. We aimed to investigate the transmission dynamics and the effective reproductive number (Re) of the locally transmitted NNRTI resistance. We analyzed sequences with dominant NNRTI resistance mutations (E138A and K103N) found within monophyletic clusters (local transmission networks (LTNs)) from patients in Greece. For the K103N LTN, the Re was >1 between 2008 and the first half of 2013. For all E138A LTNs, the Re was >1 between 1998 and 2015, except the most recent one (E138A_4), where the Re was >1 between 2006 and 2011 and approximately equal to 1 thereafter. K103N and E138A_4 showed similar characteristics with a more recent origin, higher Re during the first years of the sub-epidemics, and a declining trend in the number of transmissions during the last two years. In the remaining LTNs the epidemic was still expanding. Our study highlights the added value of molecular epidemiology to public health. Full article
Figures

Open AccessArticle
Origin and Evolution of the Neo-Sex Chromosomes in Pamphagidae Grasshoppers through Chromosome Fusion and Following Heteromorphization
Genes 2017, 8(11), 323; doi:10.3390/genes8110323 -
Abstract
In most phylogenetic lineages, the evolution of sex chromosomes is accompanied by their heteromorphization and degradation of one of them. The neo-sex chromosomes are useful model for studying early stages of these processes. Recently two lineages of the neo-sex chromosomes on different stages
[...] Read more.
In most phylogenetic lineages, the evolution of sex chromosomes is accompanied by their heteromorphization and degradation of one of them. The neo-sex chromosomes are useful model for studying early stages of these processes. Recently two lineages of the neo-sex chromosomes on different stages of heteromorphization was discovered in Pamphagidae family. The neo-sex chromosome heteromorphization was analyzed by generation of DNA probes derived from the neo-Xs and neo-Ys followed with chromosome painting in nineteen species of Pamphagidae family. The homologous regions of the neo-sex chromosomes were determined in closely related species with the painting procedure and image analysis with application of the Visualization of the Specific Signal in Silico software package. Results of these analyses and distribution of C-positive regions in the neo-sex chromosomes revealed details of the heteromorphization of the neo-sex chromosomes in species from both phylogenetic lineages of Pamphagidae grasshoppers. The hypothetical mechanism of the neo-Y degradation was suggested. It includes expansion of different repeats from the proximal neo-Y chromosome region by inversions, spreading them towards distal region. Amplification of these repeats leads to formation of C-positive regions and elimination of the C-negative regions located between them. Full article
Figures

Figure 1

Open AccessArticle
Comprehensive Profiling of lincRNAs in Lung Adenocarcinoma of Never Smokers Reveals Their Roles in Cancer Development and Prognosis
Genes 2017, 8(11), 321; doi:10.3390/genes8110321 -
Abstract
Long intergenic non-coding RNA (lincRNA) is a family of gene transcripts, the functions of which are largely unknown. Although cigarette smoking is the main cause for lung cancer, lung cancer in non-smokers is a separate entity and its underlying cause is little known.
[...] Read more.
Long intergenic non-coding RNA (lincRNA) is a family of gene transcripts, the functions of which are largely unknown. Although cigarette smoking is the main cause for lung cancer, lung cancer in non-smokers is a separate entity and its underlying cause is little known. Growing evidence suggests lincRNAs play a significant role in cancer development and progression; however, such data is lacking for lung cancer in non-smokers, or those who have never smoked. This study conducted comprehensive profiling of lincRNAs from RNA sequencing (RNA-seq) data of non-smoker patients with lung adenocarcinoma. Both known and novel lincRNAs distinctly segregated tumors from normal tissues. Approximately one third of lincRNAs were differentially expressed between tumors and normal samples and most of them were coordinated with their putative protein gene targets. More importantly, lincRNAs defined two clusters of tumors that were associated with tumor aggressiveness and patient survival. We identified a subset of lincRNAs that were differentially expressed and also associated with patient survival. Very high concordance (R2 = 0.9) was observed for the differentially expressed lincRNAs in the Cancer Genome Atlas (TCGA) validation set of 85 transcriptomes and the lincRNAs associated with survival from the discovery set were similarly predictive in the validation set. These lincRNAs warrant further investigation as potential diagnostic and prognostic markers. Full article
Figures

Figure 1

Open AccessArticle
Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome
Genes 2017, 8(11), 317; doi:10.3390/genes8110317 -
Abstract
Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it
[...] Read more.
Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it be”, which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species. Full article
Figures

Figure 1

Open AccessArticle
Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus)
Genes 2017, 8(11), 318; doi:10.3390/genes8110318 -
Abstract
Several whole genome duplication (WGD) events followed by rediploidization took place in the evolutionary history of vertebrates. Acipenserids represent a convenient model group for investigation of the consequences of WGD as their representatives underwent additional WGD events in different lineages resulting in ploidy
[...] Read more.
Several whole genome duplication (WGD) events followed by rediploidization took place in the evolutionary history of vertebrates. Acipenserids represent a convenient model group for investigation of the consequences of WGD as their representatives underwent additional WGD events in different lineages resulting in ploidy level variation between species, and these processes are still ongoing. Earlier, we obtained a set of sterlet (Acipenser ruthenus) chromosome-specific libraries by microdissection and revealed that they painted two or four pairs of whole sterlet chromosomes, as well as additional chromosomal regions, depending on rediploidization status and chromosomal rearrangements after genome duplication. In this study, we employed next generation sequencing to estimate the content of libraries derived from different paralogous chromosomes of sterlet. For this purpose, we aligned the obtained reads to the spotted gar (Lepisosteus oculatus) reference genome to reveal syntenic regions between these two species having diverged 360 Mya. We also showed that the approach is effective for synteny prediction at various evolutionary distances and allows one to clearly distinguish paralogous chromosomes in polyploid genomes. We postulated that after the acipenserid-specific WGD sterlet karyotype underwent multiple interchromosomal rearrangements, but different chromosomes were involved in this process unequally. Full article
Figures

Figure 1

Open AccessArticle
Human Organ Tissue Identification by Targeted RNA Deep Sequencing to Aid the Investigation of Traumatic Injury
Genes 2017, 8(11), 319; doi:10.3390/genes8110319 -
Abstract
Molecular analysis of the RNA transcriptome from a putative tissue fragment should permit the assignment of its source to a specific organ, since each will exhibit a unique pattern of gene expression. Determination of the organ source of tissues from crime scenes may
[...] Read more.
Molecular analysis of the RNA transcriptome from a putative tissue fragment should permit the assignment of its source to a specific organ, since each will exhibit a unique pattern of gene expression. Determination of the organ source of tissues from crime scenes may aid in shootings and other investigations. We have developed a prototype massively parallel sequencing (MPS) mRNA profiling assay for organ tissue identification that is designed to definitively identify 10 organ/tissue types using a targeted panel of 46 mRNA biomarkers. The identifiable organs and tissues include brain, lung, liver, heart, kidney, intestine, stomach, skeletal muscle, adipose, and trachea. The biomarkers were chosen after iterative specificity testing of numerous candidate genes in various tissue types. The assay is very specific, with little cross-reactivity with non-targeted tissue, and can detect RNA mixtures from different tissues. We also demonstrate the ability of the assay to successful identify the tissue source of origin using a single blind study. Full article
Figures

Figure 1

Open AccessArticle
Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus
Genes 2017, 8(11), 320; doi:10.3390/genes8110320 -
Abstract
White spot syndrome virus (WSSV), one of the major pathogens of Procambarus clarkii, has caused severe disruption to the aquaculture industry of P. clarkii in China. To reveal the gene regulatory mechanisms underlying WSSV infection, a comparative transcriptome analysis was performed among
[...] Read more.
White spot syndrome virus (WSSV), one of the major pathogens of Procambarus clarkii, has caused severe disruption to the aquaculture industry of P. clarkii in China. To reveal the gene regulatory mechanisms underlying WSSV infection, a comparative transcriptome analysis was performed among WSSV-infected susceptible individuals (GS), viral resistant individuals (GR), and a non-infected control group (GC). A total of 61,349 unigenes were assembled from nine libraries. Subsequently, 515 and 1033 unigenes exhibited significant differential expression in sensitive and resistant crayfish individuals compared to the control group (GC). Many differentially expressed genes (e.g., C-type lectin 4, Peroxinectin, Prophenoloxidase, and Serine/threonine-protein kinase) observed in GR and GS play critical roles in pathogen recognition and viral defense reactions after WSSV infection. Importantly, the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway was identified to play critical roles in defense to WSSV infection for resistant crayfish individuals by upregulating the chondroitin sulfate related genes for the synthesis of WSSV-sensitive, functional chondroitin sulfate chains containing E units. Numerous genes and the key pathways identified between resistant and susceptible P. clarkii individuals provide valuable insights regarding antiviral response mechanisms of decapoda species and may help to improve the selective breeding of P. clarkii WSSV-resistance. Full article
Figures

Figure 1