Open AccessFeature PaperArticle
Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production
Foods 2017, 6(12), 110; doi:10.3390/foods6120110 -
Abstract
Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the
[...] Read more.
Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the potential occurrence of mycotoxins. In this work, Lactobacillus plantarum UFG 121, a strain with characterized broad antifungal activity, was analyzed as a potential protective culture for bread production. Six different molds belonging to Aspergillus spp., Penicillium spp., and Fusarium culmorum were used to artificially contaminate bread produced with two experimental modes: (i) inoculation of the dough with a commercial Saccharomyces cerevisiae strain (control) and (ii) co-inoculation of the dough with the commercial S. cerevisiae strain and with L. plantarum UFG 121. L. plantarum strain completely inhibited the growth of F. culmorum after one week of storage. The lactic acid bacterium modulated the mold growth in samples contaminated with Aspergillus flavus, Penicillium chrysogenum, and Penicillium expansum, while no antagonistic effect was found against Aspergillus niger and Penicillium roqueforti. These results indicate the potential of L. plantarum UFG 121 as a biocontrol agent in bread production and suggest a species- or strain-depending sensitivity of the molds to the same microbial-based control strategy. Full article
Figures

Figure 1

Open AccessArticle
Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures
Foods 2017, 6(12), 111; doi:10.3390/foods6120111 -
Abstract
The present study aimed to evaluate the effects of long-term storage on the carotenoid pigments present in whole-grain flours prepared from durum wheat and tritordeum. As expected, higher storage temperatures showed a catabolic effect, which was very marked for free carotenoid pigments. Surprisingly,
[...] Read more.
The present study aimed to evaluate the effects of long-term storage on the carotenoid pigments present in whole-grain flours prepared from durum wheat and tritordeum. As expected, higher storage temperatures showed a catabolic effect, which was very marked for free carotenoid pigments. Surprisingly, for both cereal genotypes, the thermal conditions favoured the synthesis of lutein esters, leading to an enhanced stability, slower degradation, and, subsequently, a greater carotenoid retention. The putative involvement of lipase enzymes in lutein esterification in flours is discussed, particularly regarding the preferential esterification of the hydroxyl group with linoleic acid at the 3′ in the ε-ring of the lutein molecule. The negative effects of processing on carotenoid retention were less pronounced in durum wheat flours, which could be due to an increased esterifying activity (the de novo formation of diesterified xanthophylls was observed). Moreover, clear differences were observed for tritordeum depending on whether the lutein was in a free or esterified state. For instance, lutein-3′-O-monolinoleate showed a three-fold lower degradation rate than free lutein at 37 °C. In view of our results, we advise that the biofortification research aimed at increasing the carotenoid contents in cereals should be based on the selection of varieties with an enhanced content of esterified xanthophylls. Full article
Figures

Figure 1

Open AccessArticle
Methylxanthine Content in Commonly Consumed Foods in Spain and Determination of Its Intake during Consumption
Foods 2017, 6(12), 109; doi:10.3390/foods6120109 -
Abstract
Methylxanthines present psychostimulant effects. These compounds have low toxicity and their consumption at moderate levels presents some beneficial health effects, whereas some significant risk appears at high levels. Samples of common types of methylxanthine-containing beverages and foods consumed in Spain were analyzed to
[...] Read more.
Methylxanthines present psychostimulant effects. These compounds have low toxicity and their consumption at moderate levels presents some beneficial health effects, whereas some significant risk appears at high levels. Samples of common types of methylxanthine-containing beverages and foods consumed in Spain were analyzed to determine their content. Caffeine was the methylxanthine that was most found in the samples investigated. Instant coffees gave the highest caffeine percentage (18–44 mg·g−1). Green and scented teas were found to have a caffeine dry-weight content (8–26 mg·g−1) equivalent to ground coffees (13–23 mg·g−1), but black and pu-erh teas (18–30 mg·g−1) had a higher caffeine content. The evaluation of the most conventional methods for preparing espresso coffees showed that an espresso contains between 88–116 mg of caffeine. In the case of tea beverages, the amount of caffeine present was 2–3 times smaller than in espresso coffees. Energy drinks showed a similar caffeine content (80–106 mg) as espresso coffees. Chocolates had the lowest caffeine content. It has been found that none of the foods evaluated reach the recommended daily intake limit of 400 mg of caffeine with a single dose. This limit can be reached with 4–5 doses in the case of coffees and energy drinks. In the case of chocolates, the methylxanthine compound detected at large levels was theobromine, with amounts ranging from 4 to 10 mg·g−1 for dark chocolates. Full article
Figures

Figure 1

Open AccessArticle
Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis
Foods 2017, 6(12), 108; doi:10.3390/foods6120108 -
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating hypertension by controlling vasoconstriction and intravascular fluid volume. RAAS itself is largely regulated by the actions of renin (EC 3.4.23.15) and the angiotensin-I-converting enzyme (ACE-I; EC 3.4.15.1). The enzyme dipeptidyl peptidase-IV (DPP-IV; EC
[...] Read more.
The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating hypertension by controlling vasoconstriction and intravascular fluid volume. RAAS itself is largely regulated by the actions of renin (EC 3.4.23.15) and the angiotensin-I-converting enzyme (ACE-I; EC 3.4.15.1). The enzyme dipeptidyl peptidase-IV (DPP-IV; EC 3.4.14.5) also plays a role in the development of type-2 diabetes. The inhibition of the renin, ACE-I, and DPP-IV enzymes has therefore become a key therapeutic target for the treatment of hypertension and diabetes. The aim of this study was to assess the bioactivity of different oat (Avena sativa) protein isolates and their ability to inhibit the renin, ACE-I, and DPP-IV enzymes. In silico analysis was carried out to predictthe likelihood of bioactive inhibitory peptides occurring from oat protein hydrolysates following in silico hydrolysis with the proteases papain and ficin. Nine peptides, including FFG, IFFFL, PFL, WWK, WCY, FPIL, CPA, FLLA, and FEPL were subsequently chemically synthesised, and their bioactivities were confirmed using in vitro bioassays. The isolated oat proteins derived from seven different oat varieties were found to inhibit the ACE-I enzyme by between 86.5 ± 10.7% and 96.5 ± 25.8%, renin by between 40.5 ± 21.5% and 70.9 ± 7.6%, and DPP-IV by between 3.7 ± 3.9% and 46.2 ± 28.8%. The activity of the synthesised peptides was also determined. Full article
Figures

Figure 1

Open AccessReview
Physiology of the Inactivation of Vegetative Bacteria by Thermal Treatments: Mode of Action, Influence of Environmental Factors and Inactivation Kinetics
Foods 2017, 6(12), 107; doi:10.3390/foods6120107 -
Abstract
Heat has been used extensively in the food industry as a preservation method, especially due to its ability to inactivate microorganisms present in foods. However, many aspects regarding the mechanisms of bacterial inactivation by heat and the factors affecting this process are still
[...] Read more.
Heat has been used extensively in the food industry as a preservation method, especially due to its ability to inactivate microorganisms present in foods. However, many aspects regarding the mechanisms of bacterial inactivation by heat and the factors affecting this process are still not fully understood. The purpose of this review is to offer a general overview of the most important aspects of the physiology of the inactivation or survival of microorganisms, particularly vegetative bacteria, submitted to heat treatments. This could help improve the design of current heat processes methods in order to apply milder and/or more effective treatments that could fulfill consumer requirements for fresh-like foods while maintaining the advantages of traditional heat treatments. Full article
Figures

Figure 1

Open AccessArticle
Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses
Foods 2017, 6(12), 106; doi:10.3390/foods6120106 -
Abstract
Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature
[...] Read more.
Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature used laboratory growth media. However, in the food chain, food residues are the principal source of nutrients of Salmonella. In this study, the biofilm formation, morphotype, and motility of 13 Salmonella strains belonging to three different subspecies and isolated from poultry houses was evaluated. To simulate food chain conditions, four different growth media (Tryptic Soy Broth at 1/20 dilution, milk at 1/20 dilution, tomato juice, and chicken meat juice), two different surfaces (stainless steel and polystyrene) and two temperatures (6 °C and 22 °C) were used to evaluate the biofilm formation. The morphotype, motility, and biofilm formation of Salmonella was temperature-dependent. Biofilm formation was significantly higher with 1/20 Tryptic Soy Broth in all the surfaces and temperatures tested, in comparison with the other growth media. The laboratory growth medium 1/20 Tryptic Soy Broth enhanced biofilm formation in Salmonella. This could explain the great differences in biofilm formation found between this growth medium and food residues. However, Salmonella strains were able to produce biofilm on the presence of food residues in all the conditions tested. Therefore, the Salmonella strain can use food residues to produce biofilm on common surfaces of the food chain. More studies combining more strains and food residues are necessary to fully understand the mechanism used by Salmonella to produce biofilm on the presence of these sources of nutrients. Full article
Figures

Figure 1

Open AccessArticle
Campylobacter in Broiler Chicken and Broiler Meat in Sri Lanka: Influence of Semi-Automated vs. Wet Market Processing on Campylobacter Contamination of Broiler Neck Skin Samples
Foods 2017, 6(12), 105; doi:10.3390/foods6120105 -
Abstract
Broiler meat can become contaminated with Campylobacter of intestinal origin during processing. The present study aimed to identify the prevalence of Campylobacter in broiler flocks and meat contamination at retail shops, and determine the influence of semi-automated and wet market processing on Campylobacter
[...] Read more.
Broiler meat can become contaminated with Campylobacter of intestinal origin during processing. The present study aimed to identify the prevalence of Campylobacter in broiler flocks and meat contamination at retail shops, and determine the influence of semi-automated and wet market processing on Campylobacter contamination of neck skin samples. Samples were collected from semi-automated plants (n = 102) and wet markets (n = 25). From each batch of broilers, pooled caecal samples and neck skin samples were tested for Campylobacter. Broiler meat purchased from retail outlets (n = 37) was also tested. The prevalence of Campylobacter colonized broiler flocks was 67%. The contamination of meat at retail was 59%. Both semi-automated and wet market processing resulted to contaminate the broiler neck skins to the levels of 27.4% and 48%, respectively. When Campylobacter-free broiler flocks were processed in semi-automated facilities 15% (5/33) of neck skin samples became contaminated by the end of processing whereas 25% (2/8) became contaminated after wet market processing. Characterization of isolates revealed a higher proportion of C. coli compared to C. jejuni. Higher proportions of isolates were resistant to important antimicrobials. This study shows the importance of Campylobacter in poultry industry in Sri Lanka and the need for controlling antimicrobial resistance. Full article
Open AccessProject Report
Consumers in a Sustainable Food Supply Chain (COSUS): Understanding Consumer Behavior to Encourage Food Waste Reduction
Foods 2017, 6(12), 104; doi:10.3390/foods6120104 -
Abstract
Consumers are directly and indirectly responsible for a significant fraction of food waste which, for a large part, could be avoided if they were willing to accept food that is suboptimal, i.e., food that deviates in sensory characteristics (odd shape, discoloration), or that
[...] Read more.
Consumers are directly and indirectly responsible for a significant fraction of food waste which, for a large part, could be avoided if they were willing to accept food that is suboptimal, i.e., food that deviates in sensory characteristics (odd shape, discoloration), or that has a best-before date which is approaching or has passed, but that is still perfectly fine to eat. The choice to accept or discard suboptimal food is taken either before or after purchase (hence, in the retail store or in the household). The aim of the European research project COSUS (Consumers in a sustainable food supply chain) was to increase consumer acceptance of suboptimal food, before and after purchase, by implementing targeted strategies that are based on consumer insights, and that are feasible for and acceptable by the food sector. To reach this aim, different methodological approaches were applied to analyze this issue, to experiment with different aspects, and to test the resulting interventions. Each of these approaches was undertaken by competent consortium partners from Denmark, Germany, Norway, Sweden and The Netherlands. The project finally provides validated strategies to promote the distribution and consumption of suboptimal foods, thereby improving resource efficiency in the food chain and contributing to a more sustainable food supply. Full article
Figures

Figure 1

Open AccessReview
Effect of Salt Reduction on Consumer Acceptance and Sensory Quality of Food
Foods 2017, 6(12), 103; doi:10.3390/foods6120103 -
Abstract
Reducing salt (NaCl) intake is an important public health target. The food industry and catering services are searching for means to reduce the salt content in their products. This review focuses on options for salt reduction in foods and the sensory evaluation of
[...] Read more.
Reducing salt (NaCl) intake is an important public health target. The food industry and catering services are searching for means to reduce the salt content in their products. This review focuses on options for salt reduction in foods and the sensory evaluation of salt-reduced foods. Simple salt reduction, mineral salts and flavor enhancers/modifiers (e.g., umami compounds) are common options for salt reduction. In addition, the modification of food texture and odor-taste interactions may contribute to enhanced salty taste perception. Maintaining consumer acceptance of the products is a challenge, and recent examples of the consumer perception of salt-reduced foods are presented. Full article
Figures

Figure 1

Open AccessArticle
Immunodetection of Porcine Red Blood Cell Containing Food Ingredients Using a Porcine-Hemoglobin-Specific Monoclonal Antibody
Foods 2017, 6(11), 101; doi:10.3390/foods6110101 -
Abstract
Monoclonal antibody (mAb) 24C12-E7 has been found to bind to a 12 kDa antigenic protein in the red blood cell (RBC) of porcine blood. The purpose of this study was to determine the identity of this 12 kDa protein and consequently examine its
[...] Read more.
Monoclonal antibody (mAb) 24C12-E7 has been found to bind to a 12 kDa antigenic protein in the red blood cell (RBC) of porcine blood. The purpose of this study was to determine the identity of this 12 kDa protein and consequently examine its potential as a marker for monitoring porcine RBC-containing ingredients (PRBCIs) in foods. Proteomic techniques identified the 12 kDa antigenic protein to be a monomer of the tetrameric hemoglobin molecule. Further heat-processing of spray-dried PRBCIs diminishes its detectability. Whereas mAb 24C12-E7-based indirect enzyme-linked immunosorbent assay (iELISA) could detect 1% (v/v) or less of PRBCIs in raw and cooked ground meats (beef, pork and chicken), the detection limits were 3 to 30 times higher for spiked cooked beef and pork. The assay is effective for monitoring the presence of PRBCIs in foods to protect the billions of people that avoid consuming blood. In situations where these PRBCIs are present as ingredients in foods that have undergone further heat processing, the assay, however, may not be as sensitive depending on the types of sample matrix, types of PRBCIs and the level of inclusion. Full article
Figures

Figure 1

Open AccessReview
Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk
Foods 2017, 6(11), 102; doi:10.3390/foods6110102 -
Abstract
Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this,
[...] Read more.
Extended shelf-life (ESL) or ultra-pasteurized milk is produced by thermal processing using conditions between those used for traditional high-temperature, short-time (HTST) pasteurization and those used for ultra-high-temperature (UHT) sterilization. It should have a refrigerated shelf-life of more than 30 days. To achieve this, the thermal processing has to be quite intense. The challenge is to produce a product that has high bacteriological quality and safety but also very good organoleptic characteristics. Hence the two major aims in producing ESL milk are to inactivate all vegetative bacteria and spores of psychrotrophic bacteria, and to cause minimal chemical change that can result in cooked flavor development. The first aim is focused on inactivation of spores of psychrotrophic bacteria, especially Bacillus cereus because some strains of this organism are pathogenic, some can grow at ≤7 °C and cause spoilage of milk, and the spores of some strains are very heat-resistant. The second aim is minimizing denaturation of β-lactoglobulin (β-Lg) as the extent of denaturation is strongly correlated with the production of volatile sulfur compounds that cause cooked flavor. It is proposed that the heating should have a bactericidal effect, B* (inactivation of thermophilic spores), of >0.3 and cause ≤50% denaturation of β-Lg. This can be best achieved by heating at high temperature for a short holding time using direct heating, and aseptically packaging the product. Full article
Figures

Figure 1

Open AccessReview
Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood
Foods 2017, 6(11), 100; doi:10.3390/foods6110100 -
Abstract
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for
[...] Read more.
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a “leaky gut”. These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods. Full article
Figures

Figure 1

Open AccessArticle
Fatty Acid Profiles of In Vitro Digested Processed Milk
Foods 2017, 6(11), 99; doi:10.3390/foods6110099 -
Abstract
Digestion of milkfat releases some long-chain (18-carbon) fatty acids (FAs) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk
[...] Read more.
Digestion of milkfat releases some long-chain (18-carbon) fatty acids (FAs) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on the digestibility of these FAs. This study provides FA profiles for raw and combinations of homogenized and/or heat-treated (high and ultra-high temperature pasteurization) milk, before and after in vitro digestion, in order to determine the effects of processing on the digestibility of these healthy fatty acids. Use of a highly sensitive separation column resulted in improved FA profiles that showed that, when milk was subjected to both pasteurization and homogenization, the release of the 18-carbon FAs, oleic acid, linoleic acid (an omega-6 FA), rumenic acid (a conjugated linoleic acid, CLA), and linolenic acid (an omega-3 FA) tended to be higher than with either pasteurization or homogenization, or with no treatment. Milk is noted for containing the omega-3 FAs and CLAs, which are associated with positive health benefits. Determining how processing factors may impact the components in milk will aid in understanding the release of healthy FAs when milk and dairy foods are consumed. Full article
Open AccessArticle
Detection of Lard in Cocoa Butter—Its Fatty Acid Composition, Triacylglycerol Profiles, and Thermal Characteristics
Foods 2017, 6(11), 98; doi:10.3390/foods6110098 -
Abstract
The present study investigates the detection of lard in cocoa butter through changes in fatty acids composition, triacylglycerols profile, and thermal characteristics. Cocoa butter was mixed with 1% to 30% (v/v) of lard and analyzed using a gas chromatography flame ionization detector,
[...] Read more.
The present study investigates the detection of lard in cocoa butter through changes in fatty acids composition, triacylglycerols profile, and thermal characteristics. Cocoa butter was mixed with 1% to 30% (v/v) of lard and analyzed using a gas chromatography flame ionization detector, high performance liquid chromatography, and differential scanning calorimetry. The results revealed that the mixing of lard in cocoa butter showed an increased amount of oleic acid in the cocoa butter while there was a decrease in the amount of palmitic acid and stearic acids. The amount of POS, SOS, and POP also decreased with the addition of lard. A heating thermogram from the DSC analysis showed that as the concentration of lard increased from 3% to 30%, two minor peaks at −26 °C and 34.5 °C started to appear and a minor peak at 34.5 °C gradually overlapped with the neighbouring major peak. A cooling thermogram of the above adulterated cocoa butter showed a minor peak shift to a lower temperature of −36 °C to −41.5 °C. Values from this study could be used as a basis for the identification of lard from other fats in the food authentication process. Full article
Figures

Figure 1

Open AccessArticle
Development and Physico-Chemical Characterization of a Shea Butter-Containing Lipid Nutrition Supplement for Sub-Saharan Africa
Foods 2017, 6(11), 97; doi:10.3390/foods6110097 -
Abstract
Lipid-based nutrient supplements (LNS) are used to prevent and treat moderate and severe acute malnutrition, a leading cause of mortality in children-under-five. The physical and chemical changes of two new LNS products were evaluated before and after accelerated shelf life testing (ASLT) according
[...] Read more.
Lipid-based nutrient supplements (LNS) are used to prevent and treat moderate and severe acute malnutrition, a leading cause of mortality in children-under-five. The physical and chemical changes of two new LNS products were evaluated before and after accelerated shelf life testing (ASLT) according to protocols suggested by the U.S. Agency for International Development (USAID) and Doctors without Borders and compared against USAID’s A-20 paste as a control. LNS formulas containing Shea butter from the Shea nut tree (Vitellaria paradoxa), a common fat source in parts of Sub-Saharan Africa, with and without flax-seed oil, as a source of omega-3 fatty acids, were developed. LNS formulas were batched (0.8 kg) in a wet grinder, sealed under nitrogen in three-layer mini-pouches (20 g), and underwent ASLT at 40 ± 2 °C for six months with sampling every eight weeks. At each time point, water activity, moisture, peroxide value, oil separation, vitamin C content, and hardness were evaluated. Results showed comparable stability among all formulas with an increase in Aw (p < 0.05) but no change in vitamin C, oil separation, or peroxide value. Addition of Shea butter improved the LNS’s hardness, which remained stable over time. Modifying fat profile in LNS can improve its texture and essential fatty acid content without affecting its storage stability. Full article
Figures

Figure 1

Open AccessArticle
1H NMR and Multivariate Analysis for Geographic Characterization of Commercial Extra Virgin Olive Oil: A Possible Correlation with Climate Data
Foods 2017, 6(11), 96; doi:10.3390/foods6110096 -
Abstract
1H Nuclear Magnetic Resonance (NMR) spectroscopy coupled with multivariate analysis has been applied in order to investigate metabolomic profiles of more than 200 extravirgin olive oils (EVOOs) collected in a period of over four years (2009–2012) from different geographic areas. In particular,
[...] Read more.
1H Nuclear Magnetic Resonance (NMR) spectroscopy coupled with multivariate analysis has been applied in order to investigate metabolomic profiles of more than 200 extravirgin olive oils (EVOOs) collected in a period of over four years (2009–2012) from different geographic areas. In particular, commercially blended EVOO samples originating from different Italian regions (Tuscany, Sicily and Apulia), as well as European (Spain and Portugal) and non-European (Tunisia, Turkey, Chile and Australia) countries. Multivariate statistical analysis (Principal Component Analisys (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)) applied on the NMR data revealed the existence of marked differences between Italian (in particular from Tuscany, Sicily and Apulia regions) and foreign (in particular Tunisian) EVOO samples. A possible correlation with available climate data has been also investigated. These results aim to develop a powerful NMR-based tool able to protect Italian olive oil productions. Full article
Figures

Figure 1

Open AccessArticle
The Content of Tocols in South African Wheat; Impact on Nutritional Benefits
Foods 2017, 6(11), 95; doi:10.3390/foods6110095 -
Abstract
Wheat is a major component within human consumption, and due to the large intake of wheat, it has an impact on human nutritional health. This study aimed at an increased understanding of how the content and composition of tocols may be governed for
[...] Read more.
Wheat is a major component within human consumption, and due to the large intake of wheat, it has an impact on human nutritional health. This study aimed at an increased understanding of how the content and composition of tocols may be governed for increased nutritional benefit of wheat consumption. Therefore, ten South African wheat cultivars from three locations were fractionated into white and whole flour, the content and concentration of tocols were evaluated by high performance liquid chromatography (HPLC), and vitamin E activity was determined. The content and composition of tocols and vitamin E activity differed with fractionation, genotype, environment, and their interaction. The highest tocol content (59.8 mg kg−1) was obtained in whole flour for the cultivar Elands grown in Ladybrand, while whole Caledon flour from Clarence resulted in the highest vitamin E activity (16.3 mg kg−1). The lowest vitamin E activity (1.9 mg kg−1) was found in the cultivar C1PAN3118 from Ladybrand. High values of tocotrienols were obtained in whole flour of the cultivars Caledon (30.5 mg kg−1 in Clarens), Elands (35.5 mg kg−1 in Ladybrand), and Limpopo (33.7 mg kg−1 in Bultfontein). The highest tocotrienol to tocopherol ratio was found in white flour (2.83) due to higher reduction of tocotrienols than of tocopherols at fractionation. The quantity and composition of tocols can be governed in wheat flour, primarily by the selection of fractionation method at flour production, but also complemented by selection of genetic material and the growing environment. Full article
Figures

Figure 1

Open AccessArticle
Physicochemical and Sensory Characteristics of Spreadable Liver Pâtés with Annatto Extract (Bixa orellana L.) and Date Palm Co-Products (Phoenix dactylifera L.)
Foods 2017, 6(11), 94; doi:10.3390/foods6110094 -
Abstract
Two novel ingredients were incorporated into spreadable liver pâtés to study their effect on physicochemical and sensory characteristicsand their possible use in the meat industry. Fresh date (Phoenix dactylifera, cv. Confitera) co-products, as a paste (0, 2.5 and 7.5%), and
[...] Read more.
Two novel ingredients were incorporated into spreadable liver pâtés to study their effect on physicochemical and sensory characteristicsand their possible use in the meat industry. Fresh date (Phoenix dactylifera, cv. Confitera) co-products, as a paste (0, 2.5 and 7.5%), and annatto (Bixa orellana) extract (0 and 128 mg/kg), as a colourant, and their combinations were incorporated into liver pâtés to study their effect on the final quality. The six formulations were analysed for chemical composition, physicochemical characteristics (pH, aw, colour, emulsion stability, and texture), and sensory properties. Pâtés tolerated suitable incorporation of date paste, providing emulsifying activity and being able to counteract to some extent the emulsion destabilisation caused by the annatto. All formulations showed an acceptable sensory quality, particularly pâtés with annatto and 7.5% date paste, which was softer, juicier, and presented redness values similar to the control as well as better emulsion stability. The combined use of these novel ingredients could be used as natural ingredients. Full article
Open AccessArticle
Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro
Foods 2017, 6(11), 93; doi:10.3390/foods6110093 -
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion
[...] Read more.
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health. Full article
Figures

Figure 1

Open AccessReview
Curcumin: A Review of Its’ Effects on Human Health
Foods 2017, 6(10), 92; doi:10.3390/foods6100092 -
Abstract
Turmeric, a spice that has long been recognized for its medicinal properties, has received interest from both the medical/scientific world and from culinary enthusiasts, as it is the major source of the polyphenol curcumin. It aids in the management of oxidative and inflammatory
[...] Read more.
Turmeric, a spice that has long been recognized for its medicinal properties, has received interest from both the medical/scientific world and from culinary enthusiasts, as it is the major source of the polyphenol curcumin. It aids in the management of oxidative and inflammatory conditions, metabolic syndrome, arthritis, anxiety, and hyperlipidemia. It may also help in the management of exercise-induced inflammation and muscle soreness, thus enhancing recovery and performance in active people. In addition, a relatively low dose of the complex can provide health benefits for people that do not have diagnosed health conditions. Most of these benefits can be attributed to its antioxidant and anti-inflammatory effects. Ingesting curcumin by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. There are several components that can increase bioavailability. For example, piperine is the major active component of black pepper and, when combined in a complex with curcumin, has been shown to increase bioavailability by 2000%. Curcumin combined with enhancing agents provides multiple health benefits. The purpose of this review is to provide a brief overview of the plethora of research regarding the health benefits of curcumin. Full article