Open AccessArticle
Vulnerability of Coastal Beach Tourism to Flooding: A Case Study of Galicia, Spain
Environments 2017, 4(4), 83; doi:10.3390/environments4040083 -
Abstract
Flooding, as a result of heavy rains and/or storm surges, is a persistent problem in coastal areas. Under scenarios of climate change, there are expectations that flooding events will become more frequent in some areas and potentially more intense. This poses a potential
[...] Read more.
Flooding, as a result of heavy rains and/or storm surges, is a persistent problem in coastal areas. Under scenarios of climate change, there are expectations that flooding events will become more frequent in some areas and potentially more intense. This poses a potential threat to coastal communities relying heavily on coastal resources, such as beaches for tourism. This paper develops a methodology for the assessment of coastal flooding risks, based on an index that compares 16 hydrogeomorphological, biophysical, human exposure and resilience indicators, with a specific focus on tourism. The paper then uses an existing flood vulnerability assessment of 724 beaches in Galicia (Spain) to test the index for tourism. Results indicate that approximately 10% of tourism beaches are at high risk to flooding, including 10 urban and 36 rural beaches. Implications for adaptation and coastal management are discussed. Full article
Figures

Figure 1

Open AccessArticle
Testing Extended Accounts in Scheduled Conservation of Open Woodlands with Permanent Livestock Grazing: Dehesa de la Luz Estate Case Study, Arroyo de la Luz, Spain
Environments 2017, 4(4), 82; doi:10.3390/environments4040082 -
Abstract
Standard Economic Accounts for Agriculture and Forestry do not measure the ecosystem services and intermediate products embedded in the final products recorded, and omit the private non-commercial intermediate products and self-consumption of private amenities. These limitations of the standard accounts are addressed by
[...] Read more.
Standard Economic Accounts for Agriculture and Forestry do not measure the ecosystem services and intermediate products embedded in the final products recorded, and omit the private non-commercial intermediate products and self-consumption of private amenities. These limitations of the standard accounts are addressed by the extended Agroforestry Accounting System, which is being tested at the publicly-owned Dehesa de la Luz agroforestry estate. The extended accounts simulate conservation forestry of holm oak and cork oak for the current as well as successive rotation cycles during which scheduled conservation of the cultural woodland landscape of the Dehesa de la Luz is carried out, improving the natural physical growth of the firewood and cork. The estimated results for 2014 reveal that private ecosystem services make up 50% of the firewood and grazing products consumed; the private environmental income accounts for 13% of the total private income; and the private environmental asset represents 53% of the total opening capital. The net value added is more than 2.3 times the amount estimated using the standard accounts. The landowner donates intermediate products of non-commercial services at a value of 85 €/ha, which are used to enhance the supply of public products. Full article
Open AccessArticle
Identifying Reliable Opportunistic Data for Species Distribution Modeling: A Benchmark Data Optimization Approach
Environments 2017, 4(4), 81; doi:10.3390/environments4040081 -
Abstract
The purpose of this study is to increase the number of species occurrence data by integrating opportunistic data with Global Biodiversity Information Facility (GBIF) benchmark data via a novel optimization technique. The optimization method utilizes Natural Language Processing (NLP) and a simulated annealing
[...] Read more.
The purpose of this study is to increase the number of species occurrence data by integrating opportunistic data with Global Biodiversity Information Facility (GBIF) benchmark data via a novel optimization technique. The optimization method utilizes Natural Language Processing (NLP) and a simulated annealing (SA) algorithm to maximize the average likelihood of species occurrence in maximum entropy presence-only species distribution models (SDM). We applied the Kruskal–Wallis test to assess the differences between the corresponding environmental variables and habitat suitability indices (HSI) among datasets, including data from GBIF, Facebook (FB), and data from optimally selected FB data. To quantify uncertainty in SDM predictions, and to quantify the efficacy of the proposed optimization procedure, we used a bootstrapping approach to generate 1000 subsets from five different datasets: (1) GBIF; (2) FB; (3) GBIF plus FB; (4) GBIF plus optimally selected FB; and (5) GBIF plus randomly selected FB. We compared the performance of simulated species distributions based on each of the above subsets via the area under the curve (AUC) of the receiver operating characteristic (ROC). We also performed correlation analysis between the average benchmark-based SDM outputs and the average dataset-based SDM outputs. Median AUCs of SDMs based on the dataset that combined benchmark GBIF data and optimally selected FB data were generally higher than the AUCs of other datasets, indicating the effectiveness of the optimization procedure. Our results suggest that the proposed approach increases the quality and quantity of data by effectively extracting opportunistic data from large unstructured datasets with respect to benchmark data. Full article
Figures

Figure 1

Open AccessArticle
Mechanical Behaviour of Soil Improved by Alkali Activated Binders
Environments 2017, 4(4), 80; doi:10.3390/environments4040080 -
Abstract
The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation
[...] Read more.
The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement. Full article
Figures

Figure 1

Open AccessArticle
Assessing Land Use-Cover Changes and Modelling Change Scenarios in Two Mountain Spanish National Parks
Environments 2017, 4(4), 79; doi:10.3390/environments4040079 -
Abstract
Land Use-Cover Changes (LUCCs) are one of the main problems for the preservation of biodiversity. Protected Areas (PAs) do not escape this threat. Some processes, such as intensive recreational use, forest fires or the expansion of artificial areas taking place inside and around
[...] Read more.
Land Use-Cover Changes (LUCCs) are one of the main problems for the preservation of biodiversity. Protected Areas (PAs) do not escape this threat. Some processes, such as intensive recreational use, forest fires or the expansion of artificial areas taking place inside and around them in response to their appeal, question their environmental sustainability and their efficiency. In this paper, we analyze the LUCCs that took place between 1990 and 2006 in two National Parks (NPs) belonging to the Spanish network and in their surroundings: Ordesa and Monte Perdido (Ordesa NP) and Sierra de Guadarrama (Guadarrama NP). We also simulate land use changes between 2006 and 2030 by means of Artificial Neural Networks (ANNs), taking into account two scenarios: trend and green. Finally, we perform a multi-temporal analysis of natural habitat fragmentation in each NP. The results show that the NPs analyzed are well-preserved and have seen hardly any significant LUCCs inside them. However, Socioeconomic Influence Zones (SIZs) and buffers are subject to different dynamics. In the SIZ and buffer of the Ordesa NP, there has been an expansion of built-up areas (annual rate of change = +1.19) around small urban hubs and ski resorts. There has also been a gradual recovery of natural areas, which had been interrupted by forest fires. The invasion of sub-alpine grasslands by shrubs is clear (+2735 ha). The SIZ and buffer of the Guadarrama NP are subject to urban sprawl in forest areas and to the construction of road infrastructures (+5549 ha and an annual rate of change = +1.20). Industrial area has multiplied by 3.3 in 20 years. The consequences are an increase in the Wildland-Urban Interface (WUI), greater risk of forest fires and greater fragmentation of natural habitats (+0.04 in SIZ). In the change scenarios, if conditions change as expected, the specific threats facing each NP can be expected to increase. There are substantial differences between the scenarios depending on whether or not incentives are accepted and legal restrictions are respected. Full article
Figures

Figure 1

Open AccessArticle
L’Aquila Smart Clean Air City: The Italian Pilot Project for Healthy Urban Air
Environments 2017, 4(4), 78; doi:10.3390/environments4040078 -
Abstract
Exposure to atmospheric pollution is a major concern for urban populations. Currently, no effective strategy has been adopted to tackle the problem. The paper presents the Smart Clean Air City project, a pilot experiment concerning the improvement in urban air quality. Small wet
[...] Read more.
Exposure to atmospheric pollution is a major concern for urban populations. Currently, no effective strategy has been adopted to tackle the problem. The paper presents the Smart Clean Air City project, a pilot experiment concerning the improvement in urban air quality. Small wet scrubber systems will be operating in a network configuration in suitable urban areas of L’Aquila city (Italy). The purpose of this work is to describe the project and show the preliminary results obtained in the characterization of two urban sites before the remediation test; the main operating principles of the wet scrubber system will be discussed, as well as the design of the mobile treatment plant for the processing of wastewater resulting from scrubber operation. Measurements of particle size distributions in the range of 0.30–25 µm took place in the two sites of interest, an urban background and a traffic area in the city of L’Aquila. The mean number concentration detected was 2.4 × 107 and 4.5 × 107 particles/m3, respectively. Finally, theoretical assessments, performed by Computational Fluid Dynamics (CFD) codes, will show the effects of the wet scrubber operation on air pollutants under different environmental conditions and in several urban usage patterns. Full article
Figures

Figure 1

Open AccessArticle
Quantifying Dustiness, Specific Allergens, and Endotoxin in Bulk Soya Imports
Environments 2017, 4(4), 76; doi:10.3390/environments4040076 -
Abstract
Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health
[...] Read more.
Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health risks to dockside workers and surrounding populations. Using an International Organization for Standardization (ISO) standardised rotating drum dustiness test in seven imported soya bulks, we compared the generated levels of dust and two major soya allergens in three particle sizes related to respiratory health. Extractable levels of allergen and endotoxin from the bulks showed 30–60 fold differences, with levels of one allergen (hydrophobic seed protein) and endotoxin higher in husk. The generated levels of dust and allergens in the three particle sizes also showed very wide variations between bulks, with aerolysed levels of allergen influenced by both the inherent dustiness and the extractable allergen in each bulk. Percentage allergen aerolysed from pelletized husk—often assumed to be of low dustiness—after transportation was not lower than that from chipped beans. Thus, not all soya bulks pose the same inhalation health risk and reinforces the importance of controlling dust generation from handling all soya bulk to as low as reasonably practicable. Full article
Figures

Figure 1

Open AccessArticle
Households’ Willingness to Pay for Improved Waste Collection Service in Gorkha Municipality of Nepal
Environments 2017, 4(4), 77; doi:10.3390/environments4040077 -
Abstract
Municipal solid waste management is a growing problem in urban areas of Nepal where municipalities are severely constrained by budget to manage it effectively. Collecting fees from the public can aid finance for improving waste management service. This study evaluates willingness to pay
[...] Read more.
Municipal solid waste management is a growing problem in urban areas of Nepal where municipalities are severely constrained by budget to manage it effectively. Collecting fees from the public can aid finance for improving waste management service. This study evaluates willingness to pay (WTP) by 401 households, selected using a stratified sampling method from all 15 wards of Gorkha municipality of Nepal for improved waste collection service and the factors influencing it. We employed a contingent valuation method to elicit households’ WTP, logit regression model to determine factors influencing WTP and tobit regression model to determine factors influencing the maximum amount households are willing to pay for improved waste collection service. Majority of households (61%) are willing to pay an average amount of NRs. 73.38 (0.72 US$) per month. Factors that significantly influence households’ WTP are monthly household income, education of household head, environmental awareness and waste collection service. Except for education of household head, all these factors significantly influence the maximum amount of money households are willing to pay. Concerned stakeholders and policy makers should consider these traits of households before enforcing a waste collection fee. Full article
Open AccessArticle
In the Dark Shadow of the Supercycle Tailings Failure Risk & Public Liability Reach All Time Highs
Environments 2017, 4(4), 75; doi:10.3390/environments4040075 -
Abstract
This is the third in a series of independent research papers attempting to improve the quality of descriptive data and analysis of tailings facility failures globally focusing on the relative occurrence, severity and root causes of these failures. This paper updates previously published
[...] Read more.
This is the third in a series of independent research papers attempting to improve the quality of descriptive data and analysis of tailings facility failures globally focusing on the relative occurrence, severity and root causes of these failures. This paper updates previously published failures data through 2010 with both additional data pre-2010 and additional data 2010–2015. All three papers have explored the connection between high public consequence failure trends and mining economics trends especially grade, costs to produce and price. This work, the third paper, looks more deeply at that connection through several autopsies of the dysfunctional economics of the period 2000–2010 in which the greatest and longest price increase in recorded history co-occurred across all commodities, a phenomenon sometimes called a supercycle. That high severity failures reached all-time highs in the same decade as prices rose to highs, unprecedented since 1916, challenges many fundamental beliefs and assumptions that have governed modern mining operations, investment decisions, and regulation. It is from waste management in mining, a non-revenue producing cost incurring part of every operation, that virtually all severe environmental and community damages arise. These damages are now more frequently at a scale and of a nature that is non-remediable and beyond any possibility of clean up or reclamation. The authors have jointly undertaken this work in the public interest without funding from the mining industry, regulators, non-governmental organizations, or from any other source. Full article
Figures

Figure 1

Open AccessArticle
Production of Geopolymeric Mortars Containing Forest Biomass Ash as Partial Replacement of Metakaolin
Environments 2017, 4(4), 74; doi:10.3390/environments4040074 -
Abstract
Geopolymers are a new class of binders based on alkali activation of natural and by-products raw materials. Their properties and eco-compatibility highly depends on the reaction system. The (Na,K)2O-Al2O3-SiO2-H2O system shows a distinguishing
[...] Read more.
Geopolymers are a new class of binders based on alkali activation of natural and by-products raw materials. Their properties and eco-compatibility highly depends on the reaction system. The (Na,K)2O-Al2O3-SiO2-H2O system shows a distinguishing pseudo-zeolitic network structure, but reaction requires a high amount of activators. The aim of this work is to investigate how the use of forest biomass ash (FBA), as partial replacement material in the production of metakaolin (MK) based geopolymeric mortar, and affect its properties. FBA is a by-product of the combustion process of forest biomass in thermal power plants. Mortars with a FBA content of 0%, 10%, 20%, and 30% wt have been tested for workability, flexural, and compressive strength. Capillary absorption, micro-morphological features, thermal, and shrinkage behavior have been investigated. The addition of FBA allowed for a decrease in the use of alkaline activator up to 20%, while preserving the characteristic broad hump centered at approximately 28° 2θ Mechanical properties of the geopolymeric mortars decrease proportionally with metakaolin replacement, even if a compression strength of more than 35 MPa is still obtained with a FBA content of 30% wt. After thermal cycles of up to 700 °C, all of the mortars still retain their cohesiveness, with an overall loss of mechanical strength of about 80% of the initial value that can be attributed to the formation of microcracks as a consequence of the network strain and distortion due to dehydration and shrinkage. Full article
Figures

Figure 1

Open AccessArticle
Sociology in Global Environmental Governance? Neoliberalism, Protectionism and the Methyl Bromide Controversy in the Montreal Protocol
Environments 2017, 4(4), 73; doi:10.3390/environments4040073 -
Abstract
Sociological studies of global agriculture need to pay close attention to the protectionist aspects of neoliberalism at the global scale of environmental governance. With agri-food studies in the social sciences broadening interrogations of the impact of neoliberalism on agri-food systems and their alternatives,
[...] Read more.
Sociological studies of global agriculture need to pay close attention to the protectionist aspects of neoliberalism at the global scale of environmental governance. With agri-food studies in the social sciences broadening interrogations of the impact of neoliberalism on agri-food systems and their alternatives, investigating global environmental governance (GEG) will help reveal its impacts on the global environment, global science/knowledge, and the potential emergence of ecologically sensible alternatives. It is argued here that as agri-food studies of neoliberalism sharpen the focus on these dimensions the widespread consequences of protectionism of US agri-industry in GEG will become better understood, and the solutions more readily identifiable. This paper illustrates how the delayed phase out of the toxic substance methyl bromide in the Montreal Protocol exemplifies the degree to which the US agri-industry may be protected at the global scale of environmental governance, thus prolonging the transition to ozone-friendly alternatives. Additionally, it is clear that protectionism has had a significant impact on the dissemination and interpretation of science/knowledge of methyl bromide and its alternatives. Revealing the role that protectionism plays more broadly in the agriculture/environmental governance interface, and its oftentimes negative impacts on science and potential alternatives, can shed light on how protectionism can be made to serve ends that are at odds with environmental protection. Full article
Open AccessArticle
Relationship between Ambient Temperature and Mental Health in the USA
Environments 2017, 4(4), 71; doi:10.3390/environments4040071 -
Abstract
Climatic variables such as temperature have been shown to correlate with demand for mental health services in other countries. An attempt by the present study to replicate this correlation using existing USA treatment data on mental health was not substantiated. Using annual state-level
[...] Read more.
Climatic variables such as temperature have been shown to correlate with demand for mental health services in other countries. An attempt by the present study to replicate this correlation using existing USA treatment data on mental health was not substantiated. Using annual state-level data from 2007 through 2015, the rate of mental health service utilization per 1000 population was correlated with average temperature and precipitation, while adjusting for Gross Domestic Product (GDP), unemployment, and urbanization. No statistically significant correlation was found. Full article
Figures

Figure 1

Open AccessArticle
Rapid Urban Growth in the Kathmandu Valley, Nepal: Monitoring Land Use Land Cover Dynamics of a Himalayan City with Landsat Imageries
Environments 2017, 4(4), 72; doi:10.3390/environments4040072 -
Abstract
The Kathmandu Valley of Nepal epitomizes the growing urbanization trend spreading across the Himalayan foothills. This metropolitan valley has experienced a significant transformation of its landscapes in the last four decades resulting in substantial land use and land cover (LULC) change; however, no
[...] Read more.
The Kathmandu Valley of Nepal epitomizes the growing urbanization trend spreading across the Himalayan foothills. This metropolitan valley has experienced a significant transformation of its landscapes in the last four decades resulting in substantial land use and land cover (LULC) change; however, no major systematic analysis of the urbanization trend and LULC has been conducted on this valley since 2000. When considering the importance of using LULC change as a window to study the broader changes in socio-ecological systems of this valley, our study first detected LULC change trajectories of this valley using four Landsat images of the year 1989, 1999, 2009, and 2016, and then analyzed the detected change in the light of a set of proximate causes and factors driving those changes. A pixel-based hybrid classification (unsupervised followed by supervised) approach was employed to classify these images into five LULC categories and analyze the LULC trajectories detected from them. Our results show that urban area expanded up to 412% in last three decades and the most of this expansion occurred with the conversions of 31% agricultural land. The majority of the urban expansion happened during 1989–2009, and it is still growing along the major roads in a concentric pattern, significantly altering the cityscape of the valley. The centrality feature of Kathmandu valley and the massive surge in rural-to-urban migration are identified as the primary proximate causes of the fast expansion of built-up areas and rapid conversions of agricultural areas. Full article
Figures

Open AccessProject Report
Nitrate Leaching from Sand and Pumice Geomedia Amended with Pyrogenic Carbon Materials
Environments 2017, 4(4), 70; doi:10.3390/environments4040070 -
Abstract
There is increasing interest in using pyrogenic carbon as an adsorbent for aqueous contaminants in stormwater. The objective of this study was to investigate pyrogenic carbon materials as an amendment to geomedia to reduce nitrate leaching. Batch adsorption and column experiments were conducted
[...] Read more.
There is increasing interest in using pyrogenic carbon as an adsorbent for aqueous contaminants in stormwater. The objective of this study was to investigate pyrogenic carbon materials as an amendment to geomedia to reduce nitrate leaching. Batch adsorption and column experiments were conducted to evaluate the performance of a commercial activated carbon and two biochars incorporated (5% by weight) into sand and pumice columns. The batch adsorption with 50 mg L−1 of nitrate solution showed that only activated carbon resulted in a substantial adsorption for nitrate up to 41%. Tested biochars were not effective in removing aqueous nitrate and even released nitrate (<1%) with 1 h reaction time. Column experiment with a pulse input of nitrate solution (50 mg L−1) confirmed that the sand or pumice columns amended with biochars were not as effective as those amended with activated carbon for reducing nitrate leaching. Our results suggested that net negatively charged surfaces of biochar may inhibit nitrate anion adsorption while activated carbon has reactive sites containing acidic functional groups to improve nitrate retention. There was no difference between sand and pumice for nitrate retention in any of the carbon amendments. Additional surface activation process during biochar production may be needed to improve adsorptive capacity of biochar for aqueous nitrate removal. Full article
Figures

Figure 1

Open AccessArticle
Biological Treatment by Active Sludge with High Biomass Concentration at Laboratory Scale for Mixed Inflow of Sunflower Oil and Saccharose
Environments 2017, 4(4), 69; doi:10.3390/environments4040069 -
Abstract
We studied and quantified the elimination of sunflower oil from a wastewater influent using a biological treatment by activated sludge. Estimation of the biodegraded material was obtained doing a mass balance, and we conducted a follow-up of the different operational parameters and design.
[...] Read more.
We studied and quantified the elimination of sunflower oil from a wastewater influent using a biological treatment by activated sludge. Estimation of the biodegraded material was obtained doing a mass balance, and we conducted a follow-up of the different operational parameters and design. We delivered information about the operation of a system for treatment by activated sludge fed with an influent with sunflower oil and saccharose. The influent was previously agitated before entering the effluent sludge in a lab-scale plant. The working range for oil concentration was 100 to 850 mg/L in the influent. Biodegradation was in the range of 60% to 51%. The process works better with a high initial concentration of biomass (7500 mg/L) in order to absorb the impacts caused by the oil on the microorganisms. The lowest total suspended solids concentration was 4500 mg/L. The elimination of sunflower oil in biodegradation and flotation was on the order of 90%. Full article
Figures

Figure 1

Open AccessArticle
Fine-Tuning of a Protected Area Effectiveness Evaluation Tool: Implementation on Two Emblematic Spanish National Parks
Environments 2017, 4(4), 68; doi:10.3390/environments4040068 -
Abstract
As global biodiversity trends worsen, protected area (PA) environmental effectiveness needs to be assessed to identify strengths and areas to improve. Through a participatory process including PA managers and scientists, we refined the System for the Integrated Assessment of Protected Areas (SIAPA), in
[...] Read more.
As global biodiversity trends worsen, protected area (PA) environmental effectiveness needs to be assessed to identify strengths and areas to improve. Through a participatory process including PA managers and scientists, we refined the System for the Integrated Assessment of Protected Areas (SIAPA), in order to increase its legitimacy, credibility and salience to end users in Spain. Then, we tested the optimised version of the SIAPA on two emblematic Spanish national parks (NPs): Ordesa y Monte Perdido NP (Ordesa NP) and Sierra de Guadarrama NP (Guadarrama NP). PA managers and scientists largely coincided in the ratings of SIAPA’s indicators and indices. Collaboration with Ordesa NP’s managers was regular, allowing a nearly complete evaluation of the NP. However, greater collaboration between PA managers and scientists remains a priority in Guadarrama NP. Results show that potential effectiveness is moderate for Ordesa NP and low for Guadarrama NP, according to the indicators that could be evaluated. For Ordesa NP, lack of data on focal habitats and other focal features determined a deficient valuation of its conservation state, although the remaining indicators in that category showed adequate or moderate values. The compilation of those data should be overriding in the NP. In contrast, only climate change posed a serious threat in that NP. The social perception and valuation of both NPs was good, suggesting broad support from local populations and eased management. Full article
Figures

Figure 1

Open AccessArticle
Applicability of a Freundlich-Like Model for Plant Uptake at an Industrial Contaminated Site with a High Variable Arsenic Concentration
Environments 2017, 4(4), 67; doi:10.3390/environments4040067 -
Abstract
Phytoextraction is a low-cost technology with negligible environmental impacts. A major issue at the field scale is the heterogeneity of contaminant concentration since the entire site needs to be treated evenly even though zones may need different incisiveness in the treatment. The concentration
[...] Read more.
Phytoextraction is a low-cost technology with negligible environmental impacts. A major issue at the field scale is the heterogeneity of contaminant concentration since the entire site needs to be treated evenly even though zones may need different incisiveness in the treatment. The concentration ratio (Cshoot/Csoil) is generally used to evaluate plant species performance and it includes for simplicity an assumption of linearity in the uptake behavior, although deviation from linearity has been observed in several studies. This work describes a phytoextraction feasibility test, conducted at a greenhouse scale for the remediation of an arsenic-contaminated site. Since a feasibility test should also provide an uptake model that accounts for plant growth in heterogeneous areas, the investigation focused on defining the uptake behavior of the various selected species growing in a site with homogeneous soil properties, but with considerable differences in arsenic concentration. Among the many models selectable to describe the soil-to-plant transfer, the Freundlich-like approach was tested. While remaining easy to handle, the non-linear model selected proves to be adequate to predict the arsenic uptake despite the complex contamination considered, thus allowing a more realistic prediction of the potential of a field-scale phytoremediation procedure. Full article
Figures

Figure 1

Open AccessReview
Air Quality Impacts of Petroleum Refining and Petrochemical Industries
Environments 2017, 4(3), 66; doi:10.3390/environments4030066 -
Abstract
Though refineries and petrochemical industries meet society’s energy demands and produce a range of useful chemicals, they can also affect air quality. The World Health Organization (WHO) has identified polluted air as the single largest environmental risk, and hence it is necessary to
[...] Read more.
Though refineries and petrochemical industries meet society’s energy demands and produce a range of useful chemicals, they can also affect air quality. The World Health Organization (WHO) has identified polluted air as the single largest environmental risk, and hence it is necessary to strive for and maintain good air quality. To manage potential health impacts, it is important to implement proper air quality management by understanding the link between specific pollutant sources and resulting population exposures. These industries release pollutants such as Volatile Organic Compounds, greenhouse gases and particulate matter, from various parts of their operations. Air quality should be monitored and controlled more meticulously in developing nations where increased energy demands, industrialization and overpopulation has led to more emissions and lower air quality. This paper presents a review of findings and highlights from various studies on air quality impacts of petroleum refining and petrochemical plants in many regions in the world. Full article
Open AccessArticle
So Close Yet So Far Apart: Contrasting Climate Change Perceptions in Two “Neighboring” Coastal Communities on Aotearoa New Zealand’s Coromandel Peninsula
Environments 2017, 4(3), 65; doi:10.3390/environments4030065 -
Abstract
Coastal hazard risk, compounded by climate change, is escalating. Efforts to address this challenge are fraught and ‘success’ is elusive. We focus on this impasse and recommend ways to improve understanding, reduce risk and enable adaptation. Two Aotearoa New Zealand coastal communities, Mercury
[...] Read more.
Coastal hazard risk, compounded by climate change, is escalating. Efforts to address this challenge are fraught and ‘success’ is elusive. We focus on this impasse and recommend ways to improve understanding, reduce risk and enable adaptation. Two Aotearoa New Zealand coastal communities, Mercury Bay and Kennedy Bay, on the Coromandel Peninsula, serve as case studies. Ethnographic fieldwork underpins this analysis. Despite close proximity, local perceptions are ‘worlds apart’. Poor understanding of climate change, and preoccupation with everyday issues, is commonplace. Moreover, there are countervailing community narratives. In Kennedy Bay, which is undeveloped and Māori, climate change is not a manifest concern. Local narratives are rooted in Māori culture and under the shadow of colonization, which shapes contemporary perceptions, practices and prospects. In Mercury Bay, a rapidly developing resort town, seashore property owners demand protection works—ignoring sea-level rise and privileging short-term private interests. Despite laudable regulatory provisions, static responses to dynamic risks prevail and proactive adaptation is absent. Recommendations are made to improve understanding about local cultural-social-ecological characteristics, climate change and adaption. Enabling leadership and capability-building are needed to institutionalize proactive adaptation. Strengthening Māori self-determination (rangatiratanga) and guardianship (kaitiakitanga), and local democracy, are key to mobilizing and sustaining community-based adaptation governance. Full article
Figures

Figure 1

Open AccessArticle
Calcium Sulfoaluminate, Geopolymeric, and Cementitious Mortars for Structural Applications
Environments 2017, 4(3), 64; doi:10.3390/environments4030064 -
Abstract
This paper deals with the study of calcium sulfoaluminate (CSA) and geopolymeric (GEO) binders as alternatives to ordinary Portland cement (OPC) for the production of more environmentally-friendly construction materials. For this reason, three types of mortar with the same mechanical strength class (R3
[...] Read more.
This paper deals with the study of calcium sulfoaluminate (CSA) and geopolymeric (GEO) binders as alternatives to ordinary Portland cement (OPC) for the production of more environmentally-friendly construction materials. For this reason, three types of mortar with the same mechanical strength class (R3 ≥ 25 MPa, according to EN 1504-3) were tested and compared; they were based on CSA cement, an alkaline activated coal fly ash, and OPC. Firstly, binder pastes were prepared and their hydration was studied by means of X-ray diffraction (XRD) and differential thermal-thermogravimetric (DT-TG) analyses. Afterwards, mortars were compared in terms of workability, dynamic modulus of elasticity, adhesion to red clay bricks, free and restrained drying shrinkage, water vapor permeability, capillary water absorption, and resistance to sulfate attack. DT-TG and XRD analyses evidenced the main reactive phases of the investigated binders involved in the hydration reactions. Moreover, the sulfoaluminate mortar showed the smallest free shrinkage and the highest restrained shrinkage, mainly due to its high dynamic modulus of elasticity. The pore size distribution of geopolymeric mortar was responsible for the lowest capillary water absorption at short times and for the highest permeability to water vapor and the greatest resistance to sulfate attack. Full article
Figures

Figure 1a