Open AccessArticle
Obstacle Avoidance Based-Visual Navigation for Micro Aerial Vehicles
Electronics 2017, 6(1), 10; doi:10.3390/electronics6010010 -
Abstract
This paper describes an obstacle avoidance system for low-cost Unmanned Aerial Vehicles (UAVs) using vision as the principal source of information through the monocular onboard camera. For detecting obstacles, the proposed system compares the image obtained in real time from the UAV with
[...] Read more.
This paper describes an obstacle avoidance system for low-cost Unmanned Aerial Vehicles (UAVs) using vision as the principal source of information through the monocular onboard camera. For detecting obstacles, the proposed system compares the image obtained in real time from the UAV with a database of obstacles that must be avoided. In our proposal, we include the feature point detector Speeded Up Robust Features (SURF) for fast obstacle detection and a control law to avoid them. Furthermore, our research includes a path recovery algorithm. Our method is attractive for compact MAVs in which other sensors will not be implemented. The system was tested in real time on a Micro Aerial Vehicle (MAV), to detect and avoid obstacles in an unknown controlled environment; we compared our approach with related works. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Electronics in 2016
Electronics 2017, 6(1), 8; doi:10.3390/electronics6010008 -
Abstract The editors of Electronics would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
A Modular Integrated RFID System for Inventory Control Applications
Electronics 2017, 6(1), 9; doi:10.3390/electronics6010009 -
Abstract
Recent advances in single-board computer technology have allowed for lightweight, power-efficient devices, such as the Raspberry Pi, to take the place of desktop PCs in certain applications. This has the potential to disrupt the way many current systems are structured, particularly for inventory
[...] Read more.
Recent advances in single-board computer technology have allowed for lightweight, power-efficient devices, such as the Raspberry Pi, to take the place of desktop PCs in certain applications. This has the potential to disrupt the way many current systems are structured, particularly for inventory management and control applications. In this paper, we explore the design and topology of a modular Radio frequency identification (RFID) system for inventory management comprised of self-contained, autonomous scanning, and stationary control PCs in a handheld/portable configuration. While similar solutions for such a system may exist on the commercial market, this proposed development provides a template for an open source flexible, low-cost solution that can be easily expanded to meet the needs of businesses with large and small inventories. Full article
Figures

Figure 1

Open AccessArticle
High-Speed Non-Volatile Optical Memory: Achievements and Challenges
Electronics 2017, 6(1), 7; doi:10.3390/electronics6010007 -
Abstract
We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this
[...] Read more.
We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed. Full article
Figures

Figure 1

Open AccessReview
Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control
Electronics 2017, 6(1), 5; doi:10.3390/electronics6010005 -
Abstract
The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized
[...] Read more.
The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs) are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure. Full article
Figures

Open AccessArticle
The Implementation of a High-Frequency Radio Frequency Identification System with a Battery-Free Smart Tag for Orientation Monitoring
Electronics 2017, 6(1), 6; doi:10.3390/electronics6010006 -
Abstract
Energy-harvesting passive RFID (radio frequency identification) tags provide countless possibilities as so-called smart tags. Smart tags can communicate with existing RFID readers or interrogators while providing a battery-less platform for internal and external sensors to enrich available information about the environment and smart
[...] Read more.
Energy-harvesting passive RFID (radio frequency identification) tags provide countless possibilities as so-called smart tags. Smart tags can communicate with existing RFID readers or interrogators while providing a battery-less platform for internal and external sensors to enrich available information about the environment and smart tag it. A reduced cost and size as well as an increased lifespan and durability of battery-free smart tags offer improvements in areas such as transportation and product tracking. Battery-free smart tags can ideally support arbitrarily complex sensor measurements, but in reality energy limitations can introduce great reductions in operating range and thus application range. In this work, we present an example application of a smart tag with a passive HF (high-frequency) RFID tag IC (integrated circuit) and MEMS (micro electro-mechanical structure) sensor. A standard HF RFID reader connected to a PC (personal computer) allowed the RF (radio frequency) field to power and communicate with the smart tag. A Kalman filter, implemented on a PC, was used to correct and improve the raw sensor data of smart tag orientation. Measurement results showed that the MEMS sensor on the smart tag could be powered for continuous operation and that raw smart tag orientation data could be read while in the RF field of a standard HF RFID reader, but at a limited range. Full article
Figures

Figure 1

Open AccessArticle
A Novel Channel Coding Scheme for RFID Generation-2 Systems
Electronics 2017, 6(1), 4; doi:10.3390/electronics6010004 -
Abstract
Low complexity and efficient algorithms for Radio-Frequency Identification (RFID) are crucial to foster low-cost and energy-saving solutions. With the aim of lowering the complexity of the radio circuitry, and inspired by the superposition codes concept, we propose a novel encoding algorithm for tag-to-reader
[...] Read more.
Low complexity and efficient algorithms for Radio-Frequency Identification (RFID) are crucial to foster low-cost and energy-saving solutions. With the aim of lowering the complexity of the radio circuitry, and inspired by the superposition codes concept, we propose a novel encoding algorithm for tag-to-reader communication channels of modern RFID systems. We show that the developed scheme—despite the simplicity of its hardware realization—allows a coding gain comparable to the one obtained by the more complex Viterbi decoding of the Miller 4 modulation scheme used in the EPC Generation 2 Class 1 RFID standard. Simulation results prove the effectiveness of the proposed solution for low-cost tags, under different signal-to-noise ratios (SNRs) and interrogation time durations. Although our numerical evaluation mainly focuses on the EPC Generation-2 standard, we believe that the proposed scheme will also be attractive for future Ultra-wideband RFID systems. Full article
Figures

Figure 1

Open AccessArticle
A Miniature Data Repository on a Raspberry Pi
Electronics 2017, 6(1), 1; doi:10.3390/electronics6010001 -
Abstract
This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system needs to be resilient to power and network failures, and expose adequate processing power for persistent, long-term storage. Additional services are required for interoperable data sharing and visualization. We designed and
[...] Read more.
This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system needs to be resilient to power and network failures, and expose adequate processing power for persistent, long-term storage. Additional services are required for interoperable data sharing and visualization. We designed and implemented a software tool called Airchive to run on a Raspberry Pi, in order to assemble a data repository for archiving and openly sharing timeseries data. Airchive employs a relational database for storing data and implements two standards for sharing data (namely the Sensor Observation Service by the Open Geospatial Consortium and the Protocol for Metadata Harvesting by the Open Archives Initiative). The system is demonstrated in a realistic indoor air pollution data acquisition scenario in a four-month experiment evaluating its autonomy and robustness under power and network disruptions. A stress test was also conducted to evaluate its performance against concurrent client requests. Full article
Figures

Figure 1

Open AccessArticle
Resilience Evaluation of Demand Response as Spinning Reserve under Cyber-Physical Threats
Electronics 2017, 6(1), 2; doi:10.3390/electronics6010002 -
Abstract
In the future, automated demand response mechanisms will be used as spinning reserve. Demand response in the smart grid must be resilient to cyber-physical threats. In this paper, we evaluate the resilience of demand response when used as spinning reserve in the presence
[...] Read more.
In the future, automated demand response mechanisms will be used as spinning reserve. Demand response in the smart grid must be resilient to cyber-physical threats. In this paper, we evaluate the resilience of demand response when used as spinning reserve in the presence of cyber-physical threats. We quantify this evaluation by correlating the stability of the system in the presence of attacks measured by system frequency (Hz) and attack level measured by the amount of load (MW) that responds to the demand response event. The results demonstrate the importance of anticipating the dependability of demand response before it can be relied upon as spinning reserve. Full article
Figures

Open AccessArticle
A Compressive-Sensing Inspired Alternate Projection Algorithm for Sparse Array Synthesis
Electronics 2017, 6(1), 3; doi:10.3390/electronics6010003 -
Abstract
In this paper, we propose a simple approach for sparse array synthesis. We employ a modified generalized alternate projection algorithm using 1-norm constrained minimization in order to achieve the excitation and the position of the elements of a sparse array. The
[...] Read more.
In this paper, we propose a simple approach for sparse array synthesis. We employ a modified generalized alternate projection algorithm using 1-norm constrained minimization in order to achieve the excitation and the position of the elements of a sparse array. The proposed approach is very flexible, since it deals with power pattern masks and allows the inclusion of the effects of element pattern and mutual coupling. Its implementation is relatively simple, thanks to the possibility to use well-known convex programming techniques. The presented method is particularly suitable for the synthesis of patterns commonly employed in radar systems; the numerical results provided show good performances with respect to concurrent methods available in open literature. Full article
Figures

Open AccessReview
Photonic Structure-Integrated Two-Dimensional Material Optoelectronics
Electronics 2016, 5(4), 93; doi:10.3390/electronics5040093 -
Abstract
The rapid development and unique properties of two-dimensional (2D) materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form
[...] Read more.
The rapid development and unique properties of two-dimensional (2D) materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics. Full article
Figures

Figure 1

Open AccessArticle
A Soft Sensor Development for the Rotational Speed Measurement of an Electric Propeller
Electronics 2016, 5(4), 94; doi:10.3390/electronics5040094 -
Abstract
In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s
[...] Read more.
In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s performance. This paper presents the development of a soft sensor for the rotational speed measurement of an electric propeller. An adaptive learning algorithm is derived for the soft sensor by using Popov hyperstability theory, based on which a one-step-delay adaptive learning algorithm is further proposed to solve the implementation problem of the soft sensor. It is important to note that only the input signal and the commutation instant of the motor are employed as inputs in the algorithm, which makes it possible to be easily implemented in real-time. The experimental test results have demonstrated the learning performance and the accuracy of the soft sensor. Full article
Figures

Open AccessArticle
Low Power High-Efficiency Shift Register Using Implicit Pulse-Triggered Flip-Flop in 130 nm CMOS Process for a Cryptographic RFID Tag
Electronics 2016, 5(4), 92; doi:10.3390/electronics5040092 -
Abstract
The shift register is a type of sequential logic circuit which is mostly used for storing digital data or the transferring of data in the form of binary numbers in radio frequency identification (RFID) applications to improve the security of the system. A
[...] Read more.
The shift register is a type of sequential logic circuit which is mostly used for storing digital data or the transferring of data in the form of binary numbers in radio frequency identification (RFID) applications to improve the security of the system. A power-efficient shift register utilizing a new flip-flop with an implicit pulse-triggered structure is presented in this article. The proposed flip-flop has features of high performance and low power. It is composed of a sampling circuit implemented by five transistors, a C-element for rise and fall paths, and a keeper stage. The speed is enhanced by executing four clocked transistors together with a transition condition technique. The simulation result confirms that the proposed topology consumes the lowest amounts of power of 30.1997 and 22.7071 nW for parallel in –parallel out (PIPO) and serial in –serial out (SISO) shift register respectively covering 22 µm2 chip area. The overall design consist of only 16 transistors and is simulated in 130 nm complementary-metal-oxide-semiconductor (CMOS) technology with a 1.2 V power supply. Full article
Figures

Figure 1

Open AccessArticle
Energetic Stabilities, Structural and Electronic Properties of Monolayer Graphene Doped with Boron and Nitrogen Atoms
Electronics 2016, 5(4), 91; doi:10.3390/electronics5040091 -
Abstract
The structural, energetic, and electronic properties of single-layer graphene doped with boron and nitrogen atoms with varying doping concentrations and configurations have been investigated here via first-principles density functional theory calculations. It was found that the band gap increases with an increase in
[...] Read more.
The structural, energetic, and electronic properties of single-layer graphene doped with boron and nitrogen atoms with varying doping concentrations and configurations have been investigated here via first-principles density functional theory calculations. It was found that the band gap increases with an increase in doping concentration, whereas the energetic stability of the doped systems decreases with an increase in doping concentration. It was observed that both the band gaps and the cohesive energies also depend on the atomic configurations considered for the substitutional dopants. Stability was found to be higher in N-doped graphene systems as compared to B-doped graphene systems. The electronic structures of B- and N-doped graphene systems were also found to be strongly influenced by the positioning of the dopant atoms in the graphene lattice. The systems with dopant atoms at alternate sublattices have been found to have the lowest cohesive energies and therefore form the most stable structures. These results indicate an ability to adjust the band gap as required using B and N atoms according to the choice of the supercell, i.e., the doping density and substitutional dopant sites, which could be useful in the design of graphene-based electronic and optical devices. Full article
Figures

Open AccessArticle
Characterizing Energy per Job in Cloud Applications
Electronics 2016, 5(4), 90; doi:10.3390/electronics5040090 -
Abstract
Energy efficiency is a major research focus in sustainable development and is becoming even more critical in information technology (IT) with the introduction of new technologies, such as cloud computing and big data, that attract more business users and generate more data to
[...] Read more.
Energy efficiency is a major research focus in sustainable development and is becoming even more critical in information technology (IT) with the introduction of new technologies, such as cloud computing and big data, that attract more business users and generate more data to be processed. While many proposals have been presented to optimize power consumption at a system level, the increasing heterogeneity of current workloads requires a finer analysis in the application level to enable adaptive behaviors and in order to reduce the global energy usage. In this work, we focus on batch applications running on virtual machines in the context of data centers. We analyze the application characteristics, model their energy consumption and quantify the energy per job. The analysis focuses on evaluating the efficiency of applications in terms of performance and energy consumed per job, in particular when shared resources are used and the hosts on which the virtual machines are running are heterogeneous in terms of energy profiles, with the aim of identifying the best combinations in the use of resources. Full article
Figures

Figure 1

Open AccessArticle
GPGPU Accelerated Deep Object Classification on a Heterogeneous Mobile Platform
Electronics 2016, 5(4), 88; doi:10.3390/electronics5040088 -
Abstract
Deep convolutional neural networks achieve state-of-the-art performance in image classification. The computational and memory requirements of such networks are however huge, and that is an issue on embedded devices due to their constraints. Most of this complexity derives from the convolutional layers and
[...] Read more.
Deep convolutional neural networks achieve state-of-the-art performance in image classification. The computational and memory requirements of such networks are however huge, and that is an issue on embedded devices due to their constraints. Most of this complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. This paper proposes a complete approach to image classification providing common layers used in neural networks. Namely, the proposed approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. The Compute Unified Device Architecture(CUDA)-based implementation of the proposed approach is evaluated over three different image classification networks on a Tegra K1 CPU-GPU mobile processor. Experiments show that the presented heterogeneous scheme boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%. Full article
Figures

Open AccessArticle
Operating Wireless Sensor Nodes without Energy Storage: Experimental Results with Transient Computing
Electronics 2016, 5(4), 89; doi:10.3390/electronics5040089 -
Abstract
Energy harvesting is increasingly used for powering wireless sensor network nodes. Recently, it has been suggested to combine it with the concept of transient computing whereby the wireless sensor nodes operate without energy storage capabilities. This new combined approach brings benefits, for instance
[...] Read more.
Energy harvesting is increasingly used for powering wireless sensor network nodes. Recently, it has been suggested to combine it with the concept of transient computing whereby the wireless sensor nodes operate without energy storage capabilities. This new combined approach brings benefits, for instance ultra-low power nodes and reduced maintenance, but also raises new challenges, foremost dealing with nodes that may be left without power for various time periods. Although transient computing has been demonstrated on microcontrollers, reports on experiments with wireless sensor nodes are still scarce in the literature. In this paper, we describe our experiments with solar, thermal, and RF energy harvesting sources that are used to power sensor nodes (including wireless ones) without energy storage, but with transient computing capabilities. The results show that the selected solar and thermal energy sources can operate both the wired and wireless nodes without energy storage, whereas in our specific implementation, the developed RF energy source can only be used for the selected nodes without wireless connectivity. Full article
Figures

Open AccessArticle
Guided Modes in a Double-Well Asymmetric Potential of a Graphene Waveguide
Electronics 2016, 5(4), 87; doi:10.3390/electronics5040087 -
Abstract
The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric double-well potential on graphene
[...] Read more.
The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric double-well potential on graphene as an electronic waveguide to confine the graphene electrons. The guided modes in this graphene waveguide are investigated using a modified transfer matrix method. It is found that there are two types of guided modes. The first kind is confined in one well, which is similar to the asymmetric quantum well graphene waveguide. The second kind can appear in two potential wells with double-degeneracy. Characteristics of all the possible guide modes are presented. Full article
Figures

Open AccessArticle
Offshore Measurement System for Wave Power—Using Current Loop Feedback
Electronics 2016, 5(4), 86; doi:10.3390/electronics5040086 -
Abstract
This paper presents the design and testing of a measurement system for wave power generators. The work is part of a project to build a robust and cheap measurement system for offshore monitoring of wave power farms. Due to the harsh offshore environment,
[...] Read more.
This paper presents the design and testing of a measurement system for wave power generators. The work is part of a project to build a robust and cheap measurement system for offshore monitoring of wave power farms. Due to the harsh offshore environment, low accessibility and high cost for installation and maintenance, it is of key importance to minimize power consumption, complexity and cost of each measurement unit. For the first prototype, the objective was to measure voltage, current and translator position inside the linear wave power generator. For this, two printed circuit boards (PCBs) were developed, using a two wire current loop transmitter setup. They were tested separately and in a three phase setup inside a wave power generator during onshore tests. To ensure stability, speed and accuracy in the signal transfer, the PCBs were tested for linearity, frequency response and step response. In addition, power consumption was measured, for operational time evaluation. Results show good agreement between expected and measured performance, with an input range of ±1560 V and ±420 A for alternating current measurements and a bandwidth of 10 kHz and 7 kHz, for voltage and current measurements, respectively. The power consumption was measured to 0.5 W for each measurement unit, at 24 V feed. Full article
Figures

Figure 1

Open AccessArticle
On the Implementation of the IEC 61850 Standard: Will Different Manufacturer Devices Behave Similarly under Identical Conditions?
Electronics 2016, 5(4), 85; doi:10.3390/electronics5040085 -
Abstract
Standardization in smart grid communications is necessary to facilitate complex operations of modern power system functions. However, the strong coupling between the cyber and physical domains of the contemporary grid exposes the system to vulnerabilities and thus places more burden on standards’ developers.
[...] Read more.
Standardization in smart grid communications is necessary to facilitate complex operations of modern power system functions. However, the strong coupling between the cyber and physical domains of the contemporary grid exposes the system to vulnerabilities and thus places more burden on standards’ developers. As such, standards need to be continuously assessed for reliability and are expected to be implemented properly on field devices. However, the actual implementation of common standards varies between vendors, which may lead to different behaviors of the devices even if present under similar conditions. The work in this paper tested the implementation of the International Electro-technical Commission’s Generic Object Oriented Substation Event GOOSE (IEC 61850 GOOSE) messaging protocol on commercial Intelligent Electronic Devices (IEDs) and the open source libiec61850 library—also used in commercial devices—which showed different behaviors in identical situations. Based on the test results and analysis of some features of the IEC 61850 GOOSE protocol itself, this paper proposes guidelines and recommendations for proper implementation of the standard functionalities. Full article
Figures