Open AccessArticle
RFID Reader Anticollision Protocols for Dense and Mobile Deployments
Electronics 2016, 5(4), 84; doi:10.3390/electronics5040084 (registering DOI) -
Abstract
The rapid development of RFID (Radio Frequency IDentification) technology has allowed its large adoption and led to increasing deployments of RFID solutions in diverse environments under varying scenarios and constraints. The nature of these constraints ranges from the amount to the mobility of
[...] Read more.
The rapid development of RFID (Radio Frequency IDentification) technology has allowed its large adoption and led to increasing deployments of RFID solutions in diverse environments under varying scenarios and constraints. The nature of these constraints ranges from the amount to the mobility of the readers deployed, which in turn highly affects the quality of the RFID system, causing reading collisions. Although several solutions were proposed to engage the issue of reading collision, few were ever concerned with the densification and/or mobility of readers. This paper proposes two distributed TDMA (Time Division Multiple Access) approaches designed to reduce these collisions through local coordination between neighboring devices for different scenarios tested here. The first proposal is based on a reservation phase organized between readers with different priority levels given to readers depending on their previous success. The second one takes advantage of the particular case of RFID collisions, allowing a local and mutual decision of each reader to access or not tags in their vicinity. Simulations were run over different stressful environments in terms of tag/reader density and mobility, proving that our proposals achieved the best performance in terms of throughput, collision avoidance and coverage delay when compared to other collision reducing schemes. Full article
Figures

Open AccessArticle
Modelling and Daisy Chaining Control Allocation of a Multirotor Helicopter with a Single Tilting Rotor
Electronics 2016, 5(4), 81; doi:10.3390/electronics5040081 -
Abstract
This paper presents the development and implementation of a single tilting rotor multirotor helicopter. A single tilting rotor multirotor helicopter is proposed that allows for decoupled lateral acceleration and attitude states. A dynamics model of the proposed multirotor helicopter is established to enable
[...] Read more.
This paper presents the development and implementation of a single tilting rotor multirotor helicopter. A single tilting rotor multirotor helicopter is proposed that allows for decoupled lateral acceleration and attitude states. A dynamics model of the proposed multirotor helicopter is established to enable control system development. A control system architecture and daisy chaining-based control allocation scheme is developed and implemented. The control architecture facilitates the control of decoupled lateral accelerations and attitudes. Further, a computational and experimental analysis is undertaken and offers evidence that the proposed multirotor helicopter and control system architecture enables the multirotor helicopter to achieve lateral accelerations without requiring attitude actuation. Full article
Figures

Open AccessArticle
Gaussian Mixture Modeling for Detecting Integrity Attacks in Smart Grids
Electronics 2016, 5(4), 82; doi:10.3390/electronics5040082 -
Abstract
The thematics focusing on inserting intelligence in cyber-physical critical infrastructures (CI) have been receiving a lot of attention in the recent years. This paper presents a methodology able to differentiate between the normal state of a system composed of interdependent infrastructures and states
[...] Read more.
The thematics focusing on inserting intelligence in cyber-physical critical infrastructures (CI) have been receiving a lot of attention in the recent years. This paper presents a methodology able to differentiate between the normal state of a system composed of interdependent infrastructures and states that appear to be normal but the system (or parts of it) has been compromised. The system under attack seems to operate properly since the associated measurements are simply a variation of the normal ones created by the attacker, and intended to mislead the operator while the consequences may be of catastrophic nature. Here, we propose a holistic modeling scheme based on Gaussian mixture models estimating the probability density function of the parameters coming from linear time invariant (LTI) models. LTI models are approximating the relationships between the datastreams coming from the CI. The experimental platform includes a power grid simulator of the IEEE 30 bus model controlled by a cyber network platform. Subsequently, we implemented a wide range of integrity attacks (replay, ramp, pulse, scaling, and random) with different intensity levels. An extensive experimental campaign was designed and we report satisfying detection results. Full article
Figures

Figure 1

Open AccessArticle
Stability Analysis of Quantum-Dot Spin-VCSELs
Electronics 2016, 5(4), 83; doi:10.3390/electronics5040083 -
Abstract
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) and vertical external-cavity surface-emitting lasers (spin-VECSELs) are of interest since their output polarization can be manipulated by spin-selective pumping, either optical or electrical. These devices, using quantum dot (QD) material for the active region, have shown instability (periodic
[...] Read more.
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) and vertical external-cavity surface-emitting lasers (spin-VECSELs) are of interest since their output polarization can be manipulated by spin-selective pumping, either optical or electrical. These devices, using quantum dot (QD) material for the active region, have shown instability (periodic oscillations) and polarization switching in previous theoretical simulations based on a rate equation model. It has been recognized that the polarization switching occurs between two possible sets of solutions, termed here in-phase and out-of-phase. The present contribution seeks to give enhanced understanding of these behaviors by applying a stability analysis to the system of equations used for such simulations. The results indicate that the choice of in-phase and out-of-phase solutions that appear in a time-dependent simulation is determined by the condition that the corresponding steady-state solutions are stable against small perturbations. The stability analysis is shown to be a valuable theoretical tool for future study of spin-V(E)SELs in the context of understanding and guiding future experimental research. Full article
Figures

Open AccessArticle
Enhancing the Performance of the Data Embedment Process through Encoding Errors
Electronics 2016, 5(4), 79; doi:10.3390/electronics5040079 -
Abstract
Image steganography is a multipurpose-serving key emerging technology that is used for covertly transferring, storing, and governing various digital data, including intellectual properties and copyrights, social media data, multimedia data, and secrets of law-enforcing agencies. During the management in the stated information, nowadays,
[...] Read more.
Image steganography is a multipurpose-serving key emerging technology that is used for covertly transferring, storing, and governing various digital data, including intellectual properties and copyrights, social media data, multimedia data, and secrets of law-enforcing agencies. During the management in the stated information, nowadays, massive amounts of data are handled that require greater security. For that purpose, data are embedded into a cover image to hide them from any intruders. Nevertheless, the requirements of a larger embedding capacity, improved stego-image quality, and reduced time complexity is increasing. In this paper, the authors have presented a novel data-embedding scheme where the prediction error-based data-hiding scheme is modified in an intricate way so that all the image pixels can accept secret bits. A distance matrix between the pixel values of each image block and a reference value are measured first. Thereafter, the distances are encoded into two states: 1 and −1. That encoding process enables the scheme to implant one bit in every pixel of the cover image. During the bit implantation, the errors 1 and −1 are modified by shifting them to the right and left directions, respectively. This strategy enhances the embedding capacity by a factor of more than 2. The use of reference values reduces the computational complexity notably, and in the meanwhile increases the security and robustness of the scheme because the reference values are not open to any third party. The scheme also reduces the time complexity by 2–16 times with compared to its competing schemes. Experimental results prove the superiority of the proposed algorithm on embedding capacity, visual quality, and time complexity compared to the current well-accepted existing schemes. Full article
Figures

Figure 1

Open AccessArticle
Optical Orientation and Inverse Spin Hall Effect as Effective Tools to Investigate Spin-Dependent Diffusion
Electronics 2016, 5(4), 80; doi:10.3390/electronics5040080 -
Abstract
In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the
[...] Read more.
In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions. Full article
Figures

Figure 1

Open AccessArticle
Assessment of a Smart Sensing Shoe for Gait Phase Detection in Level Walking
Electronics 2016, 5(4), 78; doi:10.3390/electronics5040078 -
Abstract
Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption
[...] Read more.
Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption of monitoring systems to a wide set of healthy users or patients. In this context, we assessed a recently developed commercial smart shoe—the FootMoov—for automatic gait phase detection in level walking. FootMoov has built-in force sensors and a triaxial accelerometer and is able to transmit the sensor data to the smartphone through a wireless connection. We developed a dedicated gait phase detection algorithm relying both on force and inertial information. We tested the smart shoe on ten healthy subjects in free level walking conditions and in a laboratory setting in comparison with an optical motion capture system. Results confirmed a reliable detection of the gait phases. The maximum error committed, on the order of 44.7 ms, is comparable with previous studies. Our results confirmed the possibility to exploit consumer wearable devices to extract relevant parameters to improve the subject health or to better manage his/her progressions. Full article
Figures

Figure 1

Open AccessArticle
Component-Based Cartoon Face Generation
Electronics 2016, 5(4), 76; doi:10.3390/electronics5040076 -
Abstract
In this paper, we present a cartoon face generation method that stands on a component-based facial feature extraction approach. Given a frontal face image as an input, our proposed system has the following stages. First, face features are extracted using an extended Active
[...] Read more.
In this paper, we present a cartoon face generation method that stands on a component-based facial feature extraction approach. Given a frontal face image as an input, our proposed system has the following stages. First, face features are extracted using an extended Active Shape Model. Outlines of the components are locally modified using edge detection, template matching and Hermit interpolation. This modification enhances the diversity of output and accuracy of the component matching required for cartoon generation. Second, to bring cartoon-specific features such as shadows, highlights and, especially, stylish drawing, an array of various face photographs and corresponding hand-drawn cartoon faces are collected. These cartoon templates are automatically decomposed into cartoon components using our proposed method for parameterizing cartoon samples, which is fast and simple. Then, using shape matching methods, the appropriate cartoon component is selected and deformed to fit the input face. Finally, a cartoon face is rendered in a vector format using the rendering rules of the selected template. Experimental results demonstrate effectiveness of our approach in generating life-like cartoon faces. Full article
Figures

Figure 1

Open AccessArticle
A Novel 12-Lead ECG T-Shirt with Active Electrodes
Electronics 2016, 5(4), 75; doi:10.3390/electronics5040075 -
Abstract
We developed an ECG T-shirt with a portable recorder for unobtrusive and long-term multichannel ECG monitoring with active electrodes. A major drawback of conventional 12-lead ECGs is the use of adhesive gel electrodes, which are uncomfortable during long-term application and may even cause
[...] Read more.
We developed an ECG T-shirt with a portable recorder for unobtrusive and long-term multichannel ECG monitoring with active electrodes. A major drawback of conventional 12-lead ECGs is the use of adhesive gel electrodes, which are uncomfortable during long-term application and may even cause skin irritations and allergic reactions. Therefore, we integrated comfortable patches of conductive textile into the ECG T-shirt in order to replace the adhesive gel electrodes. In order to prevent signal deterioration, as reported for other textile ECG systems, we attached active circuits on the outside of the T-shirt to further improve the signal quality of the dry electrodes. Finally, we validated the ECG T-shirt against a commercial Holter ECG with healthy volunteers during phases of lying down, sitting, and walking. The 12-lead ECG was successfully recorded with a resulting mean relative error of the RR intervals of 0.96% and mean coverage of 96.6%. Furthermore, the ECG waves of the 12 leads were analyzed separately and showed high accordance. The P-wave had a correlation of 0.703 for walking subjects, while the T-wave demonstrated lower correlations for all three scenarios (lying: 0.817, sitting: 0.710, walking: 0.403). The other correlations for the P, Q, R, and S-waves were all higher than 0.9. This work demonstrates that our ECG T-shirt is suitable for 12-lead ECG recordings while providing a higher level of comfort compared with a commercial Holter ECG. Full article
Figures

Figure 1

Open AccessArticle
A Numerical Estimation of a RFID Reader Field and SAR inside a Blood Bag at UHF
Electronics 2016, 5(4), 77; doi:10.3390/electronics5040077 -
Abstract
In this paper, the effects of UHF electromagnetic fields produced by a RFID reader on a blood bag are evaluated numerically in several configurations. The results of the simulation, field level and distribution, specific absorption rate (SAR), and heating time show that an
[...] Read more.
In this paper, the effects of UHF electromagnetic fields produced by a RFID reader on a blood bag are evaluated numerically in several configurations. The results of the simulation, field level and distribution, specific absorption rate (SAR), and heating time show that an exposure to a typical reader field leads to a temperature increase smaller than 0.1 C and to a SAR smaller than 1 W/kg. As a consequence, no adverse biological effects occur during a typical UHF RFID reading cycle on a blood bag. Therefore, the blood contained in a bag traced using UHF-RFID is as safe as those traced using barcodes. The proposed analysis supports the use of UHF RFID in the blood transfusion supply chain. Full article
Figures

Figure 1

Open AccessArticle
On the Application of the Raspberry Pi as an Advanced Acoustic Sensor Network for Noise Monitoring
Electronics 2016, 5(4), 74; doi:10.3390/electronics5040074 -
Abstract
The concept of Smart Cities and the monitoring of environmental parameters is an area of research that has attracted scientific attention during the last decade. These environmental parameters are well-known as important factors in their affection towards people. Massive monitoring of this kind
[...] Read more.
The concept of Smart Cities and the monitoring of environmental parameters is an area of research that has attracted scientific attention during the last decade. These environmental parameters are well-known as important factors in their affection towards people. Massive monitoring of this kind of parameters in cities is an expensive and complex task. Recent technologies of low-cost computing and low-power devices have opened researchers to a wide and more accessible research field, developing monitoring devices for deploying Wireless Sensor Networks. Gathering information from them, improved urban plans could be carried out and the information could help citizens. In this work, the prototyping of a low-cost acoustic sensor based on the Raspberry Pi platform for its use in the analysis of the sound field is described. The device is also connected to the cloud to share results in real time. The computation resources of the Raspberry Pi allow treating high quality audio for calculating acoustic parameters. A pilot test was carried out with the installation of two acoustic devices in the refurbishment works of a neighbourhood. In this deployment, the evaluation of these devices through long-term measurements was carried out, obtaining several acoustic parameters in real time for its broadcasting and study. This test has shown the Raspberry Pi as a powerful and affordable computing core of a low-cost device, but also the pilot test has served as a query tool for the inhabitants of the neighbourhood to be more aware about the noise in their own place of residence. Full article
Figures

Open AccessArticle
Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell
Electronics 2016, 5(4), 73; doi:10.3390/electronics5040073 -
Abstract
A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The
[...] Read more.
A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and to act as anti-reflection coating. A silicon dioxide ultrathin layer interposed between the n-Si and the graphene increases the open-circuit voltage of the cell. The solar cell optimization has been achieved through a mathematical model, which has been validated by using experimental data reported in literature. The new flexible photovoltaic device can be integrated in a wide range of microsystems powered by solar energy. Full article
Figures

Figure 1

Open AccessArticle
Scheduling Energy Efficient Data Centers Using Renewable Energy
Electronics 2016, 5(4), 71; doi:10.3390/electronics5040071 -
Abstract
This work presents a multi-objective approach for scheduling energy consumption in data centers considering traditional and green energy data sources. This problem is addressed as a whole by simultaneously scheduling the state of the servers and the cooling devices, and by scheduling the
[...] Read more.
This work presents a multi-objective approach for scheduling energy consumption in data centers considering traditional and green energy data sources. This problem is addressed as a whole by simultaneously scheduling the state of the servers and the cooling devices, and by scheduling the workload of the data center, which is comprised of a set of independent tasks with due dates. Its goal is to simultaneously minimize the energy consumption budget of the data center, the energy consumption deviation from a reference profile, and the amount of tasks whose due dates are violated. Two multi-objective evolutionary algorithms hybridized with a greedy heuristic are proposed and are enhanced by applying simulated annealing for post hoc optimization. Experimental results show that these methods are able to reduce energy consumption budget by about 60% while adequately following a power consumption profile and providing a high quality of service. These results confirm the effectiveness of the proposed algorithmic approach and the usefulness of green energy sources for data center infrastructures. Full article
Figures

Open AccessArticle
AgPi: Agents on Raspberry Pi
Electronics 2016, 5(4), 72; doi:10.3390/electronics5040072 -
Abstract
The Raspberry Pi and its variants have brought with them an aura of change in the world of embedded systems. With their impressive computation and communication capabilities and low footprint, these devices have thrown open the possibility of realizing a network of things
[...] Read more.
The Raspberry Pi and its variants have brought with them an aura of change in the world of embedded systems. With their impressive computation and communication capabilities and low footprint, these devices have thrown open the possibility of realizing a network of things in a very cost-effective manner. While such networks offer good solutions to prominent issues, they are indeed a long way from being smart or intelligent. Most of the currently available implementations of such a network of devices involve a centralized cloud-based server that contributes to making the necessary intelligent decisions, leaving these devices fairly underutilized. Though this paradigm provides for an easy and rapid solution, they have limited scalability, are less robust and at times prove to be expensive. In this paper, we introduce the concept of Agents on Raspberry Pi (AgPi) as a cyber solution to enhance the smartness and flexibility of such embedded networks of physical devices in a decentralized manner. The use of a Multi-Agent System (MAS) running on Raspberry Pis aids agents, both static and mobile, to govern the various activities within the network. Agents can act autonomously or on behalf of a human user and can collaborate, learn, adapt and act, thus contributing to embedded intelligence. This paper describes how Tartarus, a multi-agent platform, embedded on Raspberry Pis that constitute a network, can bring the best out of the system. To reveal the versatility of the concept of AgPi, an application for a Location-Aware and Tracking Service (LATS) is presented. The results obtained from a comparison of data transfer cost between the conventional cloud-based approach with AgPi have also been included. Full article
Figures

Figure 1

Open AccessArticle
3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms
Electronics 2016, 5(4), 70; doi:10.3390/electronics5040070 -
Abstract
This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the
[...] Read more.
This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented. Full article
Figures

Figure 1

Open AccessArticle
A Pulsed Coding Technique Based on Optical UWB Modulation for High Data Rate Low Power Wireless Implantable Biotelemetry
Electronics 2016, 5(4), 69; doi:10.3390/electronics5040069 -
Abstract
This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB) modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging
[...] Read more.
This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB) modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging biomedical applications like transcutaneous neural wireless communication systems. The overall architecture implementing this optical modulation technique employs sub-nanosecond pulsed laser as the data transmitter and small sensitive area photodiode as the data receiver. Moreover, it includes coding and decoding digital systems, biasing and driving analogue circuits for laser pulse generation and photodiode signal conditioning. The complete system has been implemented on Field-Programmable Gate Array (FPGA) and prototype Printed Circuit Board (PCB) with discrete off-the-shelf components. By inserting a diffuser between the transmitter and the receiver to emulate skin/tissue, the system is capable to achieve a 128 Mbps data rate with a bit error rate less than 10−9 and an estimated total power consumption of about 5 mW corresponding to a power efficiency of 35.9 pJ/bit. These results could allow, for example, the transmission of an 800-channel neural recording interface sampled at 16 kHz with 10-bit resolution. Full article
Figures

Open AccessArticle
A Multi-Slope Sliding-Mode Control Approach for Single-Phase Inverters under Different Loads
Electronics 2016, 5(4), 68; doi:10.3390/electronics5040068 -
Abstract
In this paper, a new approach to the sliding-mode control of single-phase inverters under linear and non-linear loads is introduced. The main idea behind this approach is to utilize a non-linear, flexible and multi-slope function in controller structure. This non-linear function makes the
[...] Read more.
In this paper, a new approach to the sliding-mode control of single-phase inverters under linear and non-linear loads is introduced. The main idea behind this approach is to utilize a non-linear, flexible and multi-slope function in controller structure. This non-linear function makes the controller possible to control the inverter by a non-linear multi-slope sliding surface. In general, this sliding surface has two parts with different slopes in each part and the flexibility of the sliding surface makes the multi-slope sliding-mode controller (MSSMC) possible to reduce the total harmonic distortion, to improve the tracking accuracy, and to prevent overshoots leading to undesirable transient-states in output voltage that occur when the load current sharply rises. In order to improve the tracking accuracy and to reduce the steady-state error, an integral term of the multi-slope function is also added to the sliding surface. The improved performance of the proposed controller is confirmed by simulations and finally, the results of the proposed approach are compared with a conventional sliding-mode controller (SMC) and a synchronous reference frame PI (SRFPI) controller. Full article
Figures

Figure 1

Open AccessArticle
Easy as Pi: A Network Coding Raspberry Pi Testbed
Electronics 2016, 5(4), 67; doi:10.3390/electronics5040067 -
Abstract
In the near future, upcoming communications and storage networks are expected to tolerate major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT). For these types of networks, strategies and mechanisms based on network coding have appeared
[...] Read more.
In the near future, upcoming communications and storage networks are expected to tolerate major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT). For these types of networks, strategies and mechanisms based on network coding have appeared as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing the benefit of a given network metric when improving another. There has been recurrent issues on: (i) making large-scale deployments akin to the Internet of Things; (ii) assessing and (iii) replicating the obtained results in preliminary studies. Therefore, finding testbeds that can deal with large-scale deployments and not lose historic data in order to evaluate these mechanisms are greatly needed and desirable from a research perspective. However, this can be hard to manage, not only due to the inherent costs of the hardware, but also due to maintenance challenges. In this paper, we present the required key steps to design, setup and maintain an inexpensive testbed using Raspberry Pi devices for communications and storage networks with network coding capabilities. This testbed can be utilized for any applications requiring results replicability. Full article
Figures

Figure 1

Open AccessArticle
On Goodput and Energy Measurements of Network Coding Schemes in the Raspberry Pi
Electronics 2016, 5(4), 66; doi:10.3390/electronics5040066 -
Abstract
Given that next generation networks are expected to be populated by a large number of devices, there is a need for quick deployment and evaluation of alternative mechanisms to cope with the possible generated traffic in large-scale distributed data networks. In this sense,
[...] Read more.
Given that next generation networks are expected to be populated by a large number of devices, there is a need for quick deployment and evaluation of alternative mechanisms to cope with the possible generated traffic in large-scale distributed data networks. In this sense, the Raspberry Pi has been a popular network node choice due to its reduced size, processing capabilities, low cost and its support by widely-used operating systems. For information transport, network coding is a new paradigm for fast and reliable data processing in networking and storage systems, which overcomes various limitations of state-of-the-art routing techniques. Therefore, in this work, we provide an in-depth performance evaluation of Random Linear Network Coding (RLNC)-based schemes for the Raspberry Pi Models 1 and 2, by showing the processing speed of the encoding and decoding operations and the corresponding energy consumption. Our results show that, in several scenarios, processing speeds of more than 80 Mbps in the Raspberry Pi Model 1 and 800 Mbps in the Raspberry Pi Model 2 are attainable. Moreover, we show that the processing energy per bit for network coding is below 1 nJ or even an order of magnitude less in these scenarios. Full article
Figures

Figure 1

Open AccessArticle
Energy Aware Pricing in a Three-Tiered Cloud Service Market
Electronics 2016, 5(4), 65; doi:10.3390/electronics5040065 -
Abstract
We consider a three-tiered cloud service market and propose an energy efficient pricing strategy in this market. Here, the end customers are served by the Software-as-a-Service (SaaS) providers, who implement customized services for their customers. To host these services, these SaaS providers, in
[...] Read more.
We consider a three-tiered cloud service market and propose an energy efficient pricing strategy in this market. Here, the end customers are served by the Software-as-a-Service (SaaS) providers, who implement customized services for their customers. To host these services, these SaaS providers, in turn, lease the infrastructure related resources from the Infrastructure-as-a-Service (IaaS) or Platform-as-a-Service (PaaS) providers. In this paper, we propose and evaluate a mechanism for pricing between SaaS providers and Iaas/PaaS providers and between SaaS providers and the end customers. The pricing scheme is designed in a way such that the integration of renewable energy is promoted, which is a very crucial aspect of energy efficiency. Thereafter, we propose a technique to strategically provide an improved Quality of Service (QoS) by deploying more resources than what is computed by the optimization procedure. This technique is based on the square root staffing law in queueing theory. We carry out numerical evaluations with real data traces on electricity price, renewable energy generation, workload, etc., in order to emulate the real dynamics of the cloud service market. We demonstrate that, under practical assumptions, the proposed technique can generate more profit for the service providers operating in the cloud service market. Full article
Figures

Figure 1