Open AccessTechnical Note
Determination of Concentration of the Aqueous Lithium–Bromide Solution in a Vapour Absorption Refrigeration System by Measurement of Electrical Conductivity and Temperature
Data 2017, 2(1), 6; doi:10.3390/data2010006 -
Abstract
Lithium–bromide/water (LiBr/water) pairs are widely used as working medium in vapour absorption refrigeration systems where the maximum expected temperature and LiBr mass concentration in solution are usually 95 ℃ and 65%, respectively. Unfortunately, published data on the electrical conductivity of aqueous lithium–bromide solution
[...] Read more.
Lithium–bromide/water (LiBr/water) pairs are widely used as working medium in vapour absorption refrigeration systems where the maximum expected temperature and LiBr mass concentration in solution are usually 95 ℃ and 65%, respectively. Unfortunately, published data on the electrical conductivity of aqueous lithium–bromide solution are few and contradictory. The objective of this paper is to develop an empirical equation for the determination of the concentration of the aqueous lithium–bromide solution during the operation of the vapour absorption refrigeration system when the electrical conductivity and temperature of solution are known. The present study experimentally investigated the electrical conductivity of aqueous lithium–bromide solution at temperatures in the range from 25 ℃ to 95 ℃ and concentrations in the range from 45% to 65% by mass using a submersion toroidal conductivity sensor connected to a conductivity meter. The results of the tests have shown this method to be an accurate and efficient way to determine the concentration of aqueous lithium–bromide solution in the vapour absorption refrigeration system. Full article
Figures

Figure 1

Open AccessArticle
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
Data 2017, 2(1), 5; doi:10.3390/data2010005 -
Abstract
The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Bayesian Rule
[...] Read more.
The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly better predictor than other classical approaches in this domain. It searches a space of Bayesian networks using a decision tree representation of its parameters with global constraints, and infers a set of IF-THEN rules. The number of parameters and therefore the number of rules are combinatorial in the number of predictor variables in the model. We relax these global constraints to learn a more expressive local structure with BRL-LSS. BRL-LSS entails a more parsimonious set of rules because it does not have to generate all combinatorial rules. The search space of local structures is much richer than the space of global structures. We design the BRL-LSS with the same worst-case time-complexity as BRL-GSS while exploring a richer and more complex model space. We measure predictive performance using Area Under the ROC curve (AUC) and Accuracy. We measure model parsimony performance by noting the average number of rules and variables needed to describe the observed data. We evaluate the predictive and parsimony performance of BRL-GSS, BRL-LSS and the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-validation using ten microarray gene-expression diagnostic datasets. In these experiments, we observe that BRL-LSS is similar to BRL-GSS in terms of predictive performance, while generating a much more parsimonious set of rules to explain the same observed data. BRL-LSS also needs fewer variables than C4.5 to explain the data with similar predictive performance. We also conduct a feasibility study to demonstrate the general applicability of our BRL methods on the newer RNA sequencing gene-expression data. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Data in 2016
Data 2017, 2(1), 4; doi:10.3390/data2010004 -
Abstract The editors of Data would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessData Descriptor
Scanned Image Data from 3D-Printed Specimens Using Fused Deposition Modeling
Data 2017, 2(1), 3; doi:10.3390/data2010003 -
Abstract
This dataset provides high-resolution 2D scans of 3D printed test objects (dog-bone), derived from EN ISO 527-2:2012. The specimens are scanned in resolutions from 600 dpi to 4800 dpi utilising a Konica-Minolta bizHub 42 and Canon LiDE 210 scanner. The specimens are created
[...] Read more.
This dataset provides high-resolution 2D scans of 3D printed test objects (dog-bone), derived from EN ISO 527-2:2012. The specimens are scanned in resolutions from 600 dpi to 4800 dpi utilising a Konica-Minolta bizHub 42 and Canon LiDE 210 scanner. The specimens are created to research the influence of the infill-pattern orientation; The print orientation on the geometrical fidelity and the structural strength. The specimens are printed on a MakerBot Replicator 2X 3D-printer using yellow (ABS 1.75 mm Yellow, REC, Moscow, Russia) and purple ABS plastic (ABS 1.75 mm Pink Lion&Fox, Hamburg, Germany). The dataset consists of at least one scan per specimen with the measured dimensional characteristics. For this, software is created and described within this work. Specimens from this dataset are either scanned on blank white paper or on white paper with blue millimetre marking. The printing experiment contains a number of failed prints. Specimens that did not fulfil the expected geometry are scanned separately and are of lower quality due to the inability to scan objects with a non-flat surface. For a number of specimens printed sensor data is acquired during the printing process. This dataset consists of 193 specimen scans in PNG format of 127 objects with unadjusted raw graphical data and a corresponding, annotated post-processed image. Annotated data includes the detected object, its geometrical characteristics and file information. Computer extracted geometrical information is supplied for the images where automated geometrical feature extraction is possible. Full article
Figures

Figure 1

Open AccessArticle
How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects
Data 2017, 2(1), 2; doi:10.3390/data2010002 -
Abstract
Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially
[...] Read more.
Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially high commercial and research interest. The analysis of team ball games can serve many goals, e.g., in coaching to understand effects of strategies and tactics, or to derive insights improving performance. Also, it is often decisive to trainers and analysts to understand why a certain movement of a player or groups of players happened, and what the respective influencing factors are. We consider team sport as group movement including collaboration and competition of individuals following specific rule sets. Analyzing team sports is a challenging problem as it involves joint understanding of heterogeneous data perspectives, including high-dimensional, video, and movement data, as well as considering team behavior and rules (constraints) given in the particular team sport. We identify important components of team sport data, exemplified by the soccer case, and explain how to analyze team sport data in general. We identify challenges arising when facing these data sets and we propose a multi-facet view and analysis including pattern detection, context-aware analysis, and visual explanation. We also present applicable methods and technologies covering the heterogeneous aspects in team sport data. Full article
Figures

Figure 1

Open AccessData Descriptor
Description of a Database Containing Wrist PPG Signals Recorded during Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion
Data 2017, 2(1), 1; doi:10.3390/data2010001 -
Abstract
Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG
[...] Read more.
Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the creation of signal processing algorithms for removing the motion interference and allowing the true heart related information to be extracted from the PPG trace during exercise. Here, we describe a new publicly available database of PPG signals collected during exercise for the creation and validation of signal processing algorithms extracting heart rate and heart rate variability from PPG signals. PPG signals from the wrist are recorded together with chest electrocardiography (ECG) to allow a reference/comparison heart rate to be found, and the temporal alignment between the two signal sets is estimated from the signal timestamps. The new database differs from previously available public databases because it includes wrist PPG recorded during walking, running, easy bike riding and hard bike riding. It also provides estimates of the wrist movement recorded using a 3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis gyroscope. The inclusion of gyroscopic information allows, for the first time, separation of acceleration due to gravity and acceleration due to true motion of the sensor. The hypothesis is that the improved motion information provided could assist in the development of algorithms with better PPG motion artifact removal performance. Full article
Figures

Figure 1

Open AccessReview
Standardization and Quality Control in Data Collection and Assessment of Threatened Plant Species
Data 2016, 1(3), 20; doi:10.3390/data1030020 -
Abstract
Informative data collection is important in the identification and conservation of rare plant species. Data sets generated by many small-scale studies may be integrated into large, distributed databases, and statistical tools are being developed to extract meaningful information from such databases. A diversity
[...] Read more.
Informative data collection is important in the identification and conservation of rare plant species. Data sets generated by many small-scale studies may be integrated into large, distributed databases, and statistical tools are being developed to extract meaningful information from such databases. A diversity of field methodologies may be employed across smaller studies, however, resulting in a lack of standardization and quality control, which makes integration more difficult. Here, we present a case study of the population-level monitoring of two threatened plant species with contrasting life history traits that require different field sampling methodologies: the limestone glade bladderpod, Physaria filiformis, and the western prairie fringed orchid, Plantanthera praeclara. Although different data collection methodologies are necessary for these species based on population sizes and plant morphology, the resulting data allow for similar inferences. Different sample designs may frequently be necessary for rare plant sampling, yet still provide comparable data. Various sources of uncertainty may be associated with data collection (e.g., random sampling error, methodological imprecision, observer error), and should always be quantified if possible and included in data sets, and described in metadata. Ancillary data (e.g., abundance of other plants, physical environment, weather/climate) may be valuable and the most relevant variables may be determined by natural history or empirical studies. Once data are collected, standard operating procedures should be established to prevent errors in data entry. Best practices for data archiving should be followed, and data should be made available for other scientists to use. Efforts to standardize data collection and control data quality, particularly in small-scale field studies, are imperative to future cross-study comparisons, meta-analyses, and systematic reviews. Full article
Figures

Figure 1

Open AccessArticle
Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations
Data 2016, 1(3), 19; doi:10.3390/data1030019 -
Abstract
Human microbiome data from genomic sequencing technologies is fast accumulating, giving us insights into bacterial taxa that contribute to health and disease. The predictive modeling of such microbiota count data for the classification of human infection from parasitic worms, such as helminths, can
[...] Read more.
Human microbiome data from genomic sequencing technologies is fast accumulating, giving us insights into bacterial taxa that contribute to health and disease. The predictive modeling of such microbiota count data for the classification of human infection from parasitic worms, such as helminths, can help in the detection and management across global populations. Real-world datasets of microbiome experiments are typically sparse, containing hundreds of measurements for bacterial species, of which only a few are detected in the bio-specimens that are analyzed. This feature of microbiome data produces the challenge of needing more observations for accurate predictive modeling and has been dealt with previously, using different methods of feature reduction. To our knowledge, integrative methods, such as transfer learning, have not yet been explored in the microbiome domain as a way to deal with data sparsity by incorporating knowledge of different but related datasets. One way of incorporating this knowledge is by using a meaningful mapping among features of these datasets. In this paper, we claim that this mapping would exist among members of each individual cluster, grouped based on phylogenetic dependency among taxa and their association to the phenotype. We validate our claim by showing that models incorporating associations in such a grouped feature space result in no performance deterioration for the given classification task. In this paper, we test our hypothesis by using classification models that detect helminth infection in microbiota of human fecal samples obtained from Indonesia and Liberia countries. In our experiments, we first learn binary classifiers for helminth infection detection by using Naive Bayes, Support Vector Machines, Multilayer Perceptrons, and Random Forest methods. In the next step, we add taxonomic modeling by using the SMART-scan module to group the data, and learn classifiers using the same four methods, to test the validity of the achieved groupings. We observed a 6% to 23% and 7% to 26% performance improvement based on the Area Under the receiver operating characteristic (ROC) Curve (AUC) and Balanced Accuracy (Bacc) measures, respectively, over 10 runs of 10-fold cross-validation. These results show that using phylogenetic dependency for grouping our microbiota data actually results in a noticeable improvement in classification performance for helminth infection detection. These promising results from this feasibility study demonstrate that methods such as SMART-scan can be utilized in the future for knowledge transfer from different but related microbiome datasets by phylogenetically-related functional mapping, to enable novel integrative biomarker discovery. Full article
Figures

Figure 1

Open AccessArticle
The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3
Data 2016, 1(3), 18; doi:10.3390/data1030018 -
Abstract
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European
[...] Read more.
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European Space Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). In this paper we explain the implementation in the Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM) and the use of one LST algorithm developed in the framework of the Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project. The LST algorithm is based on the split-window technique with an explicit dependence on the surface emissivity. Performance of the methodology is assessed by using MEdium Resolution Imaging Spectrometer/Advanced Along-Track Scanning Radiometer (MERIS/AATSR) pairs, instruments with similar characteristics than OLCI/ SLSTR, respectively. The LST retrievals were properly validated against in situ data measured along one year (2011) in three test sites, and inter-compared to the standard AATSR level-2 product with satisfactory results. The algorithm is implemented in BEAM using as a basis the MERIS/AATSR Synergy Toolbox. Specific details about the processor validation can be found in the validation report of the SEN4LST project. Full article
Figures

Figure 1

Open AccessData Descriptor
Land Cover Data for the Mississippi–Alabama Barrier Islands, 2010–2011
Data 2016, 1(3), 16; doi:10.3390/data1030016 -
Abstract
Land cover on the Mississippi–Alabama barrier islands was surveyed in 2010–2011 as part of continuing research on island geomorphic and vegetation dynamics following the 2005 impact of Hurricane Katrina. Results of the survey include sub-meter GPS location, a listing of dominant vegetation species
[...] Read more.
Land cover on the Mississippi–Alabama barrier islands was surveyed in 2010–2011 as part of continuing research on island geomorphic and vegetation dynamics following the 2005 impact of Hurricane Katrina. Results of the survey include sub-meter GPS location, a listing of dominant vegetation species and field photographs recorded at 375 sampling locations distributed among Cat, West Ship, East Ship, Horn, Sand, Petit Bois and Dauphin Islands. The survey was conducted in a period of intensive remote sensing data acquisition over the northern Gulf of Mexico by federal, state and commercial organizations in response to the 2010 Macondo Well (Deepwater Horizon) oil spill. The data are useful in providing ground reference information for thematic classification of remotely-sensed imagery, and a record of land cover which may be used in future research. Full article
Figures

Open AccessData Descriptor
SNiPhunter: A SNP-Based Search Engine
Data 2016, 1(3), 17; doi:10.3390/data1030017 -
Abstract
Procuring biomedical literature is a time-consuming process. The genomic sciences software solution described here indexes literature from Pubmed Central’s open access initiative, and makes it available as a web application and through an application programming interface (API). The purpose of this tertiary data
[...] Read more.
Procuring biomedical literature is a time-consuming process. The genomic sciences software solution described here indexes literature from Pubmed Central’s open access initiative, and makes it available as a web application and through an application programming interface (API). The purpose of this tertiary data artifact—called SNiPhunter—is to assist researchers in finding articles relevant to a reference single nucleotide polymorphism (SNP) identifier of interest. A novel feature of this NoSQL (not only structured query language) database search engine is that it returns results to the user ordered according to the amount of times a refSNP has appeared in an article, thereby allowing the user to make a quantitative estimate as to the relevance of an article. Queries can also be launched using author-defined keywords. Additional features include a variant call format (VCF) file parser and a multiple query file upload service. Software implementation in this project relied on Python and the NodeJS interpreter, as well as third party libraries retrieved from Github. Full article
Figures

Open AccessData Descriptor
Technical Guidelines to Extract and Analyze VGI from Different Platforms
Data 2016, 1(3), 15; doi:10.3390/data1030015 -
Abstract
An increasing number of Volunteered Geographic Information (VGI) and social media platforms have been continuously growing in size, which have provided massive georeferenced data in many forms including textual information, photographs, and geoinformation. These georeferenced data have either been actively contributed (e.g., adding
[...] Read more.
An increasing number of Volunteered Geographic Information (VGI) and social media platforms have been continuously growing in size, which have provided massive georeferenced data in many forms including textual information, photographs, and geoinformation. These georeferenced data have either been actively contributed (e.g., adding data to OpenStreetMap (OSM) or Mapillary) or collected in a more passive fashion by enabling geolocation whilst using an online platform (e.g., Twitter, Instagram, or Flickr). The benefit of scraping and streaming these data in stand-alone applications is evident, however, it is difficult for many users to script and scrape the diverse types of these data. On 14 June 2016, a pre-conference workshop at the AGILE 2016 conference in Helsinki, Finland was held. The workshop was called “LINK-VGI: LINKing and analyzing VGI across different platforms”. The workshop provided an opportunity for interested researchers to share ideas and findings on cross-platform data contributions. One portion of the workshop was dedicated to a hands-on session. In this session, the basics of spatial data access through selected Application Programming Interfaces (APIs) and the extraction of summary statistics of the results were illustrated. This paper presents the content of the hands-on session including the scripts and guidelines for extracting VGI data. Researchers, planners, and interested end-users can benefit from this paper for developing their own application for any region of the world. Full article
Figures

Figure 1

Open AccessData Descriptor
688,112 Statistical Results: Content Mining Psychology Articles for Statistical Test Results
Data 2016, 1(3), 14; doi:10.3390/data1030014 -
Abstract
In this data deposit, I describe a dataset that is the result of content mining 167,318 published articles for statistical test results reported according to the standards prescribed by the American Psychological Association (APA). Articles published by the APA, Springer, Sage, and Taylor
[...] Read more.
In this data deposit, I describe a dataset that is the result of content mining 167,318 published articles for statistical test results reported according to the standards prescribed by the American Psychological Association (APA). Articles published by the APA, Springer, Sage, and Taylor & Francis were included (mining from Wiley and Elsevier was actively blocked). As a result of this content mining, 688,112 results from 50,845 articles were extracted. In order to provide a comprehensive set of data, the statistical results are supplemented with metadata from the article they originate from. The dataset is provided in a comma separated file (CSV) in long-format. For each of the 688,112 results, 20 variables are included, of which seven are article metadata and 13 pertain to the individual statistical results (e.g., reported and recalculated p-value). A five-pronged approach was taken to generate the dataset: (i) collect journal lists; (ii) spider journal pages for articles; (iii) download articles; (iv) add article metadata; and (v) mine articles for statistical results. All materials, scripts, etc. are available at https://github.com/chartgerink/2016statcheck_data and preserved at http://dx.doi.org/10.5281/zenodo.59818. Full article
Figures

Figure 1

Open AccessData Descriptor
A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions
Data 2016, 1(2), 13; doi:10.3390/data1020013 -
Abstract
Alaska’s Arctic and boreal regions, largely dominated by tundra and boreal forest, are witnessing unprecedented changes in response to climate warming. However, the intensity of feedbacks between the hydrosphere and vegetation changes are not yet well quantified in Arctic regions. This lends considerable
[...] Read more.
Alaska’s Arctic and boreal regions, largely dominated by tundra and boreal forest, are witnessing unprecedented changes in response to climate warming. However, the intensity of feedbacks between the hydrosphere and vegetation changes are not yet well quantified in Arctic regions. This lends considerable uncertainty to the prediction of how much, how fast, and where Arctic and boreal hydrology and ecology will change. With a very sparse network of observations (meteorological, flux towers, etc.) in the Alaskan Arctic and boreal regions, remote sensing is the only technology capable of providing the necessary quantitative measurements of land–atmosphere exchanges of water and energy at regional scales in an economically feasible way. Over the last decades, the University of Alaska Fairbanks (UAF) has become the research hub for high-latitude research. UAF’s newly-established Hyperspectral Imaging Laboratory (HyLab) currently provides multiplatform data acquisition, processing, and analysis capabilities spanning microscale laboratory measurements to macroscale analysis of satellite imagery. The specific emphasis is on acquiring and processing satellite and airborne thermal imagery, one of the most important sources of input data in models for the derivation of surface energy fluxes. In this work, we present a synergistic modeling framework that combines multiplatform remote sensing data and calibration/validation (CAL/VAL) activities for the retrieval of land surface temperature (LST). The LST Arctic Dataset will contribute to ecological modeling efforts to help unravel seasonal and spatio-temporal variability in land surface processes and vegetation biophysical properties in Alaska’s Arctic and boreal regions. This dataset will be expanded to other Alaskan Arctic regions, and is expected to have more than 500 images spanning from 1984 to 2012. Full article
Figures

Figure 1

Open AccessData Descriptor
A Spectral Emissivity Library of Spoil Substrates
Data 2016, 1(2), 12; doi:10.3390/data1020012 -
Abstract
Post-mining sites have a significant impact on surrounding ecosystems. Afforestation can restore these ecosystems, but its success and speed depends on the properties of the excavated spoil substrates. Thermal infrared remote sensing brings advantages to the mapping and classification of spoil substrates, resulting
[...] Read more.
Post-mining sites have a significant impact on surrounding ecosystems. Afforestation can restore these ecosystems, but its success and speed depends on the properties of the excavated spoil substrates. Thermal infrared remote sensing brings advantages to the mapping and classification of spoil substrates, resulting in the determination of its properties. A library of spoil substrates containing spectral emissivity and chemical properties can facilitate remote sensing activities. This study presents spectral library of spoil substrates’ emissivities extracted from brown coal mining sites in the Czech Republic. Extracted samples were homogenized by drying and sieving. Spectral emissivity of each sample was determined by spectral smoothing algorithm applied to data measured by a Fourier transform infrared (FTIR) spectrometer. A set of chemical parameters (pH, conductivity, Na, K, Al, Fe, loss on ignition and polyphenol content) and toxicity were determined for each sample as well. The spectral library presented in this paper also offers valuable information in the form of geographical coordinates for the locations where samples were obtained. Presented data are unique in nature and can serve many remote sensing activities in longwave infrared electromagnetic spectrum. Full article
Figures

Figure 1

Open AccessArticle
Data Always Getting Bigger—A Scalable DOI Architecture for Big and Expanding Scientific Data
Data 2016, 1(2), 11; doi:10.3390/data1020011 -
Abstract
The Atmospheric Radiation Measurement (ARM) Data Archive established a data citation strategy based on Digital Object Identifiers (DOIs) for the ARM datasets in order to facilitate citing continuous and diverse ARM datasets in articles and other papers. This strategy eases the tracking of
[...] Read more.
The Atmospheric Radiation Measurement (ARM) Data Archive established a data citation strategy based on Digital Object Identifiers (DOIs) for the ARM datasets in order to facilitate citing continuous and diverse ARM datasets in articles and other papers. This strategy eases the tracking of data provided as supplements to articles and papers. Additionally, it allows future data users and the ARM Climate Research Facility to easily locate the exact data used in various articles. Traditionally, DOIs are assigned to individual digital objects (a report or a data table), but for ARM datasets, these DOIs are assigned to an ARM data product. This eliminates the need for creating DOIs for numerous components of the ARM data product, in turn making it easier for users to manage and cite the ARM data with fewer DOIs. In addition, the ARM data infrastructure team, with input from scientific users, developed a citation format and an online data citation generation tool for continuous data streams. This citation format includes DOIs along with additional details such as spatial and temporal information. Full article
Figures

Open AccessArticle
Permanent Stations for Calibration/Validation of Thermal Sensors over Spain
Data 2016, 1(2), 10; doi:10.3390/data1020010 -
Abstract
The Global Change Unit (GCU) at the University of Valencia has been involved in several calibration/validation (cal/val) activities carried out in dedicated field campaigns organized by ESA and other organisms. However, permanent stations are required in order to ensure a long-term and continuous
[...] Read more.
The Global Change Unit (GCU) at the University of Valencia has been involved in several calibration/validation (cal/val) activities carried out in dedicated field campaigns organized by ESA and other organisms. However, permanent stations are required in order to ensure a long-term and continuous calibration of on-orbit sensors. In the framework of the CEOS-Spain project, the GCU has managed the set-up and launch of experimental sites in Spain for the calibration of thermal infrared sensors and the validation of Land Surface Temperature (LST) products derived from those data. Currently, three sites have been identified and equipped: the agricultural area of Barrax (39.05 N, 2.1 W), the marshland area in the National Park of Doñana (36.99 N, 6.44 W), and the semi-arid area of the National Park of Cabo de Gata (36.83 N, 2.25 W). This work presents the performance of the permanent stations installed over the different test areas, as well as the cal/val results obtained for a number of Earth Observation sensors: SEVIRI, MODIS, and TIRS/Landsat-8. Full article
Figures

Open AccessData Descriptor
MODIS-Based Monthly LST Products over Amazonia under Different Cloud Mask Schemes
Data 2016, 1(2), 2; doi:10.3390/data1020002 -
Abstract
One of the major problems in the monitoring of tropical rainforests using satellite imagery is their persistent cloud coverage. The use of daily observations derived from high temporal resolution sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), could potentially help to mitigate this
[...] Read more.
One of the major problems in the monitoring of tropical rainforests using satellite imagery is their persistent cloud coverage. The use of daily observations derived from high temporal resolution sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), could potentially help to mitigate this issue, increasing the number of clear-sky observations. However, the cloud contamination effect should be removed from these results in order to provide a reliable description of these forests. In this study the available MODIS Land Surface Temperature (LST) products have been reprocessed over the Amazon Basin (10 N–20 S, 80 W–45 W) by introducing different cloud masking schemes. The monthly LST datasets can be used for the monitoring of thermal anomalies over the Amazon forests and the analysis of spatial patterns of warming events at higher spatial resolutions than other climatic datasets. Full article
Open AccessData Descriptor
A 1973–2008 Archive of Climate Surfaces for NW Maghreb
Data 2016, 1(2), 8; doi:10.3390/data1020008 -
Abstract
Climate archives are time series. They are used to assess temporal trends of a climate-dependent target variable, and to make climate atlases. A high-resolution gridded dataset with 1728 layers of monthly mean maximum, mean and mean minimum temperatures and precipitation for the NW
[...] Read more.
Climate archives are time series. They are used to assess temporal trends of a climate-dependent target variable, and to make climate atlases. A high-resolution gridded dataset with 1728 layers of monthly mean maximum, mean and mean minimum temperatures and precipitation for the NW Maghreb (28°N–37.3°N, 12°W–12°E, ~1-km resolution) from 1973 through 2008 is presented. The surfaces were spatially interpolated by ANUSPLIN, a thin-plate smoothing spline technique approved by the World Meteorological Organization (WMO), from georeferenced climate records drawn from the Global Surface Summary of the Day (GSOD) and the Global Historical Climatology Network-Monthly (GHCN-Monthly version 3) products. Absolute errors for surface temperatures are approximately 0.5 °C for mean and mean minimum temperatures, and peak up to 1.76 °C for mean maximum temperatures in summer months. For precipitation, the mean absolute error ranged from 1.2 to 2.5 mm, but very low summer precipitation caused relative errors of up to 40% in July. The archive successfully captures climate variations associated with large to medium geographic gradients. This includes the main aridity gradient which increases in the S and SE, as well as its breaking points, marked by the Atlas mountain range. It also conveys topographic effects linked to kilometric relief mesoforms. Full article
Open AccessData Descriptor
The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance
Data 2016, 1(1), 6; doi:10.3390/data1010006 -
Abstract
A set of Essential Climate Variables (ECV) have been defined to be monitored by current and new remote sensing missions. The ECV retrieved at global scale need to be validated in order to provide reliable products to be used in remote sensing applications.
[...] Read more.
A set of Essential Climate Variables (ECV) have been defined to be monitored by current and new remote sensing missions. The ECV retrieved at global scale need to be validated in order to provide reliable products to be used in remote sensing applications. For this, test sites are required to use in calibration and validation of the remote sensing approaches in order to improve the ECV retrievals at global scale. The southern hemisphere presents scarce test sites for calibration and validation field campaigns that focus on soil moisture and land surface temperature retrievals. In Chile, remote sensing applications related to soil moisture estimates have increased during the last decades because of the drought and water use conflicts that generate a strong interest on improved water demand estimates. This work describes the Laboratory for Analysis of the Biosphere (LAB)—NETwork, called herein after ‘LAB-net’, which was designed to be the first network in Chile for remote sensing applications. The test sites were placed in four sites with different cover types: vineyards and olive orchards located in the semi-arid region of Atacama, an irrigated raspberry crop in the Mediterranean climate zone of Chimbarongo, and a rainfed pasture in the south of Chile. Over each site, well implemented meteorological and radiative flux instrumentation was installed and continuously recorded the following parameters: soil moisture and temperature at two ground levels (10 and 20 cm), air temperature and relative humidity, net radiation, global radiation, radiometric temperature (8–14 µm), rainfall and soil heat flux. The LAB-net data base post-processing procedure is also described here. As an application, surface remote sensing products such as soil moisture data derived from the Soil Moisture Ocean Salinity (SMOS) and Land Surface Temperature (LST) extracted from the MODIS-MOD11A1 and GOES LST from Copernicus products were compared to in situ data in Oromo LAB-net site. Moreover, land surface energy flux estimation is also shown as an application of LAB-net data base. These applications revealed a good performance between in situ and remote sensing data. LAB-net data base also contributes to provide suitable information for land surface energy budget and therefore water resources management at cultivars scale. The data based generated by LAB-net is freely available for any research or scientific purpose related to current and future remote sensing applications. Full article