Open AccessArticle
Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration
Data 2017, 2(4), 41; doi:10.3390/data2040041 -
Abstract
The state of cross-market linkage structures and its stability over varying time-periods play a key role in the performance of international diversified portfolios. There has been an increasing interest of global investors in emerging capital markets in the Asian region. In this setting,
[...] Read more.
The state of cross-market linkage structures and its stability over varying time-periods play a key role in the performance of international diversified portfolios. There has been an increasing interest of global investors in emerging capital markets in the Asian region. In this setting, an investigation into the temporal dynamics of cross-market linkage structures becomes significant for the selection and optimal allocation of securities in an internationally-diversified portfolio. In the quest for this, in the current study, weighted network models along with network metrics are employed to decipher the underlying cross-market linkage structures among Asian markets. The study analyses the daily return data of fourteen major Asian indices for a period of 14 years (2002–2016). The topological properties of the network are computed using centrality measures and measures of influence strength and are investigated over temporal scales. In particular, the overall influence strengths and India-specific influence strengths are computed and examined over a temporal scale. Threshold filtering is also performed to characterize the dynamics related to the linkage structure of these networks. The impacts of the 2008 financial crisis on the linkage structural patterns of these equity networks are also investigated. The key findings of this study include: a set of central and peripheral indices, the evolution of the linkage structures over the 2002–2016 period and the linkage dynamics during times of market stress. Mainly, the set of indices possessing influence over the Asian region in general and the Indian market in particular is also identified. The findings of this study can be utilized in effective systemic risk management and for the selection of an optimally-diversified portfolio, resilient to system-level shocks. Full article
Figures

Figure 1

Open AccessData Descriptor
GasLib—A Library of Gas Network Instances
Data 2017, 2(4), 40; doi:10.3390/data2040040 -
Abstract
The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of
[...] Read more.
The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML (extensible markup language) format. In this paper, we explain this format and present the instances that are available in the library. Full article
Figures

Figure 1

Open AccessArticle
Congestion Quantification Using the National Performance Management Research Data Set
Data 2017, 2(4), 39; doi:10.3390/data2040039 -
Abstract
Monitoring of transportation system performance is a key element of any transportation operation and planning strategy. Estimation of dependable performance measures relies on analysis of large amounts of traffic data, which are often expensive and difficult to gather. National databases can assist in
[...] Read more.
Monitoring of transportation system performance is a key element of any transportation operation and planning strategy. Estimation of dependable performance measures relies on analysis of large amounts of traffic data, which are often expensive and difficult to gather. National databases can assist in this regard, but challenges still remain with respect to data management, accuracy, storage, and use for performance monitoring. In an effort to address such challenges, this paper showcases a process that utilizes the National Performance Management Research Data Set (NPMRDS) for generating performance measures for congestion monitoring applications in the Birmingham region. The capabilities of the relational database management system (RDBMS) are employed to manage the large amounts of NPMRDS data. Powerful visual maps are developed using GIS software and used to illustrate congestion location, extent and severity. Travel time reliability indices are calculated and utilized to quantify congestion, and congestion intensity measures are developed and employed to rank and prioritize congested segments in the study area. The process for managing and using big traffic data described in the Birmingham case study is a great example that can be replicated by small and mid-size Metropolitan Planning Organizations to generate performance-based measures and monitor congestion in their jurisdictions. Full article
Figures

Figure 1

Open AccessData Descriptor
Antibody Exchange: Information Extraction of Biological Antibody Donation and a Web-Portal to Find Donors and Seekers
Data 2017, 2(4), 38; doi:10.3390/data2040038 -
Abstract
Bio-molecular reagents, like antibodies that are required in experimental biology are expensive and their effectiveness, among other things, is critical to the success of the experiment. Although such resources are sometimes donated by one investigator to another through personal communication between the two,
[...] Read more.
Bio-molecular reagents, like antibodies that are required in experimental biology are expensive and their effectiveness, among other things, is critical to the success of the experiment. Although such resources are sometimes donated by one investigator to another through personal communication between the two, there is no previous study to our knowledge on the extent of such donations, nor a central platform that directs resource seekers to donors. In this paper, we describe, to our knowledge, a first attempt at building a web-portal titled Antibody Exchange (or more general ‘Bio-Resource Exchange’) that attempts to bridge this gap between resource seekers and donors in the domain of experimental biology. Users on this portal can request for or donate antibodies, cell-lines, and DNA Constructs. This resource could also serve as a crowd-sourced database of resources for experimental biology. Further, we also studied the extent of antibody donations by mining the acknowledgement sections of scientific articles. Specifically, we extracted the name of the donor, his/her affiliation, and the name of the antibody for every donation by parsing the acknowledgements sections of articles. To extract annotations at this level, we adopted two approaches—a rule based algorithm and a bootstrapped pattern learning algorithm. The algorithms extracted donor names, affiliations, and antibody names with average accuracies of 57% and 62%, respectively. We also created a dataset of 50 expert-annotated acknowledgements sections that will serve as a gold standard dataset to evaluate extraction algorithms in the future. Full article
Figures

Figure 1

Open AccessArticle
Regionalization of a Landscape-Based Hazard Index of Malaria Transmission: An Example of the State of Amapá, Brazil
Data 2017, 2(4), 37; doi:10.3390/data2040037 -
Abstract
Identifying and assessing the relative effects of the numerous determinants of malaria transmission, at different spatial scales and resolutions, is of primary importance in defining control strategies and reaching the goal of the elimination of malaria. In this context, based on a knowledge-based
[...] Read more.
Identifying and assessing the relative effects of the numerous determinants of malaria transmission, at different spatial scales and resolutions, is of primary importance in defining control strategies and reaching the goal of the elimination of malaria. In this context, based on a knowledge-based model, a normalized landscape-based hazard index (NLHI) was established at a local scale, using a 10 mspatial resolution forest vs. non-forest map, landscape metrics and a spatial moving window. Such an index evaluates the contribution of landscape to the probability of human-malaria vector encounters, and thus to malaria transmission risk. Since the knowledge-based model is tailored to the entire Amazon region, such an index might be generalized at large scales for establishing a regional view of the landscape contribution to malaria transmission. Thus, this study uses an open large-scale land use and land cover dataset (i.e., the 30 m TerraClass maps) and proposes an automatic data-processing chain for implementing NLHI at large-scale. First, the impact of coarser spatial resolution (i.e., 30 m) on NLHI values was studied. Second, the data-processing chain was established using R language for customizing the spatial moving window and computing the landscape metrics and NLHI at large scale. This paper presents the results in the State of Amapá, Brazil. It offers the possibility of monitoring a significant determinant of malaria transmission at regional scale. Full article
Figures

Figure 1

Open AccessData Descriptor
Database of Himalayan Plants Based on Published Floras during a Century
Data 2017, 2(4), 36; doi:10.3390/data2040036 -
Abstract
The Himalaya is the largest mountain range in the world, spanning approximately ten degrees of latitude and elevation between 100 m asl to the highest mountain peak on earth. The region varies in plant species richness, being highest in the biodiversity hotspot of
[...] Read more.
The Himalaya is the largest mountain range in the world, spanning approximately ten degrees of latitude and elevation between 100 m asl to the highest mountain peak on earth. The region varies in plant species richness, being highest in the biodiversity hotspot of Eastern Himalaya and declining to the North-Western parts of the Himalaya. We examined all published floras (31 floras in 42 volumes spanning the years 1903–2014) from the Indian Himalayan region, Nepal, and Bhutan to compile a comprehensive checklist of all gymnosperms and angiosperms. A total of 10,503 species representing 240 families and 2322 genera are reported. We evaluated all the botanical names reported in the floras for their updated taxonomy and excluded >3000 synonyms. Additionally, we identified 1134 species reported in these floras that presently remain taxonomically unresolved and 160 species with missing information in the global plant database (The Plant List, 2013). This is the most comprehensive estimate of plant species diversity in the Himalaya. Full article
Figures

Figure 1

Open AccessArticle
Earth Observation for Citizen Science Validation, or Citizen Science for Earth Observation Validation? The Role of Quality Assurance of Volunteered Observations
Data 2017, 2(4), 35; doi:10.3390/data2040035 -
Abstract
Environmental policy involving citizen science (CS) is of growing interest. In support of this open data stream of information, validation or quality assessment of the CS geo-located data to their appropriate usage for evidence-based policy making needs a flexible and easily adaptable data
[...] Read more.
Environmental policy involving citizen science (CS) is of growing interest. In support of this open data stream of information, validation or quality assessment of the CS geo-located data to their appropriate usage for evidence-based policy making needs a flexible and easily adaptable data curation process ensuring transparency. Addressing these needs, this paper describes an approach for automatic quality assurance as proposed by the Citizen OBservatory WEB (COBWEB) FP7 project. This approach is based upon a workflow composition that combines different quality controls, each belonging to seven categories or “pillars”. Each pillar focuses on a specific dimension in the types of reasoning algorithms for CS data qualification. These pillars attribute values to a range of quality elements belonging to three complementary quality models. Additional data from various sources, such as Earth Observation (EO) data, are often included as part of the inputs of quality controls within the pillars. However, qualified CS data can also contribute to the validation of EO data. Therefore, the question of validation can be considered as “two sides of the same coin”. Based on an invasive species CS study, concerning Fallopia japonica (Japanese knotweed), the paper discusses the flexibility and usefulness of qualifying CS data, either when using an EO data product for the validation within the quality assurance process, or validating an EO data product that describes the risk of occurrence of the plant. Both validation paths are found to be improved by quality assurance of the CS data. Addressing the reliability of CS open data, issues and limitations of the role of quality assurance for validation, due to the quality of secondary data used within the automatic workflow, are described, e.g., error propagation, paving the route to improvements in the approach. Full article
Figures

Figure 1

Open AccessData Descriptor
The #BTW17 Twitter Dataset–Recorded Tweets of the Federal Election Campaigns of 2017 for the 19th German Bundestag
Data 2017, 2(4), 34; doi:10.3390/data2040034 -
Abstract
The German Bundestag elections are the most important elections in Germany. This dataset comprises Twitter interactions related to German politicians of the most important political parties over several months in the (pre-)phase of the German federal election campaigns in 2017. The Twitter accounts
[...] Read more.
The German Bundestag elections are the most important elections in Germany. This dataset comprises Twitter interactions related to German politicians of the most important political parties over several months in the (pre-)phase of the German federal election campaigns in 2017. The Twitter accounts of more than 360 politicians were followed for four months. The collected data comprise a sample of approximately 10 GB of Twitter raw data, and they cover more than 120,000 active Twitter users and more than 1,200,000 recorded tweets. Even without sophisticated data analysis techniques, it was possible to deduce a likely political party proximity for more than half of these accounts simply by looking at the re-tweet behavior. This might be of interest for innovative data-driven party campaign strategists in the future. Furthermore, it is observable, that, in Germany, supporters and politicians of populist parties make use of Twitter much more intensively and aggressively than supporters of other parties. Furthermore, established left-wing parties seem to be more active on Twitter than established conservative parties. The dataset can be used to study how political parties, their followers and supporters make use of social media channels in political election campaigns and what kind of content is shared. Full article
Figures

Figure 1

Open AccessArticle
Temporal Statistical Analysis of Degree Distributions in an Undirected Landline Phone Call Network Graph Series
Data 2017, 2(4), 33; doi:10.3390/data2040033 -
Abstract
This article aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time. More specifically, it tackles the following problem. Given a large amount of landline phone call data records, what is the best way
[...] Read more.
This article aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time. More specifically, it tackles the following problem. Given a large amount of landline phone call data records, what is the best way to summarize the distinct number of calling partners per client per day? In order to answer this question, a series of undirected phone call network graphs is constructed based on data from a local telecommunication source in Albania. All network graphs of the series are simplified. Further, a longitudinal temporal study is made on this network graphs series related to the degree distributions. Power law and log-normal distribution fittings on the degree sequence are compared on each of the network graphs of the series. The maximum likelihood method is used to estimate the parameters of the distributions, and a Kolmogorov–Smirnov test associated with a p-value is used to define the plausible models. A direct distribution comparison is made through a Vuong test in the case that both distributions are plausible. Another goal was to describe the parameters’ distributions’ shape. A Shapiro-Wilk test is used to test the normality of the data, and measures of shape are used to define the distributions’ shape. Study findings suggested that log-normal distribution models better the intraday degree sequence data of the network graphs. It is not possible to say that the distributions of log-normal parameters are normal. Full article
Figures

Figure 1

Open AccessData Descriptor
Wi-Fi Crowdsourced Fingerprinting Dataset for Indoor Positioning
Data 2017, 2(4), 32; doi:10.3390/data2040032 -
Abstract
Benchmark open-source Wi-Fi fingerprinting datasets for indoor positioning studies are still hard to find in the current literature and existing public repositories. This is unlike other research fields, such as the image processing field, where benchmark test images such as the Lenna image
[...] Read more.
Benchmark open-source Wi-Fi fingerprinting datasets for indoor positioning studies are still hard to find in the current literature and existing public repositories. This is unlike other research fields, such as the image processing field, where benchmark test images such as the Lenna image or Face Recognition Technology (FERET) databases exist, or the machine learning field, where huge datasets are available for example at the University of California Irvine (UCI) Machine Learning Repository. It is the purpose of this paper to present a new openly available Wi-Fi fingerprint dataset, comprised of 4648 fingerprints collected with 21 devices in a university building in Tampere, Finland, and to present some benchmark indoor positioning results using these data. The datasets and the benchmarking software are distributed under the open-source MIT license and can be found on the EU Zenodo repository. Full article
Figures

Figure 1

Open AccessArticle
An Improved Power Law for Nonlinear Least-Squares Fitting?
Data 2017, 2(3), 31; doi:10.3390/data2030031 -
Abstract
Models based on a power law are prevalent in many areas of study. When regression analysis is performed on data sets modeled by a power law, the traditional model uses a lead coefficient. However, the proposed model replaces the lead coefficient with a
[...] Read more.
Models based on a power law are prevalent in many areas of study. When regression analysis is performed on data sets modeled by a power law, the traditional model uses a lead coefficient. However, the proposed model replaces the lead coefficient with a scaling parameter and reduces uncertainties in best-fit parameters for data sets with exponents close to 3. This study extends previous work by testing each model for a range of parameters. Data sets with known values of scaling parameter and exponent were generated by adding normally distributed random errors with controlled mean and standard deviations to underlying power laws. These data sets were then analyzed for both forms of the power law. For the scaling parameter, the proposed model provided smaller errors in 96/180 cases and smaller uncertainties in 88/180 cases. In most remaining cases, the traditional model provided smaller errors or uncertainties. Examination of conditions indicates that the proposed law has potential in select cases, but due to ambiguity in the conditions which favor one model over the other, an approach similar to the one in this study is encouraged for determining which model will offer reduced errors and uncertainties in data sets where additional accuracy is desired. Full article
Figures

Figure 1

Open AccessArticle
Estimating Cost Savings from Early Cancer Diagnosis
Data 2017, 2(3), 30; doi:10.3390/data2030030 -
Abstract
We estimate treatment cost-savings from early cancer diagnosis. For breast, lung, prostate and colorectal cancers and melanoma, which account for more than 50% of new incidences projected in 2017, we combine published cancer treatment cost estimates by stage with incidence rates by stage
[...] Read more.
We estimate treatment cost-savings from early cancer diagnosis. For breast, lung, prostate and colorectal cancers and melanoma, which account for more than 50% of new incidences projected in 2017, we combine published cancer treatment cost estimates by stage with incidence rates by stage at diagnosis. We extrapolate to other cancer sites by using estimated national expenditures and incidence rates. A rough estimate for the U.S. national annual treatment cost-savings from early cancer diagnosis is in 11 digits. Using this estimate and cost-neutrality, we also estimate a rough upper bound on the cost of a routine early cancer screening test. Full article
Open AccessArticle
Adjustable Robust Singular Value Decomposition: Design, Analysis and Application to Finance
Data 2017, 2(3), 29; doi:10.3390/data2030029 -
Abstract
The Singular Value Decomposition (SVD) is a fundamental algorithm used to understand the structure of data by providing insight into the relationship between the row and column factors. SVD aims to approximate a rectangular data matrix, given some rank restriction, especially lower rank
[...] Read more.
The Singular Value Decomposition (SVD) is a fundamental algorithm used to understand the structure of data by providing insight into the relationship between the row and column factors. SVD aims to approximate a rectangular data matrix, given some rank restriction, especially lower rank approximation. In practical data analysis, however, outliers and missing values maybe exist that restrict the performance of SVD, because SVD is a least squares method that is sensitive to errors in the data matrix. This paper proposes a robust SVD algorithm by applying an adjustable robust estimator. Through adjusting the tuning parameter in the algorithm, the method can be both robust and efficient. Moreover, a sequential robust SVD algorithm is proposed in order to decrease the computation volume in sequential and streaming data. The advantages of the proposed algorithms are proved with a financial application. Full article
Figures

Figure 1

Open AccessData Descriptor
Development of a Data Set of Pesticide Dissipation Rates in/on Various Plant Matrices for the Pesticide Properties Database (PPDB)
Data 2017, 2(3), 28; doi:10.3390/data2030028 -
Abstract
Data relating to the rate at which pesticide active substances dissipate on or within various plant matrices are important for a range of different risk assessments; however, despite the importance of this data, dissipation rates are not included in the most common online
[...] Read more.
Data relating to the rate at which pesticide active substances dissipate on or within various plant matrices are important for a range of different risk assessments; however, despite the importance of this data, dissipation rates are not included in the most common online data resources. Databases have been collated in the past, but these tend not to be maintained or regularly updated. The purpose of the exercise described herein was to collate a new database in a format compatible with the main online pesticide database resource (the Pesticide Properties Database, PPDB), to validate this database in line with the Pesticide Properties Database protocols and thus ensure that the data is maintained and updated in future. Data was collated using a systematic review approach using several scientific databases. Collated literature was subjected to a quality assessment, and then data was extracted into an MS Excel spreadsheet. The outcome of the study is a database based on data collated from 1390 published articles covering over 400 pesticides and over 200 crops across a wide variety of different matrices (leaves, fruits, seeds etc.) for pesticide residues on the crop surface, as well as residues absorbed within the plant material. This data is now fully incorporated into the PPDB. Full article
Figures

Figure 1

Open AccessData Descriptor
A 2001–2015 Archive of Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation for Beijing and Tianjin Sandstorm Source Region
Data 2017, 2(3), 27; doi:10.3390/data2030027 -
Abstract
Fractional covers of photosynthetic and non-photosynthetic vegetation are key indicators for land degradation surveillance in the dryland of China. However, there are no available, well validated, and multispectral-based products. Aiming for this, we selected the Beijing and Tianjin Sandstorm Source Region as the
[...] Read more.
Fractional covers of photosynthetic and non-photosynthetic vegetation are key indicators for land degradation surveillance in the dryland of China. However, there are no available, well validated, and multispectral-based products. Aiming for this, we selected the Beijing and Tianjin Sandstorm Source Region as the study area, and utilized the linear spectral mixture model for generating the fractional cover of PV, NPV, and bare soil, with endmember spectra retrieved from the field measured endmember spectral library, based on the MODIS NBAR data from 2001 to 2015. The unmixing results were validated through comparison with the field samples. The results show the method adopted could acquire rational and accurate estimation of fractional cover of photosynthetic vegetation (R2 = 0.6297, RMSE = 0.2443) and non-photosynthetic vegetation (R2 = 0.3747, RMSE = 0.2568). The dataset could provide key data support for the users in land degradation surveillance fields. Full article
Figures

Figure 1

Open AccessData Descriptor
Chlamydospore Specific Proteins of Candida albicans
Data 2017, 2(3), 26; doi:10.3390/data2030026 -
Abstract
Polymorphic yeast, Candida albicans, forms thick-walled structures called chlamydospores in order to survive under adverse conditions. We present proteomic profile changes occurring during chlamydospore formation. Chlamydospores were induced by inoculating C. albicans cells (grown for 48 h) on rice extract and semisolid agar
[...] Read more.
Polymorphic yeast, Candida albicans, forms thick-walled structures called chlamydospores in order to survive under adverse conditions. We present proteomic profile changes occurring during chlamydospore formation. Chlamydospores were induced by inoculating C. albicans cells (grown for 48 h) on rice extract and semisolid agar containing tween 80 (1%), and were overlaid by a polyethene sheet to induce microaerophilic conditions at 30 °C. Proteins extracted from chlamydospores and hyphae (producing chlamydospores) were identified by LC-MS/MS analysis. Present datasets include proteomic data (Swath spectral libraries) of chlamydospores and yeast phase cells, as well as methodologies and tools used for the data generation. Further analysis is expected to provide an opportunity to understand modulations in metabolic processes, molecular architecture (i.e., cell wall, membrane, and cytoskeleton) and stress response pathways leading to chlamydospore formation and thus facilitating survival of C. albicans under adverse conditions. Full article
Figures

Figure 1

Open AccessData Descriptor
Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater
Data 2017, 2(3), 24; doi:10.3390/data2030024 -
Abstract
The necessity for sustainable process development has led to an upsurge in bio-based processes, thereby placing a higher demand on the use of suitable microorganisms. Similarly, thermodynamics is a veritable tool that can predict the behavior of any material under well-defined conditions. Thermodynamic
[...] Read more.
The necessity for sustainable process development has led to an upsurge in bio-based processes, thereby placing a higher demand on the use of suitable microorganisms. Similarly, thermodynamics is a veritable tool that can predict the behavior of any material under well-defined conditions. Thermodynamic data of Fusariumoxysporum used in the bioremediation of gold mine wastewater, for a process supported with different carbon sources, was investigated. The data were obtained using a Discovery DSC® (TA Instruments, Inc. New Castle, DE, USA) equipped with modulated Differential Scanning Calorimeter (MDSCTM) software. The data revealed minimal differences in the physical properties of the F. oxysporum used, indicating that the utilisation of agro-waste for microbial proliferation in wastewater treatment is as feasible as when refined carbon sources are used. The data will be helpful for the development of environmentally benign process development strategies, especially for environmental engineering applications. Full article
Open AccessData Descriptor
A Database of Weekly Sea Ice Parcel Tracks Derived from Lagrangian Motion Data with Ancillary Data Products
Data 2017, 2(3), 25; doi:10.3390/data2030025 -
Abstract
Arctic sea ice has been on the decline over the past several decades, and multi-year sea ice has decreased significantly in its areal share of the overall sea ice cover. Changes in several key variables such as radiative balances, albedo, ice surface temperature,
[...] Read more.
Arctic sea ice has been on the decline over the past several decades, and multi-year sea ice has decreased significantly in its areal share of the overall sea ice cover. Changes in several key variables such as radiative balances, albedo, ice surface temperature, and ice thickness have driven much of the decline, but the motion of sea ice makes studying the effects of these variables on individual parcels difficult. Previous studies have observed changes in the means of these variables and their impacts on sea ice concentration, but an accessible database of Lagrangian tracked data is not yet available for study. In order to address this, a database has been developed at the University of Colorado Boulder that performs Lagrangian tracking on individual sea ice parcels and saves coincident ancillary thermodynamic and dynamic variables for each parcel on a weekly timescale. Full article
Figures

Figure 1

Open AccessData Descriptor
Overview of German Additive Manufacturing Companies
Data 2017, 2(3), 23; doi:10.3390/data2030023 -
Abstract
This dataset is the description of a curated list of companies involved in additive manufacturing in Germany. The companies included are of various categories, such as 3D printing providers, hardware manufacturers, software developers and vendors. The list was compiled through literature and Internet-based
[...] Read more.
This dataset is the description of a curated list of companies involved in additive manufacturing in Germany. The companies included are of various categories, such as 3D printing providers, hardware manufacturers, software developers and vendors. The list was compiled through literature and Internet-based research, resulting in the compilation of information from a number of resources, such as the Bundesanzeiger (Federal Gazette), the Registergerichte (Register Courts), the respective websites themselves and a B2B marketplace (Wer liefert Was?). The aim of compiling this list is to provide information to researchers on the current situation of 3D printing in Germany. Full article
Figures

Figure 1

Open AccessData Descriptor
A High Resolution Dataset of Drought Indices for Spain
Data 2017, 2(3), 22; doi:10.3390/data2030022 -
Abstract
Drought indices are essential metrics for quantifying drought severity and identifying possible changes in the frequency and duration of drought hazards. In this study, we developed a new high spatial resolution dataset of drought indices covering all of Spain. The dataset includes seven
[...] Read more.
Drought indices are essential metrics for quantifying drought severity and identifying possible changes in the frequency and duration of drought hazards. In this study, we developed a new high spatial resolution dataset of drought indices covering all of Spain. The dataset includes seven drought indices, spans the period 1961–2014, and has a spatial resolution of 1.1 km and a weekly temporal resolution. A web portal has been created to enable download and visualization of the data. The data can be downloaded as single gridded points for each drought index, but the entire drought index dataset can also be downloaded in netCDF4 format. The dataset will be updated for complete years as the raw meteorological data become available. Full article
Figures

Figure 1