Open AccessArticle
Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu22-BH4)2] Dichloromethane Solvate
Crystals 2017, 7(10), 318; doi:10.3390/cryst7100318 (registering DOI) -
Abstract
Bis(diphenylphosphino)methane copper(I) tetrahydroborate was synthesized by ligands exchange in bis(triphenylphosphine) copper(I) tetrahydroborate, and characterized by XRD, FTIR, NMR spectroscopy. According to XRD the title compound has dimeric structure, [(μ2-dppm)2Cu22-BH4)2], and crystallizes
[...] Read more.
Bis(diphenylphosphino)methane copper(I) tetrahydroborate was synthesized by ligands exchange in bis(triphenylphosphine) copper(I) tetrahydroborate, and characterized by XRD, FTIR, NMR spectroscopy. According to XRD the title compound has dimeric structure, [(μ2-dppm)2Cu22-BH4)2], and crystallizes as CH2Cl2 solvate in two polymorphic forms (orthorhombic, 1, and monoclinic, 2) The details of molecular geometry and the crystal-packing pattern in polymorphs were studied. The rare Twisted Boat-Boat conformation of the core Cu2P4C2 cycle in 1 is found being more stable than Boat-Boat conformation in 2. Full article
Figures

Figure 1

Open AccessReview
Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications
Crystals 2017, 7(10), 307; doi:10.3390/cryst7100307 (registering DOI) -
Abstract
Wide band gap II-VI semiconductor nanostructures have been extensively studied according to their great potentials for optoelectronic applications, while heterojunctions are fundamental elements for modern electronic and optoelectronic devices. Subsequently, a great deal of achievements in construction and optoelectronic applications of heterojunctions based
[...] Read more.
Wide band gap II-VI semiconductor nanostructures have been extensively studied according to their great potentials for optoelectronic applications, while heterojunctions are fundamental elements for modern electronic and optoelectronic devices. Subsequently, a great deal of achievements in construction and optoelectronic applications of heterojunctions based on II-VI compound semiconductor one-dimensional nanostructures have been obtained in the past decade. Herein, we present a review of a series of progress in this field. First, construction strategies towards different types of heterojunctions are reviewed, including core-shell heterojunctions, one-dimensional axial heterojunctions, crossed nanowires heterojunctions, and one-dimensional nanostructure/thin film or Si substrate heterojunctions. Secondly, optoelectronic applications of these constructed heterojunctions, such as photodetectors, solar cells, light emitting diodes, junction field effect transistors, etc., are discussed briefly. This review shows that heterojunctions based on II-VI compound semiconductor 1-D nanostructures have great potential for future optoelectronic applications. Full article
Figures

Figure 1

Open AccessArticle
Crystal Engineering for Mechanical Strength at Nano-Scale Dimensions
Crystals 2017, 7(10), 315; doi:10.3390/cryst7100315 -
Abstract
The mechanical strengths of nano-scale individual crystal or nanopolycrystalline metals, and other dimensionally-related materials are increased by an order of magnitude or more as compared to those values measured at conventional crystal or polycrystal grain dimensions. An explanation for the result is attributed
[...] Read more.
The mechanical strengths of nano-scale individual crystal or nanopolycrystalline metals, and other dimensionally-related materials are increased by an order of magnitude or more as compared to those values measured at conventional crystal or polycrystal grain dimensions. An explanation for the result is attributed to the constraint provided at the surface of the crystals or, more importantly, at interfacial boundaries within or between crystals. The effect is most often described in terms either of two size dependencies: an inverse dependence on crystal size because of single dislocation behavior or, within a polycrystalline material, in terms of a reciprocal square root of grain size dependence, designated as a Hall-Petch relationship for the researchers first pointing to the effect for steel and who provided an enduring dislocation pile-up interpretation for the relationship. The current report provides an updated description of such strength properties for iron and steel materials, and describes applications of the relationship to a wider range of materials, including non-ferrous metals, nano-twinned, polyphase, and composite materials. At limiting small nm grain sizes, there is a generally minor strength reversal that is accompanied by an additional order-of-magnitude elevation of an increased strength dependence on deformation rate, thus giving an important emphasis to the strain rate sensitivity property of materials at nano-scale dimensions. Full article
Figures

Figure 1

Open AccessArticle
Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors
Crystals 2017, 7(10), 314; doi:10.3390/cryst7100314 -
Abstract
Liquid crystal (LC) is a promising candidate for terahertz (THz) devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual
[...] Read more.
Liquid crystal (LC) is a promising candidate for terahertz (THz) devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging. Full article
Figures

Figure 1

Open AccessArticle
Phase Transformation and Hydrogen Storage Properties of an La7.0Mg75.5Ni17.5 Hydrogen Storage Alloy
Crystals 2017, 7(10), 316; doi:10.3390/cryst7100316 -
Abstract
X-ray diffraction showed that an La7.0Mg75.5Ni17.5 alloy prepared via inductive melting was composed of an La2Mg17 phase, an LaMg2Ni phase, and an Mg2Ni phase. After the first hydrogen absorption/desorption process, the
[...] Read more.
X-ray diffraction showed that an La7.0Mg75.5Ni17.5 alloy prepared via inductive melting was composed of an La2Mg17 phase, an LaMg2Ni phase, and an Mg2Ni phase. After the first hydrogen absorption/desorption process, the phases of the alloy turned into an La–H phase, an Mg phase, and an Mg2Ni phase. The enthalpy and entropy derived from the van’t Hoff equation for hydriding were −42.30 kJ·mol−1 and −69.76 J·K−1·mol−1, respectively. The hydride formed in the absorption step was less stable than MgH2 (−74.50 kJ·mol−1 and −132.3 J·K−1·mol−1) and Mg2NiH4 (−64.50 kJ·mol−1 and −123.1 J·K−1·mol−1). Differential thermal analysis showed that the initial hydrogen desorption temperature of its hydride was 531 K. Compared to Mg and Mg2Ni, La7.0Mg75.5Ni17.5 is a promising hydrogen storage material that demonstrates fast adsorption/desorption kinetics as a result of the formation of an La–H compound and the synergetic effect of multiphase. Full article
Figures

Figure 1

Open AccessArticle
Preparation of Potassium Dichromate Crystals from the Chromite Concentrate by Microwave Assisted Leaching
Crystals 2017, 7(10), 312; doi:10.3390/cryst7100312 -
Abstract
In the present investigation, the oxidizing roasting process of chromite with sodium carbonate to prepare potassium dichromate crystals was studied in the microwave field with air, by heating the chromite and sodium carbonate. The chromite and sodium carbonate heated separately at 1000 °C
[...] Read more.
In the present investigation, the oxidizing roasting process of chromite with sodium carbonate to prepare potassium dichromate crystals was studied in the microwave field with air, by heating the chromite and sodium carbonate. The chromite and sodium carbonate heated separately at 1000 °C in the microwave oven (frequency: 2.45 GHz; power 1.5 kW) in order to study the microwave absorption properties. The dielectric constant and dielectric loss factor of the chromite and sodium carbonate examined. Then, chromite with sodium carbonate taken in (1:2) ratio and heated at 750 °C. Thus obtained samples were characterized using various techniques includes Powder-XRD (XRD), Scanning Electron Microscopy (SEM), and X-ray fluorescence (XRF). The XRD pattern reveals the existence of Fe3O4, Fe2O3, NaAlO2, and Na2CrO4. The iron and aluminum were leached out as Fe2O3 and Al(OH)3 respectively. The resulting sample treated with the KCl to prepare potassium dichromate crystals. Finally, potassium dichromate crystals formed. Full article
Figures

Figure 1

Open AccessArticle
Synchrotron Radiation Pair Distribution Function Analysis of Gels in Cements
Crystals 2017, 7(10), 317; doi:10.3390/cryst7100317 -
Abstract
The analysis of atomic ordering in a nanocrystalline phase with small particle sizes, below 5 nm, is intrinsically complicated because of the lack of long-range order. Furthermore, the presence of additional crystalline phase(s) may exacerbate the problem, as is the case in cement
[...] Read more.
The analysis of atomic ordering in a nanocrystalline phase with small particle sizes, below 5 nm, is intrinsically complicated because of the lack of long-range order. Furthermore, the presence of additional crystalline phase(s) may exacerbate the problem, as is the case in cement pastes. Here, we use the synchrotron pair distribution function (PDF) chiefly to characterize the local atomic order of the nanocrystalline phases, gels, in cement pastes. We have used a multi r-range analysis approach, where the ~4–7 nm r-range allows determining the crystalline phase contents; the ~1–2.5 nm r-range is used to characterize the atomic ordering in the nanocrystalline component; and the ~0.2–1.0 nm r-range gives insights about additional amorphous components. Specifically, we have prepared four alite pastes with variable water contents, and the analyses showed that a defective tobermorite, Ca11Si9O28(OH)2.8.5H2O, gave the best fit. Furthermore, the PDF analyses suggest that the calcium silicate hydrate gel is composed of this tobermorite and amorphous calcium hydroxide. Finally, this approach has been used to study alternative cements. The hydration of monocalcium aluminate and ye’elimite pastes yield aluminum hydroxide gels. PDF analyses show that these gels are constituted of nanocrystalline gibbsite, and the particle size can be as small as 2.5 nm. Full article
Figures

Figure 1

Open AccessArticle
Optical Characterization of AlAsSb Digital Alloy and Random Alloy on GaSb
Crystals 2017, 7(10), 313; doi:10.3390/cryst7100313 -
Abstract
III-(As, Sb) alloys are building blocks for various advanced optoelectronic devices, but the growth of their ternary or quaternary materials are commonly limited by spontaneous formation of clusters and phase separations during alloying. Recently, digital alloy growth by molecular beam epitaxy has been
[...] Read more.
III-(As, Sb) alloys are building blocks for various advanced optoelectronic devices, but the growth of their ternary or quaternary materials are commonly limited by spontaneous formation of clusters and phase separations during alloying. Recently, digital alloy growth by molecular beam epitaxy has been widely adopted in preference to conventional random alloy growth because of the extra degree of control offered by the ordered alloying. In this article, we provide a comparative study of the optical characteristics of AlAsSb alloys grown lattice-matched to GaSb using both techniques. The sample grown by digital alloy technique showed stronger photoluminescence intensity, narrower peak linewidth, and larger carrier activation energy than the random alloy technique, indicating an improved optical quality with lower density of non-radiative recombination centers. In addition, a relatively long carrier lifetime was observed from the digital alloy sample, consistent with the results obtained from the photoluminescence study. Full article
Figures

Figure 1

Open AccessArticle
Breathing 3D Frameworks with T-Shaped Connecting Ligand Exhibiting Solvent Induction, Metal Ions Effect and Luminescent Properties
Crystals 2017, 7(10), 311; doi:10.3390/cryst7100311 -
Abstract
To study the structural effects in three-dimensional porous coordination polymers, three novel flexible porous coordination polymers—[Cd2(bpdc)2](DMF)3(H2O) (1) and [M(bpdc)](DMF)(H2O) (M = Cd (2), Zn (3))—have been synthesized
[...] Read more.
To study the structural effects in three-dimensional porous coordination polymers, three novel flexible porous coordination polymers—[Cd2(bpdc)2](DMF)3(H2O) (1) and [M(bpdc)](DMF)(H2O) (M = Cd (2), Zn (3))—have been synthesized under solvothermal conditions with d10 block metal ions and T-shaped connecting ligand. Complexes 13 crystallize in different space groups, but they display the same ant network. The first two complexes can transform into each other via the alteration of guest, whereas complex 3 shows no structural change. The structural details reveal that the size of metal ions might be responsible for the transformation of porous frameworks. Furthermore, luminescent properties have been explored, and a guest-dependent shift of emission peaks was observed, suggesting potential application of the complexes as a probe. Full article
Figures

Figure 1

Open AccessReview
Challenges of Handling, Processing, and Studying Liquid and Supercooled Materials at Temperatures above 3000 K with Electrostatic Levitation
Crystals 2017, 7(10), 309; doi:10.3390/cryst7100309 -
Abstract
Over the last 20 years, great progress has been made in techniques for electrostatic levitation, with innovations such as containerless thermophysical property measurements and combination of levitators with synchrotron radiation source and neutron beams, to name but a few. This review focuses on
[...] Read more.
Over the last 20 years, great progress has been made in techniques for electrostatic levitation, with innovations such as containerless thermophysical property measurements and combination of levitators with synchrotron radiation source and neutron beams, to name but a few. This review focuses on the technological developments necessary for handling materials whose melting temperatures are above 3000 K. Although the original electrostatic levitator designed by Rhim et al. allowed the handling, processing, and study of most metals with melting points below 2500 K, several issues appeared, in addition to the risk of contamination, when metals such as Os, Re, and W were processed. This paper describes the procedures and the innovations that made successful levitation and the study of refractory metals at extreme temperatures (>3000 K) possible; namely, sample handling, electrode design (shape and material), levitation initiation, laser heating configuration, and UV range imaging. Typical results are also presented, putting emphasis on the measurements of density, surface tension, and viscosity of refractory materials in their liquid and supercooled phases. The data obtained are exemplified by tungsten, which has the highest melting temperature among metals (and is second only to carbon in the periodic table), rhenium and osmium. The remaining technical difficulties such as temperature measurement and evaporation are discussed. Full article
Figures

Figure 1

Open AccessArticle
Pinning Effect of Cerium Inclusions during Austenite Grains Growth in SS400 Steel at 1300 °C: A Combined Phase Field and Experimental Study
Crystals 2017, 7(10), 308; doi:10.3390/cryst7100308 -
Abstract
The pinning effect of cerium inclusions in the austenite grain growth of SS400 steel at 1300 °C is investigated by using a semi-empirical-simulation. Firstly, steel samples containing cerium inclusions are prepared; then the properties of inclusions are determined using SEM. In situ observation
[...] Read more.
The pinning effect of cerium inclusions in the austenite grain growth of SS400 steel at 1300 °C is investigated by using a semi-empirical-simulation. Firstly, steel samples containing cerium inclusions are prepared; then the properties of inclusions are determined using SEM. In situ observation of austenite grain growth is performed by LSCM, to determine the fitting parameters of the model such as the grain mobility and the pinning parameter. These parameters are directly inserted into our phase field simulation. The time-dependent Ginzburg-Landau (TDGL) equation is implemented in our phase field model, where the effects of inclusion and grain boundary interaction are inserted as a potential term in the local free energy. The results proved that the optimal size of austenite grains can be achieved by changing the volume fraction of inclusions. In fact, by increasing the volume fraction of inclusions from 0 to 0.1, the austenite grain growth can be decreased where the boundary mobility reduces from 2.3×10−12 m4/Js to 1.0×10−12 m4/Js. The results also demonstrated that increasing the temperature can provide more energy for grain to overcome the inclusions’ pinning force. Moreover, it was shown that the classical Zener model, Rc=0.45rpfi1, describes the pinning effect of cerium inclusions. Full article
Figures

Figure 1

Open AccessReview
Recent Insights into the Crystallization Process; Protein Crystal Nucleation and Growth Peculiarities; Processes in the Presence of Electric Fields
Crystals 2017, 7(10), 310; doi:10.3390/cryst7100310 -
Abstract
Three-dimensional protein molecule structures are essential for acquiring a deeper insight of the human genome, and for developing novel protein-based pharmaceuticals. X-ray diffraction studies of such structures require well-diffracting protein crystals. A set of external physical factors may promote and direct protein crystallization
[...] Read more.
Three-dimensional protein molecule structures are essential for acquiring a deeper insight of the human genome, and for developing novel protein-based pharmaceuticals. X-ray diffraction studies of such structures require well-diffracting protein crystals. A set of external physical factors may promote and direct protein crystallization so that crystals obtained are useful for X-ray studies. Application of electric fields aids control over protein crystal size and diffraction quality. Protein crystal nucleation and growth in the presence of electric fields are reviewed. A notion of mesoscopic level of impact on the protein crystallization exercised by an electric field is also considered. Full article
Figures

Figure 1

Open AccessReview
Progress in Indentation Study of Materials via Both Experimental and Numerical Methods
Crystals 2017, 7(10), 258; doi:10.3390/cryst7100258 -
Abstract
Indentation as a method to characterize materials has a history of more than 117 years. However, to date, it is still the most popular way to measure the mechanical properties of various materials at microscale and nanoscale. This review summarizes the background and
[...] Read more.
Indentation as a method to characterize materials has a history of more than 117 years. However, to date, it is still the most popular way to measure the mechanical properties of various materials at microscale and nanoscale. This review summarizes the background and the basic principle of processing by indentation. It is demonstrated that indentation is an effective and efficient method to identify mechanical properties, such as hardness, Young’s modulus, etc., of materials at smaller scale, when the traditional tensile tests could not be applied. The review also describes indentation process via both experimental tests and numerical modelling in recent studies. Full article
Figures

Figure 1

Open AccessTechnical Note
Time-Varying Characteristics of Granite Microstructures after Cyclic Dynamic Disturbance Using Nuclear Magnetic Resonance
Crystals 2017, 7(10), 306; doi:10.3390/cryst7100306 -
Abstract
To investigate the variation in the characteristics of rock microstructure after cyclic dynamic disturbances, a split Hopkinson pressure bar (SHPB) was used to carry out cyclic dynamic impact tests on granite, and the P-wave velocity was used as the characteristic parameter representing the
[...] Read more.
To investigate the variation in the characteristics of rock microstructure after cyclic dynamic disturbances, a split Hopkinson pressure bar (SHPB) was used to carry out cyclic dynamic impact tests on granite, and the P-wave velocity was used as the characteristic parameter representing the microstructural change. Using the nuclear magnetic resonance (NMR) technique, the porosity and the T2 distribution of rock samples were obtained. The results show that, after the cyclic dynamic disturbance, the P-wave velocity within the rock specimen decreases but rebounds with time. At the elastic phase, when the axial loading increases, the P-wave velocity declines. The T2 limit is shortened, and the cyclic dynamic disturbance process promotes the formation of small pores and decreases the size and quantity of large pores. After the cyclic dynamic disturbance, the porosity of the rock samples was reduced. Full article
Figures

Figure 1

Open AccessArticle
Synthesis and Crystal Structure of a New Hydrated Benzimidazolium Salt Containing Spiro Structure
Crystals 2017, 7(10), 303; doi:10.3390/cryst7100303 -
Abstract
A new hydrated benzimidazolium salt containing spiro structure was obtained when benzimidazole is added to ethyl alcohol of 1,5-dioxaspiro[5.5]undecane-2,4-dione and trimethoxymethane. The title compound (C19H21O8) (C7H7N2) (0.5H2O) was characterized
[...] Read more.
A new hydrated benzimidazolium salt containing spiro structure was obtained when benzimidazole is added to ethyl alcohol of 1,5-dioxaspiro[5.5]undecane-2,4-dione and trimethoxymethane. The title compound (C19H21O8) (C7H7N2) (0.5H2O) was characterized by elemental analysis, IR, UV-Vis, and single-crystal X-ray diffraction. The result shows that it belongs to the triclinic system, space group P-1, with a = 11.017(2) Å, b = 11.424(2) Å, c = 11.650(2) Å, α = 70.60(3)°, β = 71.00(3)°, γ = 67.64(3)°, Mr = 505.51, V = 1245.2(5) Å, Z = 2, Dc = 1.348 g/cm3, F(000) = 534, μ(MoKa) = 0.102 mm−1. There exist two types of hydrogen bonds in the crystal. (C19H21O8) anions and (C7H7N2)+ cations are linked by N–H···O hydrogen bonds, while (C19H21O8) anions and free water are linked by O–H···O hydrogen bonds. All of the above hydrogen bonds form a one-dimensional (1D)-chained structure. The 1D chains further links the molecule into a three-dimensional (3D)-layered structure. Full article
Figures

Figure 1

Open AccessArticle
Methods for Calculating Empires in Quasicrystals
Crystals 2017, 7(10), 304; doi:10.3390/cryst7100304 -
Abstract
This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this
[...] Read more.
This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this method finds the forced tiles with the restrictions in the high dimensional lattice (the mother lattice) that can be cut-and-projected into the lower dimensional quasicrystal. We compare our method to the two existing methods, namely one method that uses the algorithm of the Fibonacci chain to force the Ammann bars in order to find the forced tiles of an empire and the method that follows the work of N.G. de Bruijn on constructing a Penrose tiling as the dual to a pentagrid. This new method is not only conceptually simple and clear, but it also allows us to calculate the empires of the vertex configurations in a defected quasicrystal by reversing the configuration of the quasicrystal to its higher dimensional lattice, where we then apply the restrictions. These advantages may provide a key guiding principle for phason dynamics and an important tool for self error-correction in quasicrystal growth. Full article
Figures

Figure 1

Open AccessCommunication
Synthesis, Crystal Structure and Catalytic Activity of a Novel Ba(II) Complex with Pyridine-2-Carboxaldehyde-2-Phenylacetic Acid Hydrazone Ligand
Crystals 2017, 7(10), 305; doi:10.3390/cryst7100305 -
Abstract
A novel Ba(II) complex, [BaL2Cl2] (1) (L = pyridine-2-carboxaldehyde-2-phenylacetic acid hydrazone), has been synthesized using BaCl2, pyridine-2-carboxaldehyde and 2-phenylacetohydrazide as raw materials. The structure of 1 has been determined by elemental analysis and X-ray single-crystal diffraction technique.
[...] Read more.
A novel Ba(II) complex, [BaL2Cl2] (1) (L = pyridine-2-carboxaldehyde-2-phenylacetic acid hydrazone), has been synthesized using BaCl2, pyridine-2-carboxaldehyde and 2-phenylacetohydrazide as raw materials. The structure of 1 has been determined by elemental analysis and X-ray single-crystal diffraction technique. X-ray structural analysis showed that the Ba(II) complex (1) crystallizes in monoclinic, space group P21/c with cell parameters: a = 12.464(3) Å, b = 13.531(3) Å, c = 8.8035(18) Å, β = 95.06(3)°. In 1, the Ba(II) atom is eight-coordinated in a distorted doubly-capped octahedral geometry through four N atoms and two O atoms from two different pyridine-2-carboxaldehyde-2-phenylacetic acid hydrazone ligands and two Cl. The complex (1) forms a 3D network structure by the interaction of intermolecular N-H···Cl hydrogen bonds and π···π stacking of neighboring pyridine rings and benzene rings. The optimum conditions for the benzyl alcohol oxidation reaction using the Ba(II) complex as catalyst was investigated. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Modulating Nucleation by Kosmotropes and Chaotropes: Testing the Waters
Crystals 2017, 7(10), 0302; doi:10.3390/cryst7100302 -
Abstract
Water is a fundamental solvent sustaining life, key to the conformations and equilibria associated with solute species. Emerging studies on nucleation and crystallization phenomena reveal that the dynamics of hydration associated with mineral precursors are critical in determining material formation and growth. With
[...] Read more.
Water is a fundamental solvent sustaining life, key to the conformations and equilibria associated with solute species. Emerging studies on nucleation and crystallization phenomena reveal that the dynamics of hydration associated with mineral precursors are critical in determining material formation and growth. With certain small molecules affecting the hydration and conformational stability of co-solutes, this study systematically explores the effects of these chaotropes and kosmotropes as well as certain sugar enantiomers on the early stages of calcium carbonate formation. These small molecules appear to modulate mineral nucleation in a class-dependent manner. The observed effects are finite in comparison to the established, strong interactions between charged polymers and intermediate mineral forms. Thus, perturbations to hydration dynamics of ion clusters by co-solute species can affect nucleation phenomena in a discernable manner. Full article
Figures

Open AccessReview
The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure
Crystals 2017, 7(10), 286; doi:10.3390/cryst7100286 -
Abstract
The orbital angular momentum (OAM) of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM) system.
[...] Read more.
The orbital angular momentum (OAM) of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM) system. This paper reviews the recent progresses in photonic crystal fiber (PCF) supporting OAM modes, and summarizes why a PCF structure can be used to support stable OAM transmission modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission performance, such as good-quality OAM modes, enough separation of the effective indices, low confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also compare the transmission properties between the circular PCF and the ring core fiber, as well as the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are also discussed. Full article
Figures

Figure 1

Open AccessArticle
Impact of Annealing Temperature on the Physical Properties of the Lanthanum Deficiency Manganites
Crystals 2017, 7(10), 301; doi:10.3390/cryst7100301 -
Abstract
The lanthanum deficiency manganites La0.8-x□xCa0.2MnO3 (x = 0, 0.1 and 0.2), where □ is a lanthanum vacancy, were prepared using the classic ceramic methods with different thermal treatments (1373 K and 973 K).
[...] Read more.
The lanthanum deficiency manganites La0.8-x□xCa0.2MnO3 (x = 0, 0.1 and 0.2), where □ is a lanthanum vacancy, were prepared using the classic ceramic methods with different thermal treatments (1373 K and 973 K). The structural, magnetic, and magnetocaloric properties of these compounds were studied as a function of annealing temperature. It was noted that the annealing temperature did not affect the crystal structure of our samples (orthorhombic structure with Pnma space group). Nevertheless, a change in the variation of the unit cell volume V, the average bond length dMn–O, and the average bond angles θMn–O–Mn were observed. Magnetization versus temperature study has shown that all samples exhibited a magnetic transition from ferromagnetic (FM) to paramagnetic (PM) phase with increasing temperature. However, it can be clearly seen that the annealing at 973 K induced an increase of the magnetization. In addition, the magnetocaloric effect (MCE) as well as the relative cooling power (RCP) were estimated. As an important result, the values of MCE and RCP in our Lanthanum-deficiency manganites are reported to be near to those found in gadolinium, considered as magnetocaloric reference material. Full article
Figures

Figure 1a