Open AccessArticle
Effect of Pore Structure on Soot Deposition in Diesel Particulate Filter
Computation 2016, 4(4), 46; doi:10.3390/computation4040046 (registering DOI) -
Abstract
Nowadays, in the after-treatment of diesel exhaust gas, a diesel particulate filter (DPF) has been used to trap nano-particles of the diesel soot. However, as there are more particles inside the filter, the pressure which corresponds to the filter backpressure increases, which worsens
[...] Read more.
Nowadays, in the after-treatment of diesel exhaust gas, a diesel particulate filter (DPF) has been used to trap nano-particles of the diesel soot. However, as there are more particles inside the filter, the pressure which corresponds to the filter backpressure increases, which worsens the fuel consumption rate, together with the abatement of the available torque. Thus, a filter with lower backpressure would be needed. To achieve this, it is necessary to utilize the information on the phenomena including both the soot transport and its removal inside the DPF, and optimize the filter substrate structure. In this paper, to obtain useful information for optimization of the filter structure, we tested seven filters with different porosities and pore sizes. The porosity and pore size were changed systematically. To consider the soot filtration, the particle-laden flow was simulated by a lattice Boltzmann method (LBM). Then, the flow field and the pressure change were discussed during the filtration process. Full article
Figures

Figure 1

Open AccessEditorial
Special Issue “50th Anniversary of the Kohn–Sham Theory—Advances in Density Functional Theory”
Computation 2016, 4(4), 45; doi:10.3390/computation4040045 -
Abstract
The properties of many materials at the atomic scale depend on the electronic structure, which requires a quantum mechanical treatment. The most widely used approach to make such a treatment feasible is density functional theory (DFT), the advances in which were presented and
[...] Read more.
The properties of many materials at the atomic scale depend on the electronic structure, which requires a quantum mechanical treatment. The most widely used approach to make such a treatment feasible is density functional theory (DFT), the advances in which were presented and discussed during the DFT conference in Debrecen. Some of these issues are presented in this Special Issue. Full article
Figures

Figure 1

Open AccessArticle
Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber
Computation 2016, 4(4), 44; doi:10.3390/computation4040044 -
Abstract
The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water) pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator,
[...] Read more.
The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water) pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP) of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems. Full article
Figures

Figure 1

Open AccessArticle
A Theoretical Study of One- and Two-Photon Activity of D-Luciferin
Computation 2016, 4(4), 43; doi:10.3390/computation4040043 -
Abstract
In the present work, we have theoretically studied the one and two-photon absorption (OPA and TPA) probabilities of the native D-luciferin molecule and attempted to find the origin of its larger TPA cross-sections in polar solvents than in non-polar ones. The calculations using
[...] Read more.
In the present work, we have theoretically studied the one and two-photon absorption (OPA and TPA) probabilities of the native D-luciferin molecule and attempted to find the origin of its larger TPA cross-sections in polar solvents than in non-polar ones. The calculations using state-of-the-art linear and quadratic response theory in the framework of time-dependent density functional theory using hybrid B3LYP functional and cc-pVDZ basis set suggests that two-photon transition probability of this molecule increases with increasing solvent polarity. In order to explicate our present findings, we employed the generalized few-state-model and inspected the role of different optical channels related to the TPA process. We have found that the two-photon transition probability is always guided by a destructive interference term, the magnitude of which decreases with increasing solvent polarity. Furthermore, we have evaluated OPA parameters of D-luciferin and noticed that the the excitation energy is in very good agreement with the available experimental results. Full article
Figures

Open AccessArticle
A Mathematical Spline-Based Model of Cardiac Left Ventricle Anatomy and Morphology
Computation 2016, 4(4), 42; doi:10.3390/computation4040042 -
Abstract
Computer simulation of normal and diseased human heart activity requires a 3D anatomical model of the myocardium, including myofibers. For clinical applications, such a model has to be constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical models are shown
[...] Read more.
Computer simulation of normal and diseased human heart activity requires a 3D anatomical model of the myocardium, including myofibers. For clinical applications, such a model has to be constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical models are shown to be too rigid, so an analytical non-symmetrical model with enough flexibility is necessary. Based on previously-made anatomical models of the left ventricle, we propose a new, much more flexible spline-based analytical model. The model is fully described and verified against DT-MRI data. We show a way to construct it on the basis of sonography data. To use this model in further physiological simulations, we propose a numerical method to utilize finite differences in solving the reaction-diffusion problem together with an example of scroll wave dynamics simulation. Full article
Figures

Figure 1

Open AccessArticle
Evaluation of External Memory Access Performance on a High-End FPGA Hybrid Computer
Computation 2016, 4(4), 41; doi:10.3390/computation4040041 -
Abstract
The motivation of this research was to evaluate the main memory performance of a hybrid super computer such as the Convey HC-x, and ascertain how the controller performs in several access scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in
[...] Read more.
The motivation of this research was to evaluate the main memory performance of a hybrid super computer such as the Convey HC-x, and ascertain how the controller performs in several access scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in stencil computations. The theoretical bandwidth of the memory of the Convey is compared with the results of our measurements. The accurate study of the memory subsystem is particularly useful for users when they are developing their application-specific personality. Experiments were performed to measure the bandwidth between the coprocessor and the memory subsystem. The experiments aimed mainly at measuring the reading access speed of the memory from Application Engines (FPGAs). Different ways of accessing data were used in order to find the most efficient way to access memory. This way was proposed for future work in the Convey HC-x. When performing a series of accesses to memory, non-uniform latencies occur. The Memory Controller of the Convey HC-x in the coprocessor attempts to cover this latency. We measure memory efficiency as a ratio of the number of memory accesses and the number of execution cycles. The result of this measurement converges to one in most cases. In addition, we performed experiments with hand-coded memory accesses. The analysis of the experimental results shows how the memory subsystem and Memory Controllers work. From this work we conclude that the memory controllers do an excellent job, largely because (transparently to the user) they seem to cache large amounts of data, and hence hand-coding is not needed in most situations. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
A Multi-Compartment Hybrid Computational Model Predicts Key Roles for Dendritic Cells in Tuberculosis Infection
Computation 2016, 4(4), 39; doi:10.3390/computation4040039 -
Abstract
Tuberculosis (TB) is a world-wide health problem with approximately 2 billion people infected with Mycobacterium tuberculosis (Mtb, the causative bacterium of TB). The pathologic hallmark of Mtb infection in humans and Non-Human Primates (NHPs) is the formation of spherical structures, primarily in lungs,
[...] Read more.
Tuberculosis (TB) is a world-wide health problem with approximately 2 billion people infected with Mycobacterium tuberculosis (Mtb, the causative bacterium of TB). The pathologic hallmark of Mtb infection in humans and Non-Human Primates (NHPs) is the formation of spherical structures, primarily in lungs, called granulomas. Infection occurs after inhalation of bacteria into lungs, where resident antigen-presenting cells (APCs), take up bacteria and initiate the immune response to Mtb infection. APCs traffic from the site of infection (lung) to lung-draining lymph nodes (LNs) where they prime T cells to recognize Mtb. These T cells, circulating back through blood, migrate back to lungs to perform their immune effector functions. We have previously developed a hybrid agent-based model (ABM, labeled GranSim) describing in silico immune cell, bacterial (Mtb) and molecular behaviors during tuberculosis infection and recently linked that model to operate across three physiological compartments: lung (infection site where granulomas form), lung draining lymph node (LN, site of generation of adaptive immunity) and blood (a measurable compartment). Granuloma formation and function is captured by a spatio-temporal model (i.e., ABM), while LN and blood compartments represent temporal dynamics of the whole body in response to infection and are captured with ordinary differential equations (ODEs). In order to have a more mechanistic representation of APC trafficking from the lung to the lymph node, and to better capture antigen presentation in a draining LN, this current study incorporates the role of dendritic cells (DCs) in a computational fashion into GranSim. Results: The model was calibrated using experimental data from the lungs and blood of NHPs. The addition of DCs allowed us to investigate in greater detail mechanisms of recruitment, trafficking and antigen presentation and their role in tuberculosis infection. Conclusion: The main conclusion of this study is that early events after Mtb infection are critical to establishing a timely and effective response. Manipulating CD8+ and CD4+ T cell proliferation rates, as well as DC migration early on during infection can determine the difference between bacterial clearance vs. uncontrolled bacterial growth and dissemination. Full article
Figures

Figure 1

Open AccessEditorial
Obituary for Walter Kohn (1923–2016)
Computation 2016, 4(4), 40; doi:10.3390/computation4040040 -
Abstract Walter Kohn (Figure 1) is one of the most cited scientists of our time, who died on 19 April 2016 in Santa Barbara, CA, USA. [...] Full article
Figures

Figure 1

Open AccessArticle
Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers
Computation 2016, 4(4), 38; doi:10.3390/computation4040038 -
Abstract
We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB
[...] Read more.
We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling. Full article
Figures

Figure 1

Open AccessReview
Computational Streetscapes
Computation 2016, 4(3), 37; doi:10.3390/computation4030037 -
Abstract
Streetscapes have presented a long-standing interest in many fields. Recently, there has been a resurgence of attention on streetscape issues, catalyzed in large part by computing. Because of computing, there is more understanding, vistas, data, and analysis of and on streetscape phenomena than
[...] Read more.
Streetscapes have presented a long-standing interest in many fields. Recently, there has been a resurgence of attention on streetscape issues, catalyzed in large part by computing. Because of computing, there is more understanding, vistas, data, and analysis of and on streetscape phenomena than ever before. This diversity of lenses trained on streetscapes permits us to address long-standing questions, such as how people use information while mobile, how interactions with people and things occur on streets, how we might safeguard crowds, how we can design services to assist pedestrians, and how we could better support special populations as they traverse cities. Amid each of these avenues of inquiry, computing is facilitating new ways of posing these questions, particularly by expanding the scope of what-if exploration that is possible. With assistance from computing, consideration of streetscapes now reaches across scales, from the neurological interactions that form among place cells in the brain up to informatics that afford real-time views of activity over whole urban spaces. For some streetscape phenomena, computing allows us to build realistic but synthetic facsimiles in computation, which can function as artificial laboratories for testing ideas. In this paper, I review the domain science for studying streetscapes from vantages in physics, urban studies, animation and the visual arts, psychology, biology, and behavioral geography. I also review the computational developments shaping streetscape science, with particular emphasis on modeling and simulation as informed by data acquisition and generation, data models, path-planning heuristics, artificial intelligence for navigation and way-finding, timing, synthetic vision, steering routines, kinematics, and geometrical treatment of collision detection and avoidance. I also discuss the implications that the advances in computing streetscapes might have on emerging developments in cyber-physical systems and new developments in urban computing and mobile computing. Full article
Open AccessArticle
An Extremely Efficient Boundary Element Method for Wave Interaction with Long Cylindrical Structures Based on Free-Surface Green’s Function
Computation 2016, 4(3), 36; doi:10.3390/computation4030036 -
Abstract
The present study aims to develop an efficient numerical method for computing the diffraction and radiation of water waves with horizontal long cylindrical structures, such as floating breakwaters in the coastal region, etc. A higher-order scheme is used to discretize geometry of the
[...] Read more.
The present study aims to develop an efficient numerical method for computing the diffraction and radiation of water waves with horizontal long cylindrical structures, such as floating breakwaters in the coastal region, etc. A higher-order scheme is used to discretize geometry of the structure as well as the physical wave potentials. As the kernel of this method, Wehausen’s free-surface Green function is calculated by a newly-developed Gauss–Kronrod adaptive quadrature algorithm after elimination of its Cauchy-type singularities. To improve its computation efficiency, an analytical solution is derived for a fast evaluation of the Green function that needs to be implemented thousands of times. In addition, the OpenMP parallelization technique is applied to the formation of the influence coefficient matrix, significantly reducing the running CPU time. Computations are performed on wave-exciting forces and hydrodynamic coefficients for the long cylindrical structures, either floating or submerged. Comparison with other numerical and analytical methods demonstrates a good performance of the present method. Full article
Figures

Figure 1

Open AccessArticle
Image Segmentation for Cardiovascular Biomedical Applications at Different Scales
Computation 2016, 4(3), 35; doi:10.3390/computation4030035 -
Abstract
In this study, we present several image segmentation techniques for various image scales and modalities. We consider cellular-, organ-, and whole organism-levels of biological structures in cardiovascular applications. Several automatic segmentation techniques are presented and discussed in this work. The overall pipeline for
[...] Read more.
In this study, we present several image segmentation techniques for various image scales and modalities. We consider cellular-, organ-, and whole organism-levels of biological structures in cardiovascular applications. Several automatic segmentation techniques are presented and discussed in this work. The overall pipeline for reconstruction of biological structures consists of the following steps: image pre-processing, feature detection, initial mask generation, mask processing, and segmentation post-processing. Several examples of image segmentation are presented, including patient-specific abdominal tissues segmentation, vascular network identification and myocyte lipid droplet micro-structure reconstruction. Full article
Figures

Open AccessArticle
Towards TDDFT for Strongly Correlated Materials
Computation 2016, 4(3), 34; doi:10.3390/computation4030034 -
Abstract
We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT) for strongly-correlated materials in which the exchange-correlation (XC) kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach). We proceed with deriving the expression for
[...] Read more.
We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT) for strongly-correlated materials in which the exchange-correlation (XC) kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach). We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC) and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response. Full article
Figures

Figure 1

Open AccessArticle
The Influence of One-Electron Self-Interaction on d-Electrons
Computation 2016, 4(3), 33; doi:10.3390/computation4030033 -
Abstract
We investigate four diatomic molecules containing transition metals using two variants of hybrid functionals. We compare global hybrid functionals that only partially counteract self-interaction to local hybrid functionals that are designed to be formally free from one-electron self-interaction. As d-orbitals are prone
[...] Read more.
We investigate four diatomic molecules containing transition metals using two variants of hybrid functionals. We compare global hybrid functionals that only partially counteract self-interaction to local hybrid functionals that are designed to be formally free from one-electron self-interaction. As d-orbitals are prone to be particularly strongly influenced by self-interaction errors, one may have expected that self-interaction-free local hybrid functionals lead to a qualitatively different Kohn–Sham density of states than global hybrid functionals. Yet, we find that both types of hybrids lead to a very similar density of states. For both global and local hybrids alike, the intrinsic amount of exact exchange plays the dominant role in counteracting electronic self-interaction, whereas being formally free from one-electron self-interaction seems to be of lesser importance. Full article
Figures

Figure 1

Open AccessArticle
Calculation of the Acoustic Spectrum of a Cylindrical Vortex in Viscous Heat-Conducting Gas Based on the Navier–Stokes Equations
Computation 2016, 4(3), 32; doi:10.3390/computation4030032 -
Abstract
An extremely interesting problem in aero-hydrodynamics is the sound radiation of a single vortical structure. Currently, this type of problem is mainly considered for an incompressible medium. In this paper a method was developed to take into account the viscosity and thermal conductivity
[...] Read more.
An extremely interesting problem in aero-hydrodynamics is the sound radiation of a single vortical structure. Currently, this type of problem is mainly considered for an incompressible medium. In this paper a method was developed to take into account the viscosity and thermal conductivity of gas. The acoustic radiation frequency of a cylindrical vortex on a flat wall in viscous heat-conducting gas (air) has been investigated. The problem is solved on the basis of the Navier–Stokes equations using the small initial vorticity approach. The power expansion of unknown functions in a series with a small parameter (vorticity) is used. It is shown that there are high-frequency oscillations modulated by a low-frequency signal. The value of the high frequency remains constant for a long period of time. Thus the high frequency can be considered a natural frequency of the vortex radiation. The value of the natural frequency depends only on the initial radius of the cylindrical vortex, and does not depend on the intensity of the initial vorticity. As expected from physical considerations, the natural frequency decreases exponentially as the initial radius of the cylinder increases. Furthermore, the natural frequency differs from that of the oscillations inside the initial cylinder and in the outer domain. The results of the paper may be of interest for aeroacoustics and tornado modeling. Full article
Figures

Figure 1

Open AccessArticle
Computational Analysis of Natural Ventilation Flows in Geodesic Dome Building in Hot Climates
Computation 2016, 4(3), 31; doi:10.3390/computation4030031 -
Abstract
For centuries, dome roofs were used in traditional houses in hot regions such as the Middle East and Mediterranean basin due to its thermal advantages, structural benefits and availability of construction materials. This article presents the computational modelling of the wind- and buoyancy-induced
[...] Read more.
For centuries, dome roofs were used in traditional houses in hot regions such as the Middle East and Mediterranean basin due to its thermal advantages, structural benefits and availability of construction materials. This article presents the computational modelling of the wind- and buoyancy-induced ventilation in a geodesic dome building in a hot climate. The airflow and temperature distributions and ventilation flow rates were predicted using Computational Fluid Dynamics (CFD). The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations were solved using the CFD tool ANSYS FLUENT15. The standard k-epsilon was used as turbulence model. The modelling was verified using grid sensitivity and flux balance analysis. In order to validate the modelling method used in the current study, additional simulation of a similar domed-roof building was conducted for comparison. For wind-induced ventilation, the dome building was modelled with upper roof vents. For buoyancy-induced ventilation, the geometry was modelled with roof vents and also with two windows open in the lower level. The results showed that using the upper roof openings as a natural ventilation strategy during winter periods is advantageous and could reduce the indoor temperature and also introduce fresh air. The results also revealed that natural ventilation using roof vents cannot satisfy thermal requirements during hot summer periods and complementary cooling solutions should be considered. The analysis showed that buoyancy-induced ventilation model can still generate air movement inside the building during periods with no or very low wind. Full article
Figures

Open AccessArticle
Electron Correlations in Local Effective Potential Theory
Computation 2016, 4(3), 30; doi:10.3390/computation4030030 -
Abstract
Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and
[...] Read more.
Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic variables; and that (b) with the requirement that the model fermions are subject to the same external fields, the only correlations that must be considered are those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. The cases of both a static and time-dependent electromagnetic field, for which the basic variables are the density and physical current density, are considered. The examples of solely an external electrostatic or time-dependent electric field constitute special cases. An efficacious unification in terms of electron correlations, independent of the type of external field, is thereby achieved. The mapping is explicated for the example of a quantum dot in a magnetostatic field, and for a quantum dot in a magnetostatic and time-dependent electric field. Full article
Figures

Open AccessArticle
DiamondTorre Algorithm for High-Performance Wave Modeling
Computation 2016, 4(3), 29; doi:10.3390/computation4030029 -
Abstract
Effective algorithms of physical media numerical modeling problems’ solution are discussed. The computation rate of such problems is limited by memory bandwidth if implemented with traditional algorithms. The numerical solution of the wave equation is considered. A finite difference scheme with a cross
[...] Read more.
Effective algorithms of physical media numerical modeling problems’ solution are discussed. The computation rate of such problems is limited by memory bandwidth if implemented with traditional algorithms. The numerical solution of the wave equation is considered. A finite difference scheme with a cross stencil and a high order of approximation is used. The DiamondTorre algorithm is constructed, with regard to the specifics of the GPGPU’s (general purpose graphical processing unit) memory hierarchy and parallelism. The advantages of these algorithms are a high level of data localization, as well as the property of asynchrony, which allows one to effectively utilize all levels of GPGPU parallelism. The computational intensity of the algorithm is greater than the one for the best traditional algorithms with stepwise synchronization. As a consequence, it becomes possible to overcome the above-mentioned limitation. The algorithm is implemented with CUDA. For the scheme with the second order of approximation, the calculation performance of 50 billion cells per second is achieved. This exceeds the result of the best traditional algorithm by a factor of five. Full article
Figures

Open AccessArticle
Highly Excited States from a Time Independent Density Functional Method
Computation 2016, 4(3), 28; doi:10.3390/computation4030028 -
Abstract
A constrained optimized effective potential (COEP) methodology proposed earlier by us for singly low-lying excited states is extended to highly excited states having the same spatial and spin symmetry. Basic tenets of time independent density functional theory and its COEP implementation for excited
[...] Read more.
A constrained optimized effective potential (COEP) methodology proposed earlier by us for singly low-lying excited states is extended to highly excited states having the same spatial and spin symmetry. Basic tenets of time independent density functional theory and its COEP implementation for excited states are briefly reviewed. The amended Kohn–Sham-like equations for excited state orbitals and their specific features for highly excited states are discussed. The accuracy of the method is demonstrated using exchange-only calculations for highly excited states of the He and Li atoms. Full article
Open AccessArticle
Automatic Generation of Massively Parallel Codes from ExaSlang
Computation 2016, 4(3), 27; doi:10.3390/computation4030027 -
Abstract
Domain-specific languages (DSLs) have the potential to provide an intuitive interface for specifying problems and solutions for domain experts. Based on this, code generation frameworks can produce compilable source code. However, apart from optimizing execution performance, parallelization is key for pushing the limits
[...] Read more.
Domain-specific languages (DSLs) have the potential to provide an intuitive interface for specifying problems and solutions for domain experts. Based on this, code generation frameworks can produce compilable source code. However, apart from optimizing execution performance, parallelization is key for pushing the limits in problem size and an essential ingredient for exascale performance. We discuss necessary concepts for the introduction of such capabilities in code generators. In particular, those for partitioning the problem to be solved and accessing the partitioned data are elaborated. Furthermore, possible approaches to expose parallelism to users through a given DSL are discussed. Moreover, we present the implementation of these concepts in the ExaStencils framework. In its scope, a code generation framework for highly optimized and massively parallel geometric multigrid solvers is developed. It uses specifications from its multi-layered external DSL ExaSlang as input. Based on a general version for generating parallel code, we develop and implement widely applicable extensions and optimizations. Finally, a performance study of generated applications is conducted on the JuQueen supercomputer. Full article
Figures