Open AccessEditorial
Acknowledgement to Reviewers of Chemosensors in 2016
Chemosensors 2017, 5(1), 3; doi:10.3390/chemosensors5010003 -
Open AccessArticle
Nitrate Ion Selective Electrode Based on Ion Imprinted Poly(N-methylpyrrole)
Chemosensors 2017, 5(1), 2; doi:10.3390/chemosensors5010002 -
Abstract
A poly(N-methylpyrrole) based ion selective electrode (ISE) has been prepared by electro-polymerization of N-methylpyrrole using potassium nitrate as the supporting electrolyte. Electrochemical and chemical variables were used to optimize the potentiometric response of the electrodes and to maximize the selectivity
[...] Read more.
A poly(N-methylpyrrole) based ion selective electrode (ISE) has been prepared by electro-polymerization of N-methylpyrrole using potassium nitrate as the supporting electrolyte. Electrochemical and chemical variables were used to optimize the potentiometric response of the electrodes and to maximize the selectivity for nitrate over potential interferences. The selectivity, longevity and stability of the ion-imprinted polymer give this electrode advantages over traditional nitrate ISEs. The best prototype electrode exhibits a linear potential response to nitrate ion within the concentration range of 5.0 × 10−6 to 0.1 M nitrate with a near Nernstian slope of −56.3 mV per decade (R2 = 0.9998) and a strong preference for the nitrate ion over other anions. The selectivity coefficients of the electrode were evaluated by the fixed interference method. The use of N-methylpyrrole has advantages over pyrrole in terms of selectivity and pH insensitivity. Full article
Figures

Figure 1

Open AccessReview
Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection
Chemosensors 2017, 5(1), 1; doi:10.3390/chemosensors5010001 -
Abstract
Mycotoxin are small (MW ~700 Da), toxic secondary metabolites produced by fungal species that readily colonize crops and contaminate them at both pre- and post-harvesting. Among all, aflatoxins (AFs) are mycotoxins of major significance due to their presence in common food commodities and
[...] Read more.
Mycotoxin are small (MW ~700 Da), toxic secondary metabolites produced by fungal species that readily colonize crops and contaminate them at both pre- and post-harvesting. Among all, aflatoxins (AFs) are mycotoxins of major significance due to their presence in common food commodities and the potential threat to human health worldwide. Based on the severity of illness and increased incidences of AFs poisoning, a broad range of conventional and analytical detection techniques that could be useful and practical have already been reported. However, due to the variety of structural analogous of these toxins, it is impossible to use one common technique for their analysis. Numerous recent research efforts have been directed to explore alternative detection technologies. Recently, immunosensors and aptasensors have gained promising potential in the area of sample preparation and detection systems. These sensors offer the advantages of disposability, portability, miniaturization, and on-site analysis. In a typical design of an aptasensor, an aptamer (ssDNA or RNA) is used as a bio-recognition element either integrated within or in intimate association with the transducer surface. This review paper is focused on the recent advances in electrochemical immuno- and aptasensing platforms for detection of AFs in real samples. Full article
Figures

Open AccessArticle
A Voltammetric Sensor Based on Chemically Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for the Simultaneous Analysis of Uric Acid, Ascorbic Acid and Dopamine
Chemosensors 2016, 4(4), 25; doi:10.3390/chemosensors4040025 -
Abstract
A disposable screen-printed carbon electrode (SPCE) modified with chemically reduced graphene oxide (rGO) (rGO-SPCE) is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA), ascorbic acid (AA) and
[...] Read more.
A disposable screen-printed carbon electrode (SPCE) modified with chemically reduced graphene oxide (rGO) (rGO-SPCE) is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA), ascorbic acid (AA) and dopamine (DA). Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA, all vs. Ag/AgCl) were found. Differential pulse voltammetry was used to simultaneously detect UA, AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 μM for UA; 0.1 to 2.5 μM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 μM and 120.0 to 500 µM for DA, and the limits of detection (S/N = 3) are 0.1, 50.0, and 0.4 μM, respectively. The performance of the sensor was evaluated by analysing spiked human urine samples, and the recoveries were found to be well over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive analytical sensing tool for simultaneous analysis of UA, AA and DA. Full article
Figures

Figure 1

Open AccessArticle
The Smart Ring Experience in l’Aquila (Italy): Integrating Smart Mobility Public Services with Air Quality Indexes
Chemosensors 2016, 4(4), 24; doi:10.3390/chemosensors4040024 -
Abstract
This work presents the “City Dynamics and Smart Environment” activities of the Smart Ring project, a model for the smart city, based on the integration of sustainable urban transport services and environmental monitoring over a 4–5-km circular path, the “Smart Ring”, around the
[...] Read more.
This work presents the “City Dynamics and Smart Environment” activities of the Smart Ring project, a model for the smart city, based on the integration of sustainable urban transport services and environmental monitoring over a 4–5-km circular path, the “Smart Ring”, around the historical center of l’Aquila (Italy). We describe our pilot experience performed during an experimental on-demand public service electric bus, “SmartBus”, which was equipped with a multi-parametric air quality low-cost gas electrochemical sensor platform, “NASUS IV”. For five days (28–29 August 2014 and 1–3 September 2014), the sensor platform was installed inside the SmartBus and measured air quality gas compounds (nitrogen dioxide, carbon oxide, sulfur dioxide, hydrogen sulfide) during the service. Data were collected and analyzed on the bases of an air quality index, which provided qualitative insights on the air status potentially experienced by the users. The results obtained are in agreement with the synoptic meteorological conditions, the urban background air quality reference measurements and the potential traffic flow variations. Furthermore, they indicated that the air quality status was influenced by the gas component NO2, followed by H2S, SO2 and CO. We discuss the features of our campaign, and we highlight the potential, limitations and key factors to consider for future project designs. Full article
Figures

Figure 1

Open AccessArticle
Design of an Affibody-Based Recognition Strategy for Human Epidermal Growth Factor Receptor 2 (HER2) Detection by Electrochemical Biosensors
Chemosensors 2016, 4(4), 23; doi:10.3390/chemosensors4040023 -
Abstract
In this study, we have designed and realized three simple electrochemical bioassays for the detection of the human epidermal growth factor receptor 2 (HER2) cancer biomarker using magnetic beads coupling screen-printed arrays. The different approaches were based on a sandwich format in which
[...] Read more.
In this study, we have designed and realized three simple electrochemical bioassays for the detection of the human epidermal growth factor receptor 2 (HER2) cancer biomarker using magnetic beads coupling screen-printed arrays. The different approaches were based on a sandwich format in which affibody (Af) or antibody (Ab) molecules were coupled respectively to streptavidin or protein A-modified magnetic beads. The bioreceptor-modified beads were used to capture the HER2 protein from the sample and sandwich assay was performed by adding the labeled secondary affibody or the antibody. An enzyme-amplified detection scheme based on the coupling of secondary biotinylated bioreceptor with streptavidin-alkaline phosphatase enzyme conjugate was then applied. The enzyme catalyzed the hydrolysis of the electro-inactive 1-naphthyl-phosphate to the electro-active 1-naphthol, which was detected by means of differential pulse voltammetry (DPV). Each developed assay has been studied and optimized. Furthermore, a thorough comparison of the analytical performances of developed assays was performed. Finally, preliminary experiments using serum samples spiked with HER2 protein were also carried out. Full article
Figures

Figure 1

Open AccessArticle
Development and Application of Electrochemical Sensor Based on Molecularly Imprinted Polymer and Carbon Nanotubes for the Determination of Carvedilol
Chemosensors 2016, 4(4), 22; doi:10.3390/chemosensors4040022 -
Abstract
This work describes the preparation of a glassy carbon electrode (GCE) modified with molecularly imprinted polymer (MIP) and multiwalled carbon nanotubes (MWCNTs) for determination of carvedilol (CAR). Electrochemical behavior of CAR on the modified electrode was evaluated using cyclic voltammetry. The best composition
[...] Read more.
This work describes the preparation of a glassy carbon electrode (GCE) modified with molecularly imprinted polymer (MIP) and multiwalled carbon nanotubes (MWCNTs) for determination of carvedilol (CAR). Electrochemical behavior of CAR on the modified electrode was evaluated using cyclic voltammetry. The best composition was found to be 65% (m/m) of MIP. Under optimized conditions (pH 8.5 in 0.25 mol L−1 Britton–Robinson buffer and 0.1 mol L−1 KCl) the voltammetric method showed a linear response for CAR in the range of 50–325 µmol L−1 (R = 0.9755), with detection and quantification limits of 16.14 µmol L−1 and 53.8 µmol L−1, respectively. The developed method was successfully applied for determination of CAR in real samples of pharmaceuticals. The sensor presented good sensitivity, rapid detection of CAR, and quick and easy preparation. Furthermore, the material used as modifier has a simple synthesis and its amount utilized is very small, thus illustrating the economic feasibility of this sensor. Full article
Figures

Figure 1

Open AccessArticle
Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection
Chemosensors 2016, 4(4), 21; doi:10.3390/chemosensors4040021 -
Abstract
This study aims the preparation of a QCM sensor for the detection of bilirubin in human plasma. Bilirubin-imprinted poly-(2-hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) (PHEMATrp) nanofilm (MIP) on the gold surface of a QCM chip was synthesized by the molecular imprinting technique. Meanwhile,
[...] Read more.
This study aims the preparation of a QCM sensor for the detection of bilirubin in human plasma. Bilirubin-imprinted poly-(2-hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) (PHEMATrp) nanofilm (MIP) on the gold surface of a QCM chip was synthesized by the molecular imprinting technique. Meanwhile, the non-imprinted PHEMATrp (NIP) nanofilm was synthesized by the same experimental technique to examine the imprinting effect. Characterization of MIP and NIP nanofilms on the QCM chip surface was achieved by atomic force microscopy (AFM), ellipsometry, Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR) and contact angle measurements (CA). The observations indicated that the nanofilm was almost in a monolayer. Thereinafter, the imprinted and the non-imprinted QCM chips were connected to the QCM system to investigate kinetic and affinity properties. In order to examine the selectivity of the MIP-PHEMATrp nanofilm, competitive adsorption of bilirubin with cholesterol and estradiol was performed. Limit of detection (LOD) and limit of quantitation (LOQ) values were calculated as 0.45 μg/mL and 0.9 μg/mL, respectively. Full article
Figures

Open AccessReview
Recent Trends in Field-Effect Transistors-Based Immunosensors
Chemosensors 2016, 4(4), 20; doi:10.3390/chemosensors4040020 -
Abstract
Immunosensors are analytical platforms that detect specific antigen-antibody interactions and play an important role in a wide range of applications in biomedical clinical diagnosis, food safety, and monitoring contaminants in the environment. Field-effect transistors (FET) immunosensors have been developed as promising alternatives to
[...] Read more.
Immunosensors are analytical platforms that detect specific antigen-antibody interactions and play an important role in a wide range of applications in biomedical clinical diagnosis, food safety, and monitoring contaminants in the environment. Field-effect transistors (FET) immunosensors have been developed as promising alternatives to conventional immunoassays, which require complicated processes and long-time data acquisition. The electrical signal of FET-based immunosensors is generated as a result of the antigen-antibody conjugation. FET biosensors present real-time and rapid response, require small sample volume, and exhibit higher sensitivity and selectivity. This review brings an overview on the recent literature of FET-based immunosensors, highlighting a diversity of nanomaterials modified with specific receptors as immunosensing platforms for the ultrasensitive detection of various biomolecules. Full article
Figures

Open AccessArticle
Fungi Active Microbial Metabolism Detection of Rhizopus sp. and Aspergillus sp. Section Nigri on Strawberry Using a Set of Chemical Sensors Based on Carbon Nanostructures
Chemosensors 2016, 4(3), 19; doi:10.3390/chemosensors4030019 -
Abstract
We use a set of three resistive sensors based on undoped multi-walled carbon nanotubes, B-doped multi-walled carbon nanotubes, and N-doped multi-walled carbon nanotubes to study fungal infection in strawberries inoculated with Rhizopus sp. or with Aspergillus sp. section Nigri. We apply tristimulus
[...] Read more.
We use a set of three resistive sensors based on undoped multi-walled carbon nanotubes, B-doped multi-walled carbon nanotubes, and N-doped multi-walled carbon nanotubes to study fungal infection in strawberries inoculated with Rhizopus sp. or with Aspergillus sp. section Nigri. We apply tristimulus analysis using the conductance variation of the sensors when exposed to the infected strawberries to distinguish between uninfected strawberries and strawberries infected with Rhizopus sp. or with Aspergillus sp. section Nigri, and to obtain a graphical representation providing a tool for the simple and fast detection and identification of the fungal infection. Full article
Figures

Open AccessArticle
Miniaturized Aptamer-Based Assays for Protein Detection
Chemosensors 2016, 4(3), 18; doi:10.3390/chemosensors4030018 -
Abstract
The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders
[...] Read more.
The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM)-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS) analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR) assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range) assay conditions. Full article
Figures

Open AccessTechnical Note
A Low-Cost Label-Free AFB1 Impedimetric Immunosensor Based on Functionalized CD-Trodes
Chemosensors 2016, 4(3), 17; doi:10.3390/chemosensors4030017 -
Abstract
This work describes the investigation of a label-free immunosensor for the detection of aflatoxin B1 (AFB1). CD-trodes (electrodes obtained from recordable compact disks) were used as low-cost and disposable transducers after modification with a self-assembled monolayer (SAM) of lipoic acid.
[...] Read more.
This work describes the investigation of a label-free immunosensor for the detection of aflatoxin B1 (AFB1). CD-trodes (electrodes obtained from recordable compact disks) were used as low-cost and disposable transducers after modification with a self-assembled monolayer (SAM) of lipoic acid. The anti-aflatoxin B1 antibody was immobilized via EDC/NHS activation, followed by blocking with bovine serum albumin and immunoassays with AFB1. The optimization of analytical parameters and the detection were carried out using electrochemical impedance measurements. Using chemometric tools, the best conditions for the immunosensor development were defined as: anti-AFB1 antibody at 1:2000 dilution and surface blocking with 0.5% bovine serum albumin, both incubated for 1 h, and antibody–antigen immunoreaction for 30 min. The impedimetric immunosensor showed a linear range from 5 × 10−9 to 1 × 10−7 mol·L−1 (1.56–31.2 ng·mL−1), limit of detection and limit of quantification, respectively, 3.6 × 10−10 and 1.1 × 10−9mol·L−1 (0.11 and 0.34 ng·mL−1). The proposed immunosensor was applied to analyze peanut samples. Full article
Figures

Open AccessArticle
Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells
Chemosensors 2016, 4(3), 16; doi:10.3390/chemosensors4030016 -
Abstract
In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silver–gold core shell (Ag@Au),
[...] Read more.
In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silver–gold core shell (Ag@Au), gold–silver core shell (Au@Ag), and silver–gold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy. Full article
Figures

Open AccessArticle
Computational Analysis of Enhanced Circulating Tumour Cell (CTC) Separation in a Microfluidic System with an Integrated Dielectrophoretic-Magnetophorectic (DEP-MAP) Technique
Chemosensors 2016, 4(3), 14; doi:10.3390/chemosensors4030014 -
Abstract
Cell based cancer analysis is an important analytic method to monitor cancer progress on stages by detecting the density of circulating tumour cells (CTCs) in the blood. Among the existing microfluidic techniques, dielectrophoresis (DEP), which is a label-free detection method, is favoured by
[...] Read more.
Cell based cancer analysis is an important analytic method to monitor cancer progress on stages by detecting the density of circulating tumour cells (CTCs) in the blood. Among the existing microfluidic techniques, dielectrophoresis (DEP), which is a label-free detection method, is favoured by researchers. However, because of the high conductivity of blood as well as the rare presence of CTCs, high separation efficiency is difficult to achieve in most DEP microdevices. Through this study, we have proposed a strategy to improve the isolation performance, as such by integrating a magnetophoretic (MAP) platform into a DEP device. Several important aspects to be taken into MAP design consideration, such as permanent magnet orientation, magnetic track configuration, fluid flow parameter and separation efficiency, are discussed. The design was examined and validated by numerical simulation using COMSOL Multiphysics v4.4 software (COMSOL Inc., Burlington, MA, USA), mainly presented in three forms: surface plot, line plot, and arrow plot. From these results, we showed that the use of a single permanent magnet coupled with an inbuilt magnetic track of 250 μm significantly strengthens the magnetic field distribution within the proposed MAP stage. Besides, in order to improve dynamic pressure without compromising the uniformity of fluid flow, a wide channel inlet and a tree-like network were employed. When the cell trajectory within a finalized MAP stage is computed with a particle tracing module, a high separation efficiency of red blood cell (RBC) is obtained for blood samples corresponding up to a dilution ratio of 1:7. Moreover, a substantial enhancement of the CTCs’ recovery rate was also observed in the simulation when the purposed platform was integrated with a planar DEP microdevice. Full article
Figures

Open AccessCommunication
TiO2 Nanotubes Membrane Flexible Sensor for Low-Temperature H2S Detection
Chemosensors 2016, 4(3), 15; doi:10.3390/chemosensors4030015 -
Abstract
This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used
[...] Read more.
This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used to detect hydrogen sulphide within a concentration range of 6–38 ppm. The response to low concentrations of H2S at low temperature and good stability make the sensor a promising candidate for practical applications. These results support the proposal that the TiO2 nanotubes membrane flexible sensors are promising in portable on-site detection based on low cost nanomaterials. Full article
Figures

Open AccessReview
Guanine Quadruplex Electrochemical Aptasensors
Chemosensors 2016, 4(3), 13; doi:10.3390/chemosensors4030013 -
Abstract
Guanine-rich nucleic acids are able to self-assemble into G-quadruplex four-stranded secondary structures, which are found at the level of telomeric regions of chromosomes, oncogene promoter sequences and other biologically-relevant regions of the genome. Due to their extraordinary stiffness and biological role, G-quadruples become
[...] Read more.
Guanine-rich nucleic acids are able to self-assemble into G-quadruplex four-stranded secondary structures, which are found at the level of telomeric regions of chromosomes, oncogene promoter sequences and other biologically-relevant regions of the genome. Due to their extraordinary stiffness and biological role, G-quadruples become relevant in areas ranging from structural biology to medicinal chemistry, supra-molecular chemistry, nanotechnology and biosensor technology. In addition to classical methodologies, such as circular dichroism, nuclear magnetic resonance or crystallography, electrochemical methods have been successfully used for the rapid detection of the conformational changes from single-strand to G-quadruplex. This review presents recent advances on the G-quadruplex electrochemical characterization and on the design and applications of G-quadruplex electrochemical biosensors, with special emphasis on the G-quadruplex aptasensors and hemin/G-quadruplex peroxidase-mimicking DNAzyme biosensors. Full article
Figures

Open AccessReview
Aptasensors Based on Stripping Voltammetry
Chemosensors 2016, 4(3), 12; doi:10.3390/chemosensors4030012 -
Abstract
Aptasensors based on stripping voltammetry exhibit several advantages, such as high sensitivity and multi-target detection from stripping voltammetric technology, and high selectivity from the specific binding of apamers with targets. This review comprehensively discusses the recent accomplishments in signal amplification strategies based on
[...] Read more.
Aptasensors based on stripping voltammetry exhibit several advantages, such as high sensitivity and multi-target detection from stripping voltammetric technology, and high selectivity from the specific binding of apamers with targets. This review comprehensively discusses the recent accomplishments in signal amplification strategies based on nanomaterials, such as metal nanoparticles, semiconductor nanoparticles, and nanocomposite materials, which are detected by stripping voltammetry after suitable dissolution. Focus will be put in discussing multiple amplification strategies that are widely applied in aptasensors for small biomolecules, proteins, disease markers, and cancer cells. Full article
Figures

Open AccessArticle
Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms
Chemosensors 2016, 4(3), 11; doi:10.3390/chemosensors4030011 -
Abstract
In this work, a novel magnetic beads (MBs)-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2) is reported. It involves the use of sandwich-type immunoassays using selective capture and detector
[...] Read more.
In this work, a novel magnetic beads (MBs)-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2) is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs). Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs) and the H2O2/hydroquinone (HQ) system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg) in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs) in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens. Full article
Figures

Open AccessReview
Aptamer-Based Electrochemical Sensing of Lysozyme
Chemosensors 2016, 4(2), 10; doi:10.3390/chemosensors4020010 -
Abstract
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration,
[...] Read more.
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples. Full article
Open AccessCommunication
A Quality Control Assay to Access the HCl Molarity of Radionuclide Solutions
Chemosensors 2016, 4(2), 9; doi:10.3390/chemosensors4020009 -
Abstract
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 is
[...] Read more.
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 is performed with Inductively Coupled Plasma-Optical Emission spectroscopy (ICP-OES) and gamma spectroscopy. To meet Department of Energy specifications for HCl molarity the purified Strontium-82 solution needs to be tested to determine if the isotope is in the 0.05–0.5 M HCl range. This manuscript reports a simple HCl molarity test to determine if the purified Strontium-82 solution meets specifications. Validation of the assay was performed by evaluating all solutions associate with Strontium-82 processing. Full article