Open AccessArticle
Fungi Active Microbial Metabolism Detection of Rhizopus sp. and Aspergillus sp. Section Nigri on Strawberry Using a Set of Chemical Sensors Based on Carbon Nanostructures
Chemosensors 2016, 4(3), 19; doi:10.3390/chemosensors4030019 -
Abstract
We use a set of three resistive sensors based on undoped multi-walled carbon nanotubes, B-doped multi-walled carbon nanotubes, and N-doped multi-walled carbon nanotubes to study fungal infection in strawberries inoculated with Rhizopus sp. or with Aspergillus sp. section Nigri. We apply [...] Read more.
We use a set of three resistive sensors based on undoped multi-walled carbon nanotubes, B-doped multi-walled carbon nanotubes, and N-doped multi-walled carbon nanotubes to study fungal infection in strawberries inoculated with Rhizopus sp. or with Aspergillus sp. section Nigri. We apply tristimulus analysis using the conductance variation of the sensors when exposed to the infected strawberries to distinguish between uninfected strawberries and strawberries infected with Rhizopus sp. or with Aspergillus sp. section Nigri, and to obtain a graphical representation providing a tool for the simple and fast detection and identification of the fungal infection. Full article
Figures

Open AccessArticle
Miniaturized Aptamer-Based Assays for Protein Detection
Chemosensors 2016, 4(3), 18; doi:10.3390/chemosensors4030018 -
Abstract
The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein [...] Read more.
The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM)-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS) analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR) assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range) assay conditions. Full article
Figures

Open AccessTechnical Note
A Low-Cost Label-Free AFB1 Impedimetric Immunosensor Based on Functionalized CD-Trodes
Chemosensors 2016, 4(3), 17; doi:10.3390/chemosensors4030017 -
Abstract
This work describes the investigation of a label-free immunosensor for the detection of aflatoxin B1 (AFB1). CD-trodes (electrodes obtained from recordable compact disks) were used as low-cost and disposable transducers after modification with a self-assembled monolayer (SAM) of lipoic [...] Read more.
This work describes the investigation of a label-free immunosensor for the detection of aflatoxin B1 (AFB1). CD-trodes (electrodes obtained from recordable compact disks) were used as low-cost and disposable transducers after modification with a self-assembled monolayer (SAM) of lipoic acid. The anti-aflatoxin B1 antibody was immobilized via EDC/NHS activation, followed by blocking with bovine serum albumin and immunoassays with AFB1. The optimization of analytical parameters and the detection were carried out using electrochemical impedance measurements. Using chemometric tools, the best conditions for the immunosensor development were defined as: anti-AFB1 antibody at 1:2000 dilution and surface blocking with 0.5% bovine serum albumin, both incubated for 1 h, and antibody–antigen immunoreaction for 30 min. The impedimetric immunosensor showed a linear range from 5 × 10−9 to 1 × 10−7 mol·L−1 (1.56–31.2 ng·mL−1), limit of detection and limit of quantification, respectively, 3.6 × 10−10 and 1.1 × 10−9mol·L−1 (0.11 and 0.34 ng·mL−1). The proposed immunosensor was applied to analyze peanut samples. Full article
Figures

Open AccessArticle
Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells
Chemosensors 2016, 4(3), 16; doi:10.3390/chemosensors4030016 -
Abstract
In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silver–gold core shell [...] Read more.
In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silver–gold core shell (Ag@Au), gold–silver core shell (Au@Ag), and silver–gold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy. Full article
Figures

Open AccessArticle
Computational Analysis of Enhanced Circulating Tumour Cell (CTC) Separation in a Microfluidic System with an Integrated Dielectrophoretic-Magnetophorectic (DEP-MAP) Technique
Chemosensors 2016, 4(3), 14; doi:10.3390/chemosensors4030014 -
Abstract
Cell based cancer analysis is an important analytic method to monitor cancer progress on stages by detecting the density of circulating tumour cells (CTCs) in the blood. Among the existing microfluidic techniques, dielectrophoresis (DEP), which is a label-free detection method, is favoured [...] Read more.
Cell based cancer analysis is an important analytic method to monitor cancer progress on stages by detecting the density of circulating tumour cells (CTCs) in the blood. Among the existing microfluidic techniques, dielectrophoresis (DEP), which is a label-free detection method, is favoured by researchers. However, because of the high conductivity of blood as well as the rare presence of CTCs, high separation efficiency is difficult to achieve in most DEP microdevices. Through this study, we have proposed a strategy to improve the isolation performance, as such by integrating a magnetophoretic (MAP) platform into a DEP device. Several important aspects to be taken into MAP design consideration, such as permanent magnet orientation, magnetic track configuration, fluid flow parameter and separation efficiency, are discussed. The design was examined and validated by numerical simulation using COMSOL Multiphysics v4.4 software (COMSOL Inc., Burlington, MA, USA), mainly presented in three forms: surface plot, line plot, and arrow plot. From these results, we showed that the use of a single permanent magnet coupled with an inbuilt magnetic track of 250 μm significantly strengthens the magnetic field distribution within the proposed MAP stage. Besides, in order to improve dynamic pressure without compromising the uniformity of fluid flow, a wide channel inlet and a tree-like network were employed. When the cell trajectory within a finalized MAP stage is computed with a particle tracing module, a high separation efficiency of red blood cell (RBC) is obtained for blood samples corresponding up to a dilution ratio of 1:7. Moreover, a substantial enhancement of the CTCs’ recovery rate was also observed in the simulation when the purposed platform was integrated with a planar DEP microdevice. Full article
Figures

Open AccessCommunication
TiO2 Nanotubes Membrane Flexible Sensor for Low-Temperature H2S Detection
Chemosensors 2016, 4(3), 15; doi:10.3390/chemosensors4030015 -
Abstract
This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was [...] Read more.
This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used to detect hydrogen sulphide within a concentration range of 6–38 ppm. The response to low concentrations of H2S at low temperature and good stability make the sensor a promising candidate for practical applications. These results support the proposal that the TiO2 nanotubes membrane flexible sensors are promising in portable on-site detection based on low cost nanomaterials. Full article
Figures

Open AccessReview
Guanine Quadruplex Electrochemical Aptasensors
Chemosensors 2016, 4(3), 13; doi:10.3390/chemosensors4030013 -
Abstract
Guanine-rich nucleic acids are able to self-assemble into G-quadruplex four-stranded secondary structures, which are found at the level of telomeric regions of chromosomes, oncogene promoter sequences and other biologically-relevant regions of the genome. Due to their extraordinary stiffness and biological role, G-quadruples [...] Read more.
Guanine-rich nucleic acids are able to self-assemble into G-quadruplex four-stranded secondary structures, which are found at the level of telomeric regions of chromosomes, oncogene promoter sequences and other biologically-relevant regions of the genome. Due to their extraordinary stiffness and biological role, G-quadruples become relevant in areas ranging from structural biology to medicinal chemistry, supra-molecular chemistry, nanotechnology and biosensor technology. In addition to classical methodologies, such as circular dichroism, nuclear magnetic resonance or crystallography, electrochemical methods have been successfully used for the rapid detection of the conformational changes from single-strand to G-quadruplex. This review presents recent advances on the G-quadruplex electrochemical characterization and on the design and applications of G-quadruplex electrochemical biosensors, with special emphasis on the G-quadruplex aptasensors and hemin/G-quadruplex peroxidase-mimicking DNAzyme biosensors. Full article
Figures

Open AccessReview
Aptasensors Based on Stripping Voltammetry
Chemosensors 2016, 4(3), 12; doi:10.3390/chemosensors4030012 -
Abstract
Aptasensors based on stripping voltammetry exhibit several advantages, such as high sensitivity and multi-target detection from stripping voltammetric technology, and high selectivity from the specific binding of apamers with targets. This review comprehensively discusses the recent accomplishments in signal amplification strategies based [...] Read more.
Aptasensors based on stripping voltammetry exhibit several advantages, such as high sensitivity and multi-target detection from stripping voltammetric technology, and high selectivity from the specific binding of apamers with targets. This review comprehensively discusses the recent accomplishments in signal amplification strategies based on nanomaterials, such as metal nanoparticles, semiconductor nanoparticles, and nanocomposite materials, which are detected by stripping voltammetry after suitable dissolution. Focus will be put in discussing multiple amplification strategies that are widely applied in aptasensors for small biomolecules, proteins, disease markers, and cancer cells. Full article
Figures

Open AccessArticle
Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms
Chemosensors 2016, 4(3), 11; doi:10.3390/chemosensors4030011 -
Abstract
In this work, a novel magnetic beads (MBs)-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2) is reported. It involves the use of sandwich-type immunoassays using selective capture and [...] Read more.
In this work, a novel magnetic beads (MBs)-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2) is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs). Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs) and the H2O2/hydroquinone (HQ) system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg) in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs) in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens. Full article
Figures

Open AccessReview
Aptamer-Based Electrochemical Sensing of Lysozyme
Chemosensors 2016, 4(2), 10; doi:10.3390/chemosensors4020010 -
Abstract
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its [...] Read more.
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples. Full article
Open AccessCommunication
A Quality Control Assay to Access the HCl Molarity of Radionuclide Solutions
Chemosensors 2016, 4(2), 9; doi:10.3390/chemosensors4020009 -
Abstract
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 [...] Read more.
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 is performed with Inductively Coupled Plasma-Optical Emission spectroscopy (ICP-OES) and gamma spectroscopy. To meet Department of Energy specifications for HCl molarity the purified Strontium-82 solution needs to be tested to determine if the isotope is in the 0.05–0.5 M HCl range. This manuscript reports a simple HCl molarity test to determine if the purified Strontium-82 solution meets specifications. Validation of the assay was performed by evaluating all solutions associate with Strontium-82 processing. Full article
Open AccessArticle
A Double Layer Sensing Electrode “BaTi(1-X)RhxO3/Al-Doped TiO2” for NO2 Detection above 600 °C
Chemosensors 2016, 4(2), 8; doi:10.3390/chemosensors4020008 -
Abstract
NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO[...] Read more.
NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO2/NO ≥ 500 °C lies on the NO side. High temperature stability of TiO2 makes it a promising material for elevated temperature towards CO, H2, and NO2. The doping of TiO2 with Al3+ (Al:TiO2) increases the sensitivity and selectivity of sensors to NO2 and results in a relatively low cross-sensitivity towards CO. The results indicate that NO2 exposure results in a resistance decrease of the sensors with the single Al:TiO2 layers at 600 °C, with a resistance increase at 800 °C. This alteration in the sensor response in the temperature range of 600 °C and 800 °C may be due to the mentioned thermodynamic equilibrium changes between NO and NO2. This work investigates the NO2-sensing behavior of duplex layers consisting of Al:TiO2 and BaTi(1-x)RhxO3 catalysts in the temperature range of 600 °C and 900 °C. Al:TiO2 layers were deposited by reactive magnetron sputtering on interdigitated sensor platforms, while a catalytic layer, which was synthesized by wet chemistry in the form of BaTi(1-x)RhxO3 powders, were screen-printed as thick layers on the Al:TiO2-layers. The use of Rh-incorporated BaTiO3 perovskite (BaTi(1-x)RhxO3) as a catalytic filter stabilizes the sensor response of Al-doped TiO2 layers yielding more reliable sensor signal throughout the temperature range. Full article
Figures

Open AccessArticle
Development of a Novel Cu(II) Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination of Dissolved Oxygen (DO) in Water
Chemosensors 2016, 4(2), 7; doi:10.3390/chemosensors4020007 -
Abstract
The development of an electrochemical dissolved oxygen (DO) sensor based on a novel Cu(II) complex-modified screen printed carbon electrode is reported. The voltammetric behavior of the modified electrode was investigated at different scan rates and oxygen concentrations in PBS (pH = 7). [...] Read more.
The development of an electrochemical dissolved oxygen (DO) sensor based on a novel Cu(II) complex-modified screen printed carbon electrode is reported. The voltammetric behavior of the modified electrode was investigated at different scan rates and oxygen concentrations in PBS (pH = 7). An increase of cathodic current (at about −0.4 vs. Ag/AgCl) with the addition of oxygen was observed. The modified Cu(II) complex electrode was demonstrated for the determination of DO in water using chronoamperometry. A small size and low power consumption home-made portable electrochemical analyzer based on custom electronics for sensor interfacing and operating in voltammetry and amperometry modes has been also designed and fabricated. Its performances in the monitoring of DO in water were compared with a commercial one. Full article
Figures

Open AccessReview
ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors
Chemosensors 2016, 4(2), 6; doi:10.3390/chemosensors4020006 -
Abstract
One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we [...] Read more.
One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we provide a review of the recent research activities focused on the synthesis and sensing properties of pure, doped, and functionalized ZnO quasi-one dimensional nanostructures. We describe the development prospects in the preparation methods and modifications of the surface structure of ZnO, and discuss its sensing mechanism. Next, we analyze the sensing properties of ZnO quasi-one dimensional nanostructures, and summarize perspectives concerning future research on their synthesis and applications in conductometric sensing devices. Full article
Figures

Open AccessArticle
Turn on Fluorescent Probes for Selective Targeting of Aldehydes
Chemosensors 2016, 4(1), 5; doi:10.3390/chemosensors4010005 -
Abstract
Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP) fluorophore and a xanthene-derived fluorophore (rosamine) were prepared. Model compounds of their product with an aldehyde were prepared using [...] Read more.
Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP) fluorophore and a xanthene-derived fluorophore (rosamine) were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4). These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes. Full article
Figures

Open AccessReview
Chemical Vapour Deposition of Gas Sensitive Metal Oxides
Chemosensors 2016, 4(1), 4; doi:10.3390/chemosensors4010004 -
Abstract
This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD), presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing [...] Read more.
This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD), presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing performance. Thin films typically have poorer gas sensing performance compared to traditional screen printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with the sensor platform provides important process benefits compared to competing synthetic techniques. We conclude that these advantages are likely to drive increased interest in the use of CVD for gas sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter microstructure can help mitigate the potentially reduced performance in thin films, hence the current prospects for use of CVD in this field look excellent. Full article
Figures

Open AccessFeature PaperArticle
Gas Sensing Studies of an n-n Hetero-Junction Array Based on SnO2 and ZnO Composites
Chemosensors 2016, 4(1), 3; doi:10.3390/chemosensors4010003 -
Abstract
A composite metal oxide semiconductor (MOS) sensor array based on tin dioxide (SNO2) and zinc oxide (ZnO) has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy [...] Read more.
A composite metal oxide semiconductor (MOS) sensor array based on tin dioxide (SNO2) and zinc oxide (ZnO) has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The array was evaluated against a number of environmentally important reducing and oxidizing gases across a range of operating temperatures (300–500 °C). The highest response achieved was against 100 ppm ethanol by the 50 wt% ZnO–50 wt% SnO2 device, which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart (which displayed a response of 24.4) and a 12.3-fold enhancement with respect to the pure ZnO counterpart (which was associated with a response of 8.9), towards the same concentration of the analyte. Cross sensitivity studies were also carried out against a variety of reducing gases at an operating temperature of 300 °C. The sensors array showed selectivity towards ethanol. The enhanced behaviour of the mixed oxide materials was influenced by junction effects, composition, the packing structure and the device microstructure. The results show that it is possible to tune the sensitivity and selectivity of a composite sensor, through a simple change in the composition of the composite. Full article
Figures

Open AccessEditorial
Acknowledgement to Reviewers of Chemosensors in 2015
Chemosensors 2016, 4(1), 2; doi:10.3390/chemosensors4010002 -
Abstract The editors of Chemosensors would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article
Open AccessArticle
Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures
Chemosensors 2016, 4(1), 1; doi:10.3390/chemosensors4010001 -
Abstract
Several technologies are available for decreasing nitrogen oxide (NOx) emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO) and nitrogen dioxide (NO2). As the stoichiometry of the two reactions is different, electrochemical sensor [...] Read more.
Several technologies are available for decreasing nitrogen oxide (NOx) emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO) and nitrogen dioxide (NO2). As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated. Full article
Figures

Open AccessArticle
Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode
Chemosensors 2015, 3(4), 284-294; doi:10.3390/chemosensors3040284 -
Abstract
The PVC membrane of an ion-selective electrode (ISE) sensitive to dibasic phosphate ions (HPO4-ISE) has not been optimized for maximum selectivity, sensitivity, and useable ISE lifetime and further work was necessary to improve its performance. Two areas of investigation are [...] Read more.
The PVC membrane of an ion-selective electrode (ISE) sensitive to dibasic phosphate ions (HPO4-ISE) has not been optimized for maximum selectivity, sensitivity, and useable ISE lifetime and further work was necessary to improve its performance. Two areas of investigation are reported here: include the parameters for the lipophilicity of the plasticizer compound used and the amount of cyclic polyamine ionophore incorporated in the PVC membrane. Six candidate plasticizers with a range of lipophilicity were evaluated for their effect on the useable lifetime, sensitivity, and selectivity of the ISE against 13 different anions. Selectivity was determined by a modified fixed interferent method, sensitivity was determined without interferents, and the usable lifetime evaluated at the elapsed time where 50% of the HPO4-ISE failed (L50). The results show that choosing a plasticizer that has a lipophilicity similar to the ionophore’s results in the best selectivity and sensitivity and the longest L50. Full article
Figures