Open AccessEditorial
Novel 2D-Inorganic Materials for Gas Sensing
Chemosensors 2017, 5(4), 29; doi:10.3390/chemosensors5040029 -
Open AccessFeature PaperReview
Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide
Chemosensors 2017, 5(4), 28; doi:10.3390/chemosensors5040028 -
Abstract
Hydrogen peroxide (H2O2) plays a key role in many biological processes spanning from coral bleaching, over cell signaling to aging. However, exact quantitative assessments of concentrations and dynamics of H2O2 remain challenging due to methodological limitations—especially
[...] Read more.
Hydrogen peroxide (H2O2) plays a key role in many biological processes spanning from coral bleaching, over cell signaling to aging. However, exact quantitative assessments of concentrations and dynamics of H2O2 remain challenging due to methodological limitations—especially at very low (sub μM) concentrations. Most published optical detection schemes for H2O2 suffer from irreversibility, cross sensitivity to other analytes such as other reactive oxygen species (ROS) or pH, instability, temperature dependency or limitation to a specific medium. We review optical detection schemes for H2O2, compare their specific advantages and disadvantages, and discuss current challenges and new approaches for quantitative optical H2O2 detection, with a special focus on luminescence-based measurements. We also review published concentration ranges for H2O2 in natural habitats, and physiological concentrations in different biological samples to provide guidelines for future experiments and sensor development in biomedical and environmental science. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Oxygen Sensing by the Hybrid Langmuir-Blodgett Films of Iridium(III) Complexes and Synthetic Saponite on the Basis of Energy Transfer
Chemosensors 2017, 5(4), 27; doi:10.3390/chemosensors5040027 -
Abstract
An ultra-thin hybrid film of amphiphilic iridium(III) complexes and synthetic saponite was manipulated by means of the modified Langmuir-Blodgett method. In the film deposited onto a quartz substrate, the external mixed molecular layer of amphiphilic iridium(III) complexes was reinforced by the inner layer
[...] Read more.
An ultra-thin hybrid film of amphiphilic iridium(III) complexes and synthetic saponite was manipulated by means of the modified Langmuir-Blodgett method. In the film deposited onto a quartz substrate, the external mixed molecular layer of amphiphilic iridium(III) complexes was reinforced by the inner layer of exfoliated synthetic saponite. As components of the molecular layer, two iridium(III) complexes were used: [Ir(dfppy)2(dc9bpy)]+ (dfppyH = 2-(4′,6′-difluorophenyl) pyridine; dc9bpy = 4,4′-dinonyl-2,2′-bipyridine) (denoted as DFPPY) and [Ir(piq)2(dc9bpy)]+ (piqH = 1-phenyisoquinoline)) denoted as PIQ). The emission spectra from the films changed from blue to red maxima with the decrease of a ratio of DFPPY/PIQ due to the energy transfer from excited DFPPY to PIQ. The intensity of red decreased with the increase of oxygen pressure through the quenching of excited iridium(III) complexes, promising a possibility as an oxygen-sensing film. Full article
Figures

Chart 1

Open AccessArticle
Fluorescence Chemosensory Determination of Cu2+ Using a New Rhodamine–Morpholine Conjugate
Chemosensors 2017, 5(3), 26; doi:10.3390/chemosensors5030026 -
Abstract
A new rhodamine-B carbonyl-morpholine derivative (denoted as RECM) was prepared by a two-step synthesis procedure. The employed method allowed a lactam ring development of rhodamine-B and ethylenediamine to demonstrate a facile amide bond formation. The obtained RECM was confirmed by 1H NMR,
[...] Read more.
A new rhodamine-B carbonyl-morpholine derivative (denoted as RECM) was prepared by a two-step synthesis procedure. The employed method allowed a lactam ring development of rhodamine-B and ethylenediamine to demonstrate a facile amide bond formation. The obtained RECM was confirmed by 1H NMR, 13C NMR, and mass spectrometry analysis. RECM was formed to detect copper ion (Cu2+) due to its problematic toxicity features in aquatic ecosystems. It showed a high selectivity toward Cu2+ in comparison with some environmentally relevant alkali, alkaline earth, and transition metal cations at 50 µM in acetonitrile. Moreover, non-fluorescent RECM showed fluorescence intensity and UV-Vis absorbance increases in the presence of Cu2+ with high linear dependent coefficients (R2 = 0.964 and R2 = 0.982 respectively) as well as a color change from colorless to pink owing to the ring opening of the rhodamine spirolactam form. Binding capability experiments presented a clear 1:1 stoichiometry of RECM–Cu2+ complex with the binding constant (Ka) as 2.25 × 104 M−1. The calculation of limits of detection (LOD) was 0.21 µM based on the linear regression method, which is below the maximum contaminant level goal (MCLG) value of Cu2+ (1.3 ppm equals to 20.46 µM) in drinking water. These characteristics make the RECM a promising candidate for the real-time detection of toxic Cu2+ in environmental monitoring applications. Full article
Figures

Figure 1

Open AccessArticle
Voltammetric Determination of Anti-Hypertensive Drug Hydrochlorothiazide Using Screen-Printed Electrodes Modified with L-Glutamic Acid
Chemosensors 2017, 5(3), 25; doi:10.3390/chemosensors5030025 -
Abstract
This work deals with the development of screen-printed carbon electrodes modified with L-glutamic acid via two different approaches: electropolymerization (SPCE/PGA) and aryl diazonium electrochemical grafting (SPCE/EGA). SPCE/PGA and SPCE/EGA were analytically compared in the determination of hydrochlorothiazide (HCTZ) by differential pulse voltammetry. Both
[...] Read more.
This work deals with the development of screen-printed carbon electrodes modified with L-glutamic acid via two different approaches: electropolymerization (SPCE/PGA) and aryl diazonium electrochemical grafting (SPCE/EGA). SPCE/PGA and SPCE/EGA were analytically compared in the determination of hydrochlorothiazide (HCTZ) by differential pulse voltammetry. Both electrochemical characterization and analytical performance indicate that SPCE/EGA is a much better sensor for HCTZ. The detection and quantification limits were at the level of μmol L−1 with a very good linearity in the studied concentration range. In addition, the proposed SPCE/EGA was successfully applied for the determination of HCTZ in an anti-hypertensive drug with high reproducibility and good trueness. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Low-Frequency Electrochemical Impedance Spectroscopy as a Monitoring Tool for Yeast Growth in Industrial Brewing Processes
Chemosensors 2017, 5(3), 24; doi:10.3390/chemosensors5030024 -
Abstract
Today’s yeast total biomass and viability measurements during the brewing process are dependent on offline methods such as methylene blue or florescence dye-based staining, and/or the usage of flow cytometric measurements. Additionally, microscopic cell counting methods decelerate an easy and quick prediction of
[...] Read more.
Today’s yeast total biomass and viability measurements during the brewing process are dependent on offline methods such as methylene blue or florescence dye-based staining, and/or the usage of flow cytometric measurements. Additionally, microscopic cell counting methods decelerate an easy and quick prediction of yeast viability. These processes are time consuming and result in a time-delayed response signal, which not only reduces the knowledge of the performance of the yeast itself, but also impacts the quality of the final product. Novel approaches in process monitoring during the aerobic and anaerobic fermentation of Saccharomyces cerevisiae are not only limited to classical pH, dO2 and off-gas analysis, but they also use different in situ and online sensors based on different physical principles to determine the biomass, product quality and cell death. Within this contribution, electrochemical impedance spectroscopy (EIS) was used to monitor the biomass produced in aerobic and anaerobic batch cultivation approaches, simulating the propagation and fermentation unit operation of industrial brewing processes. Increases in the double-layer capacitance (CDL), determined at frequencies below 1 kHz, were proportional to the increase of biomass in the batch, which was monitored in the online and inline mode. A good correlation of CDL with the cell density was found. In order to prove the robustness and flexibility of this novel method, different state-of-the-art biomass measurements (dry cell weight—DCW and optical density—OD) were performed for comparison. Because measurements in this frequency range are largely determined by the double-layer region between the electrode and media, rather minor interferences with process parameters (aeration and stirring) were to be expected. It is shown that impedance spectroscopy at low frequencies is not only a powerful tool for the monitoring of viable yeast cell concentrations during operation, but it is also perfectly suited to determining physiological states of the cells, and may facilitate biomass monitoring in the brewing and yeast-propagating industry drastically. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Thin 2D: The New Dimensionality in Gas Sensing
Chemosensors 2017, 5(3), 21; doi:10.3390/chemosensors5030021 -
Abstract
Since the first report of graphene, thin two-dimensional (2D) nanomaterials with atomic or molecular thicknesses have attracted great research interest for gas sensing applications. This was due to the distinctive physical, chemical, and electronic properties related to their ultrathin thickness, which positively affect
[...] Read more.
Since the first report of graphene, thin two-dimensional (2D) nanomaterials with atomic or molecular thicknesses have attracted great research interest for gas sensing applications. This was due to the distinctive physical, chemical, and electronic properties related to their ultrathin thickness, which positively affect the gas sensing performances. This feature article discusses the latest developments in this field, focusing on the properties, preparation, and sensing applications of thin 2D inorganic nanomaterials such as single- or few-layer layered double hydroxides/transition metal oxides/transition metal dichalcogenides. Recent studies have shown that thin 2D inorganic nanomaterials could provide monitoring of harmful/toxic gases with high sensitivity and a low concentration detection limit by means of conductometric sensors operating at relatively low working temperatures. Promisingly, by using these thin 2D inorganic nanomaterials, it may open a simple way of improving the sensing capabilities of conductometric gas sensors. Full article
Figures

Figure 1

Open AccessReview
Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides
Chemosensors 2017, 5(3), 23; doi:10.3390/chemosensors5030023 -
Abstract
The goal of achieving food safety and quality has become increasingly important in relevant areas. The achievement of this objective includes a significant effort in different areas related to the production of raw materials, storage, transportation, etc. One of the central areas in
[...] Read more.
The goal of achieving food safety and quality has become increasingly important in relevant areas. The achievement of this objective includes a significant effort in different areas related to the production of raw materials, storage, transportation, etc. One of the central areas in the verification of food safety and food quality control is related to the analysis of food components and, in particular, possible toxic substances that they may contain. Therefore, the demand for appropriate methods for the determination of these substances is increasingly demanding. Thus, not only is accuracy and precision sought in the results of the analysis, but also the speed, simplicity and lowering of costs. In this way, electrochemical techniques and, particularly, electrochemical biosensors have emerged in recent times as good candidates to satisfy such requirements. This review summarizes the advances made in research and development centers located in South American countries related to the development of electrochemical biosensors for the determination of toxic substances present in foods, particularly mycotoxins and herbicides. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture
Chemosensors 2017, 5(3), 22; doi:10.3390/chemosensors5030022 -
Abstract
Nanocomposite-based quantum resistive vapour sensors (vQRS) have been developed from the assembly of hybrid copolymers of polyhedral oligomeric silsesquioxane (POSS) and poly(methyl methacrylate) (PMMA) or poly(styrene) (PS) with carbon nanotubes (CNT). The originality of the resulting conducting architecture is expected to be responsible
[...] Read more.
Nanocomposite-based quantum resistive vapour sensors (vQRS) have been developed from the assembly of hybrid copolymers of polyhedral oligomeric silsesquioxane (POSS) and poly(methyl methacrylate) (PMMA) or poly(styrene) (PS) with carbon nanotubes (CNT). The originality of the resulting conducting architecture is expected to be responsible for the ability of the transducer to detect sub-ppm concentrations of ammonia and formaldehyde at room temperature despite the presence of humidity. In particular, the boosting effect of POSS is evidenced in CNT-based nanocomposite vQRS. The additive fabrication by spraying layer-by-layer provides (sLbL) is an effective method to control the reproducibility of the transducers’ chemo-resistive responses. In dry atmosphere, the two types of sensors showed a high sensitivity towards both hazardous gases, as they were able to detect 300 ppb of formaldehyde and 500 ppb of ammonia with a sufficiently good signal to noise ratio (SNR > 10). They also exhibited a quick response times less than 5 s for both vapours and, even in the presence of 100 ppm of water, they were able to detect small amounts of gases (1.5 ppm of NH3 and 9 ppm of CH2O). The results suggest promising applications of POSS-based vQRS for air quality or volatolome monitoring. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Comparison of the Sensing Properties of ZnO Nanowalls-Based Sensors toward Low Concentrations of CO and NO2
Chemosensors 2017, 5(3), 20; doi:10.3390/chemosensors5030020 -
Abstract
This work focuses on the synthesis and gas sensing properties of ZnO nanowalls (ZnO NWLs) grown by a simple cheap chemical bath deposition method on a thin layer of aluminum (about 20 nm thick) printed on the Pt interdigitated electrodes area of conductometric
[...] Read more.
This work focuses on the synthesis and gas sensing properties of ZnO nanowalls (ZnO NWLs) grown by a simple cheap chemical bath deposition method on a thin layer of aluminum (about 20 nm thick) printed on the Pt interdigitated electrodes area of conductometric alumina platforms. Post-deposition annealing in nitrogen atmosphere at 300 °C enabled the formation of a ZnO intertwined 2D foils network. A wide characterization was carried out to investigate the composition, morphology and microstructure of the nanowalls layer formed. The gas sensing properties of the films were studied by measuring the changes of electrical resistance upon exposure to low concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) in air. The sensor response to CO or NO2 was found to be strongly dependent on the operating temperature, providing a means to tailor the sensitivity and selectivity toward these selected target gases. Full article
Figures

Figure 1

Open AccessArticle
Ultra-Sensitive Optical Resonator for Organic Solvents Detection Based on Whispering Gallery Modes
Chemosensors 2017, 5(2), 19; doi:10.3390/chemosensors5020019 -
Abstract
In this paper, a novel technique using an ultra-sensitive optical resonator based on whispering gallery modes (WGM) is proposed to detect the diffusion of organic solvents. The sensor configuration is a micro-cavity made of polymeric material. When the solvent starts to diffuse, the
[...] Read more.
In this paper, a novel technique using an ultra-sensitive optical resonator based on whispering gallery modes (WGM) is proposed to detect the diffusion of organic solvents. The sensor configuration is a micro-cavity made of polymeric material. When the solvent starts to diffuse, the polymer of the cavity starts to swallow that solvent. A swollen elastomer is in fact a solution, except that its mechanical response is now elastic rather than viscous. As solvents fill the network, chains are extended. In turn, that leads to the change of the morphology and mechanical properties of the sensing element. These changes could be measured by tracking the WGM shifts. Several experiments were carried out to measure that swelling force. Ethanol and methanol are used in this paper as candidates to study their driving force of diffusion (concentration gradient) on the cavity. Additionally, this sensing design can be used for biological sensing application. Breath diagnosis can use this configuration in diabetes diagnosis since a solvent like acetone concentration in human breath leads to a quick, convenient, accurate, and painless breath diagnosis of diabetes. The optical resonator results are verified through two different analyses: theoretical and experimental modeling. These micro-optical cavities have been examined using preliminary experiments to fully investigate their response and to verify the numerical analysis. Results show that the proposed sensor yields sensitivity for the driving force of diffusion (concentration gradient) (9.405 × 1013 pm/N) with a measurement precision of ~3.6 fN. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Highly Sensitive ZnO(Ga, In) for Sub-ppm Level NO2 Detection: Effect of Indium Content
Chemosensors 2017, 5(2), 18; doi:10.3390/chemosensors5020018 -
Abstract
Nanocrystalline ZnO, ZnO(Ga), and ZnO(Ga, In) samples with different indium contents were prepared by wet-chemical method and characterized in detail by ICP-MS and XRD methods. Gas sensing properties toward NO2 were studied at 150–450 °C by DC conductance measurements. The optimal temperature
[...] Read more.
Nanocrystalline ZnO, ZnO(Ga), and ZnO(Ga, In) samples with different indium contents were prepared by wet-chemical method and characterized in detail by ICP-MS and XRD methods. Gas sensing properties toward NO2 were studied at 150–450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. The dependence of the ZnO(Ga, In) sensor signal to NO2 at 250 °C correlates with the change of conductivity of the samples. The introduction of indium into the system leads to an increase in the values of the sensor signal in the temperature range T < 250 °C. The investigation of the local sample conductivity by scanning spreading resistance microscopy demonstrates that, at high indium content, the sensor properties are determined by the In–Ga–Zn–O layer that forms on the ZnO surface. Full article
Figures

Figure 1

Open AccessReview
Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications
Chemosensors 2017, 5(2), 17; doi:10.3390/chemosensors5020017 -
Abstract
Two-dimensional (2D) nanomaterials, due to their unique physical and chemical properties, are showing great potential in catalysis and electronic/optoelectronic devices. Moreover, thanks to the high surface to volume ratio, 2D materials provide a large specific surface area for the adsorption of molecules, making
[...] Read more.
Two-dimensional (2D) nanomaterials, due to their unique physical and chemical properties, are showing great potential in catalysis and electronic/optoelectronic devices. Moreover, thanks to the high surface to volume ratio, 2D materials provide a large specific surface area for the adsorption of molecules, making them efficient in chemical sensing applications. ZnO, owing to its many advantages such as high sensitivity, stability, and low cost, has been one of the most investigated materials for gas sensing. Many ZnO nanostructures have been used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. This review summarizes most of the research articles focused on the investigation of 2D ZnO structures including nanosheets, nanowalls, nanoflakes, nanoplates, nanodisks, and hierarchically assembled nanostructures as a sensitive material for conductometric gas sensors. The synthesis of the materials and the sensing performances such as sensitivity, selectivity, response, and recovery times as well as the main influencing factors are summarized for each work. Moreover, the effect of mainly exposed crystal facets of the nanostructures on sensitivity towards different gases is also discussed. Full article
Figures

Figure 1

Open AccessArticle
Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni
Chemosensors 2017, 5(2), 16; doi:10.3390/chemosensors5020016 -
Abstract
Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold
[...] Read more.
Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR) sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA) (106–107 CFU·mL−1). This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni. Full article
Figures

Figure 1

Open AccessReview
Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges
Chemosensors 2017, 5(2), 15; doi:10.3390/chemosensors5020015 -
Abstract
Transition metal disulfides have been attracting significant attentions in recent years. There are extensive applications of transition metal disulfides, especially on gas sensing applications, due to their large specific surface-to-volume ratios, high sensitivity to adsorption of gas molecules and tunable surface functionality depending
[...] Read more.
Transition metal disulfides have been attracting significant attentions in recent years. There are extensive applications of transition metal disulfides, especially on gas sensing applications, due to their large specific surface-to-volume ratios, high sensitivity to adsorption of gas molecules and tunable surface functionality depending on the decoration species or functional groups. However, there are several drawbacks such as poor gas selectivity, sluggish recovery characteristics and difficulty in the fabrication of large-scale devices. Here, we provide a review of recent progress on the chemoresistive gas sensing properties of two-dimensional transition metal disulfides. This review also provides various methods to enhance the gas sensing performance of two-dimensional disulfides, such as surface functionalization, decoration receptor functions and developing nanostructures. Full article
Figures

Figure 1

Open AccessArticle
Microfluidic Electronic Tongue Applied to Soil Analysis
Chemosensors 2017, 5(2), 14; doi:10.3390/chemosensors5020014 -
Abstract
Precision agriculture is crucial for increasing food output without expanding the cultivable area, which requires sensors to be deployed for controlling the level of nutrients in the soil. In this paper, we report on a microfluidic electronic tongue (e-tongue) based on impedance measurements
[...] Read more.
Precision agriculture is crucial for increasing food output without expanding the cultivable area, which requires sensors to be deployed for controlling the level of nutrients in the soil. In this paper, we report on a microfluidic electronic tongue (e-tongue) based on impedance measurements which is capable of distinguishing soil samples enriched with plant macronutrients. The e-tongue setup consisted of an array of sensing units made with layer-by-layer films deposited onto gold interdigitated electrodes. Significantly, the sensing units could be reused with adequate reproducibility after a simple washing procedure, thus indicating that there is no cross-contamination in three independent sets of measurements. A high performance was achieved by treating the capacitance data with the multidimensional projection techniques Principal Component Analysis (PCA), Interactive Document Map (IDMAP), and Sammon’s Mapping. While an optimized performance was demonstrated with IDMAP and feature selection, during which data of a limited frequency range were used, the distinction of all soil samples was also possible with the well-established PCA analysis for measurements at a single frequency. The successful use of a simple microfluidic e-tongue for soil analysis paves the way for enhanced tools to support precision agriculture. Full article
Figures

Figure 1

Open AccessArticle
A Chemically-Bound Glutathione Sensor Bioinspired by the Defense of Organisms against Heavy Metal Contamination: Optimization of the Immobilization Conditions
Chemosensors 2017, 5(2), 12; doi:10.3390/chemosensors5020012 -
Abstract
The influence of the experimental conditions (glutathione concentration and incubation time and temperature) concerning the covalent immobilization of glutathione via carbodiimide coupling on the behavior of a glutathione modified screen-printed carbon electrode obtained by electrografting is evaluated. The optimized parameters fasten the modification
[...] Read more.
The influence of the experimental conditions (glutathione concentration and incubation time and temperature) concerning the covalent immobilization of glutathione via carbodiimide coupling on the behavior of a glutathione modified screen-printed carbon electrode obtained by electrografting is evaluated. The optimized parameters fasten the modification process and improve the performance of the sensor as compared to the usual procedure. This suggests the convenience of a tailored preparation of metal sensors based on metal-binding biomolecules such as glutathione. Full article
Figures

Figure 1

Open AccessEditorial
Electrochemical Immunosensors and Aptasensors
Chemosensors 2017, 5(2), 13; doi:10.3390/chemosensors5020013 -
Abstract
Since the first electrochemical biosensor for glucose detection, pioneered in 1962 by Clark and Lyons [1], research and application in the field has grown at an impressive rate and we are still witnessing a continuing evolution of research on this topic [2].[...] Full article
Open AccessReview
Enzymes as Tools in MIP-Sensors
Chemosensors 2017, 5(2), 11; doi:10.3390/chemosensors5020011 -
Abstract
Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants.
[...] Read more.
Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as “tracers” for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences. Full article
Figures

Scheme 1

Open AccessArticle
Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements
Chemosensors 2017, 5(1), 10; doi:10.3390/chemosensors5010010 -
Abstract
Immunoglobulin Y is a water-soluble protein present in high concentration in hen serum and egg yolk. IgY has applications in many fields, e.g., from food stuff to the mass production of antibodies. In this work, we have implemented an electrochemical immunosensor for IgY
[...] Read more.
Immunoglobulin Y is a water-soluble protein present in high concentration in hen serum and egg yolk. IgY has applications in many fields, e.g., from food stuff to the mass production of antibodies. In this work, we have implemented an electrochemical immunosensor for IgY based on templated nanoelectrodes ensembles. IgY is captured by the templating polycarbonate and reacted with anti-IgY labeled with horseradish peroxidase. In the presence of H2O2 and methylene blue as the redox mediator, an electrocatalytic current is generated which scales with IgY concentration in the sample. After optimizing the extracting procedure, the immunosensor was applied for analysis of fresh eggs and food integrators. The data obtained with the biosensor were validated by SDS-PAGE and Western blot measurements. Full article
Figures

Figure 1