Open AccessArticle
Immobilized Aspergillus niger Lipase with SiO2 Nanoparticles in Sol-Gel Materials
Catalysts 2016, 6(10), 149; doi:10.3390/catal6100149 (registering DOI) -
Abstract
Lipase from Aspergillus niger was “doubly immobilized” with SiO2 nanoparticles in sol-gel powders prepared via the base-catalyzed polymerization of tetramethoxysilane (TMOS) and methyltreimethoxysilane (MTMS). The hydrolytic activity of the immobilized lipase was measured using the p-nitrophenyl palmitate hydrolysis method. The [...] Read more.
Lipase from Aspergillus niger was “doubly immobilized” with SiO2 nanoparticles in sol-gel powders prepared via the base-catalyzed polymerization of tetramethoxysilane (TMOS) and methyltreimethoxysilane (MTMS). The hydrolytic activity of the immobilized lipase was measured using the p-nitrophenyl palmitate hydrolysis method. The results showed that the optimum preparation conditions for the gels were made using a MTMS/TMOS molar ratio of 5, 60 mg of SiO2 nanoparticles, a water/silane molar ratio of 12, 120 mg of enzyme supply, and 120 μL of PEG400. Under the optimal conditions, the immobilized lipase retained 92% of the loading protein and 94% of the total enzyme activity. Characteristic tests indicated that the immobilized lipase exhibited much higher thermal and pH stability than its free form, which shows great potential for industrial applications. Full article
Figures

Figure 1

Open AccessEditorial
Catalytic Conversion of Biomass
Catalysts 2016, 6(10), 148; doi:10.3390/catal6100148 -
Abstract Petroleum, natural gas and coal supply most of the energy consumed worldwide and their massive utilization has allowed our society to reach high levels of development in the past century.[...] Full article
Open AccessFeature PaperReview
What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?
Catalysts 2016, 6(9), 145; doi:10.3390/catal6090145 -
Abstract
This review is devoted to discussing the state of the art in the relevant aspects of the synthesis of novel precious and non-precious electrocatalysts. It covers the production of Pt- and Pd-based electrocatalysts synthesized by the carbonyl chemical route, the synthesis description [...] Read more.
This review is devoted to discussing the state of the art in the relevant aspects of the synthesis of novel precious and non-precious electrocatalysts. It covers the production of Pt- and Pd-based electrocatalysts synthesized by the carbonyl chemical route, the synthesis description for the preparation of the most catalytically active transition metal chalcogenides, then the employment of free-surfactants synthesis routes to produce non-precious electrocatalysts. A compilation of the best precious electrocatalysts to perform the hydrogen oxidation reaction (HOR) is described; a section is devoted to the synthesis and electrocatalytic evaluation of non-precious materials which can be used to perform the HOR in alkaline medium. Apropos the oxygen reduction reaction (ORR), the synthesis and modification of the supports is also discussed as well, aiming at describing the state of the art to improve kinetics of low temperature fuel cell reactions via the hybridization process of the catalytic center with a variety of carbon-based, and ceramic-carbon supports. Last, but not least, the review covers the experimental half-cells results in a micro-fuel cell platform obtained in our laboratory, and by other workers, analyzing the history of the first micro-fuel cell systems and their tailoring throughout the time bestowing to the design and operating conditions. Full article
Figures

Open AccessArticle
Synthesis, Characterization, and Catalytic Hydrogenation Activity of New N-Acyl-Benzotriazole Rh(I) and Ru(III) Complexes in [bmim][BF4]
Catalysts 2016, 6(9), 147; doi:10.3390/catal6090147 (registering DOI) -
Abstract
The hydrogenation activity of new N-acyl-benzotriazole Rh(I) and Ru(III) complexes in ionic liquid media is reported in this study. Both complexes were completely soluble in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and they were able to catalyze the hydrogenation of styrene and [...] Read more.
The hydrogenation activity of new N-acyl-benzotriazole Rh(I) and Ru(III) complexes in ionic liquid media is reported in this study. Both complexes were completely soluble in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and they were able to catalyze the hydrogenation of styrene and 1-octene. While ethylbenzene conversion in styrene hydrogenation reached 84% when the Ru complex was used, 100% conversion was obtained with the Rh complex at 393 K in 6 h. Additionally, total conversion in 1-octene hydrogenation reached 100% with the Rh complex in [bmim][BF4] media. The hydrogenation of styrene and 1-octene in dimethyl sulfoxide (DMSO) and toluene was also studied to compare the solvent effect on catalytic system. The effect of some catalytic parameters such as temperature, H2 (g) pressure, and catalyst amount on the conversion was examined, and it was found that the conversion increased parallel to the increasing temperature and H2 pressure. The recyclability of catalysts was also investigated, and it was revealed that the Rh complex in particular maintained the activity for at least 10 cycles. Full article
Figures

Open AccessArticle
Preparation of Fe3O4/TiO2/C Nanocomposites and Their Application in Fenton-Like Catalysis for Dye Decoloration
Catalysts 2016, 6(9), 146; doi:10.3390/catal6090146 (registering DOI) -
Abstract
Fe2+-H2O2 Fenton system is widely applied in water treatment nowadays, but the acidification and sludge generation are crucial problems to be solved. Herein, we report that Fe3O4/TiO2/C nanocomposites (FTCNCs) were able [...] Read more.
Fe2+-H2O2 Fenton system is widely applied in water treatment nowadays, but the acidification and sludge generation are crucial problems to be solved. Herein, we report that Fe3O4/TiO2/C nanocomposites (FTCNCs) were able to catalyze the decomposition of H2O2 at neutral pH and can be applied in dye decoloration. FTCNCs were prepared by precipitating TiO2 on Fe3O4 cores via the hydrolysis of tetrabutyl titanate followed by the hydrothermal dehydrogenization of glucose to deposit carbon on Fe3O4/TiO2. The decoloration of methylene blue (MB) in the FTCNC-H2O2 Fenton-like system was monitored to reflect the catalytic activity of FTCNC. The radical generation capability was analyzed by electron spin resonance. Our results indicated that FTCNC-H2O2 Fenton-like system was efficient in decolorizing MB, and the radicals led to the near complete oxidation of MB. The FTCNC-H2O2 Fenton-like system could be used in a wide pH range of 4–9. A greater catalyst amount, a higher H2O2 concentration, and a higher temperature accelerated the decoloration kinetics. FTCNCs showed good activity after the regeneration of 8 cycles. The implication to the practical applications of FTCNCs in water treatment is discussed. Full article
Figures

Open AccessArticle
Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation
Catalysts 2016, 6(9), 144; doi:10.3390/catal6090144 -
Abstract
A Pt-Ag/graphene composite (Pt-Ag/GNs) was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO) were simultaneously reduced [...] Read more.
A Pt-Ag/graphene composite (Pt-Ag/GNs) was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO) were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs), chronoamperometry (CA), CO-stripping voltammograms, and electrochemical impedance spectrum (EIS) techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR) and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM). Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1). Full article
Figures

Open AccessArticle
Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts
Catalysts 2016, 6(9), 143; doi:10.3390/catal6090143 -
Abstract
Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional [...] Read more.
Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional heating. Both alkali and alkaline earth metal chlorides did not lead effectively to the conversion of furfuryl alcohol, while several transition metal chlorides (CrCl3, FeCl3, and CuCl2) and AlCl3 exhibited catalytic activity for the synthesis of butyl levulinate. For their sulfates (Cr(III), Fe(III), Cu(II), and Al(III)), the catalytic activity was low. The reaction performance was correlated with the Brønsted acidity of the reaction system derived from the hydrolysis/alcoholysis of cations, but was more dependent on the Lewis acidity from the metal salts. Among these investigated metal salts, CuCl2 was found to be uniquely effective, leading to the conversion of furfuryl alcohol to butyl levulinate with an optimized yield of 95%. Moreover, CuCl2 could be recovered efficiently from the resulting reaction mixture and remained with almost unchanged catalytic activity in multiple recycling runs. Full article
Figures

Open AccessFeature PaperArticle
Solventless Synthesis of Quaterphenyls and Terphenyls from Chalcones and Allylsulfones under Phase Transfer Catalysis Conditions
Catalysts 2016, 6(9), 142; doi:10.3390/catal6090142 -
Abstract
Easily available chalcones and allyl sulfones along with cheap solid NaOH and polyethyleneglycol (PEG) 1000 have been used to directly generate the meta-terphenyl or quaterphenyl motifs under Phase Transfer Catalysis solventless conditions. The new approach provides an economic and environmentally friendly [...] Read more.
Easily available chalcones and allyl sulfones along with cheap solid NaOH and polyethyleneglycol (PEG) 1000 have been used to directly generate the meta-terphenyl or quaterphenyl motifs under Phase Transfer Catalysis solventless conditions. The new approach provides an economic and environmentally friendly solution to removal of hazardous bases as well as organic solvents. Full article
Figures

Open AccessFeature PaperArticle
Highly Efficient Tetranuclear ZnII2LnIII2 Catalysts for the Friedel–Crafts Alkylation of Indoles and Nitrostyrenes
Catalysts 2016, 6(9), 140; doi:10.3390/catal6090140 -
Abstract
We demonstrate for the first time the high efficacy of tetranuclear ZnII2LnIII2 coordination clusters (CCs) as catalysts for the Friedel–Crafts (FC) alkylation of indoles with a range of trans-β-nitrostyrenes. The reaction proceeds in good to excellent [...] Read more.
We demonstrate for the first time the high efficacy of tetranuclear ZnII2LnIII2 coordination clusters (CCs) as catalysts for the Friedel–Crafts (FC) alkylation of indoles with a range of trans-β-nitrostyrenes. The reaction proceeds in good to excellent yields (76%–99%) at room temperature with catalyst loadings as low as 1.0 mol %. Full article
Figures

Open AccessCommunication
Olefin Hydroborations with Diamidocarbene–BH3 Adducts at Room Temperature
Catalysts 2016, 6(9), 141; doi:10.3390/catal6090141 -
Abstract
An isolable N,N’-diamidocarbene (DAC) was previously shown to promote the B–H bond activation of various BH3 complexes. The resultant DAC–BH3 adducts facilitated olefin hydroborations under mild conditions and in the absence of exogenous initiators. The substrate scope for such [...] Read more.
An isolable N,N’-diamidocarbene (DAC) was previously shown to promote the B–H bond activation of various BH3 complexes. The resultant DAC–BH3 adducts facilitated olefin hydroborations under mild conditions and in the absence of exogenous initiators. The substrate scope for such transformations was further explored and is described herein. While organoboranes were obtained in quantitative yields from various terminal and internal olefins, use of the latter substrates resulted in intramolecular ring-expansion of the newly formed DAC–borane adducts. Full article
Figures

Open AccessArticle
Time- and Temperature-Varying Activation Energies: Isobutane Selective Oxidation to Methacrolein over Phosphomolybdic Acid and Copper(II) Phosphomolybdates
Catalysts 2016, 6(9), 137; doi:10.3390/catal6090137 -
Abstract
The selective oxidation energetics of isobutane to methacrolein over phosphomolybdic acid and copper(II) phosphomolybdates have been investigated using low-pressure, pseudo-steady-state and temperature-programming techniques. Time-varying flexible least squares methods were used to determine variations in oxidation activation energies as the temperature increases at [...] Read more.
The selective oxidation energetics of isobutane to methacrolein over phosphomolybdic acid and copper(II) phosphomolybdates have been investigated using low-pressure, pseudo-steady-state and temperature-programming techniques. Time-varying flexible least squares methods were used to determine variations in oxidation activation energies as the temperature increases at 5 °C·min−1. Catalyst activity stabilizes by the fourth consecutive temperature-programmed run. Rate parameters increase linearly with temperature in two sinusoidal, oscillating wave packets. For H3PMo12O40, three distinct reaction pathways are apparent in the fourth run with activation energies 76 ± 3, 93 ± 7 and 130 ± 3 kJ·mol−1, and under these experimental conditions are observed at the optimum temperatures 704 ± 7 K, 667 ± 25 K and 745 ± 7 K, respectively. Over the copper-containing catalysts, two pathways are apparent: 76 ± 3 kJ·mol−1 at 665 ± 9 K and 130 ± 3 kJ·mol−1 at 706 ± 9 K. The three activation energies indicate either different reaction pathways leading to methacrolein or distinct active sites on the catalyst surface. The intermediate activation energy, 93 kJ·mol−1, only observed over phosphomolybdic acid, may be linked to hydrogen bonding. Differences in optimum temperatures for the same activation energies for H3PMO12O40 and for the copper catalysts indicate that compensating entropy changes are smaller over H3PMo12O40. The inclusion of copper enhances catalyst stability and activity. Full article
Figures

Open AccessArticle
WS2 as an Effective Noble-Metal Free Cocatalyst Modified TiSi2 for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation
Catalysts 2016, 6(9), 136; doi:10.3390/catal6090136 -
Abstract
A noble-metal free photocatalyst consisting of WS2 and TiSi2 being used for hydrogen evolution under visible light irradiation, has been successfully prepared by in-situ formation of WS2 on the surface of TiSi2 in a thermal reaction. The obtained [...] Read more.
A noble-metal free photocatalyst consisting of WS2 and TiSi2 being used for hydrogen evolution under visible light irradiation, has been successfully prepared by in-situ formation of WS2 on the surface of TiSi2 in a thermal reaction. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that WS2 moiety has been successfully deposited on the surface of TiSi2 and some kind of chemical bonds, such as Ti-S-W and Si-S-W, might have formed on the interface of the TiSi2 and WS2 components. Optical and photoelectrochemical investigations reveal that WS2/TiSi2 composite possesses lower hydrogen evolution potential and enhanced photogenerated charge separation and transfer efficiency. Under 6 h of visible light (λ > 420 nm) irradiation, the total amount of hydrogen evolved from the optimal WS2/TiSi2 catalyst is 596.4 μmol·g−1, which is around 1.5 times higher than that of pure TiSi2 under the same reaction conditions. This study shows a paradigm of developing the effective, scalable and inexpensive system for photocatalytic hydrogen generation. Full article
Figures

Open AccessArticle
Effect of an Sb-Doped SnO2 Support on the CO-Tolerance of Pt2Ru3 Nanocatalysts for Residential Fuel Cells
Catalysts 2016, 6(9), 139; doi:10.3390/catal6090139 -
Abstract
We prepared monodisperse Pt2Ru3 nanoparticles supported on carbon black and Sb-doped SnO2 (denoted as Pt2Ru3/CB and Pt2Ru3/Sb-SnO2) with identical alloy composition and particle size distribution by the nanocapsule [...] Read more.
We prepared monodisperse Pt2Ru3 nanoparticles supported on carbon black and Sb-doped SnO2 (denoted as Pt2Ru3/CB and Pt2Ru3/Sb-SnO2) with identical alloy composition and particle size distribution by the nanocapsule method. The activities for the hydrogen oxidation reaction (HOR) of these anode catalysts were examined in H2-saturated 0.1 M HClO4 solution in both the presence and absence of carbon monoxide by use of a channel flow electrode at 70 °C. It was found that the CO-tolerant HOR mass activity at 0.02 V versus a reversible hydrogen electrode (RHE) on the Pt2Ru3/Sb-SnO2 electrode was higher than that at the Pt2Ru3/CB electrode in 0.1 M HClO4 solution saturated with 1000 ppm CO (H2-balance). The CO tolerance mechanism of these catalysts was investigated by in situ attenuated total reflection Fourier transform infrared reflection-adsorption spectroscopy (ATR-FTIRAS) in 1% CO/H2-saturated 0.1 M HClO4 solution at 60 °C. It was found, for the Pt2Ru3/Sb-SnO2 catalyst, that the band intensity of CO linearly adsorbed (COL) at step/edge sites was suppressed, together with a blueshift of the COL peak at terrace sites. On this surface, the HOR active sites were concluded to be more available than those on the CB-supported catalyst surface. The observed changes in the adsorption states of CO can be ascribed to an electronic modification effect by the Sb-SnO2 support. Full article
Figures

Open AccessReview
TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review
Catalysts 2016, 6(9), 138; doi:10.3390/catal6090138 -
Abstract
For the last four decades, viability of photocatalytic degradation of organic compounds in water streams has been demonstrated. Different configurations for solar TiO2 photocatalytic reactors have been used, however pilot and demonstration plants are still countable. Degradation efficiency reported as a [...] Read more.
For the last four decades, viability of photocatalytic degradation of organic compounds in water streams has been demonstrated. Different configurations for solar TiO2 photocatalytic reactors have been used, however pilot and demonstration plants are still countable. Degradation efficiency reported as a function of treatment time does not answer the question: which of these reactor configurations is the most suitable for photocatalytic process and optimum for scale-up and commercialization? Degradation efficiency expressed as a function of the reactor throughput and ease of catalyst removal from treated effluent are used for comparing performance of different reactor configurations to select the optimum for scale-up. Comparison included parabolic trough, flat plate, double skin sheet, shallow ponds, shallow tanks, thin-film fixed-bed, thin film cascade, step, compound parabolic concentrators, fountain, slurry bubble column, pebble bed and packed bed reactors. Degradation efficiency as a function of system throughput is a powerful indicator for comparing the performance of photocatalytic reactors of different types and geometries, at different development scales. Shallow ponds, shallow tanks and fountain reactors have the potential of meeting all the process requirements and a relatively high throughput are suitable for developing into continuous industrial-scale treatment units given that an efficient immobilized or supported photocatalyst is used. Full article
Figures

Open AccessArticle
Noble Metal-Free Ceria-Zirconia Solid Solutions Templated by Tobacco Materials for Catalytic Oxidation of CO
Catalysts 2016, 6(9), 135; doi:10.3390/catal6090135 -
Abstract
A series of ceria-zirconia solid solutions were synthesized using tobacco leaves, stems and stem-silks as biotemplates. A combination of physicochemical techniques such as powder X-ray diffraction (XRD), N2 adsorption/desorption measurement, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used [...] Read more.
A series of ceria-zirconia solid solutions were synthesized using tobacco leaves, stems and stem-silks as biotemplates. A combination of physicochemical techniques such as powder X-ray diffraction (XRD), N2 adsorption/desorption measurement, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the as-synthesized samples. The results show that the morphologies of the templates were well replicated in the obtained ceria-zirconia solid solutions. Catalytic oxidation activities of CO over the ceria-zirconia solid solutions were then investigated. The catalyst templated by tobacco stem-silk exhibited higher conversion of CO at lower temperature than that of ceria-zirconia solid solutions templated by tobacco leaves and stems or without templates due to its special morphology. The catalyst even showed similar CO conversion when compared to ceria-zirconia solid solutions doped with 1.0 wt % noble metals such as Pt, Ag and Au. The results highlighted the advantages of using tobacco as biotemplate. Full article
Figures

Open AccessArticle
Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5
Catalysts 2016, 6(9), 134; doi:10.3390/catal6090134 -
Abstract
A series of MCM-41 supported Ni catalysts with high metal dispersion was successfully synthesized by simple co-impregnation using proper ethylene glycol (EG). The acquired Ni-based catalysts performed the outstanding hydrogenolysis activity of guaiacol. The effects of the synthesis parameters including drying temperature, [...] Read more.
A series of MCM-41 supported Ni catalysts with high metal dispersion was successfully synthesized by simple co-impregnation using proper ethylene glycol (EG). The acquired Ni-based catalysts performed the outstanding hydrogenolysis activity of guaiacol. The effects of the synthesis parameters including drying temperature, calcination temperature, and metal loading on the physical properties of NiO nanoparticles were investigated through the use of X-ray diffraction (XRD). The drying temperature was found to significantly influence the particle sizes of NiO supported on MCM-41, but the calcination temperature and metal loading had less influence. Interestingly, the small particle size (≤3.3 nm) and the high dispersion of NiO particles were also obtained for co-impregnation on the mixed support (MCM-41:HZSM-5 = 1:1), similar to that on the single MCM-41 support, leading to excellent hydrogenation activity at low temperature. The guaiacol conversion could reach 97.9% at 150 °C, and the catalytic activity was comparative with that of noble metal catalysts. The hydrodeoxygenation (HDO) performance was also promoted by the introduction of acidic HZSM-5 zeolite and an 84.1% yield of cyclohexane at 240 °C was achieved. These findings demonstrate potential applications for the future in promoting and improving industrial catalyst performance. Full article
Figures

Figure 1

Open AccessCommunication
Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes
Catalysts 2016, 6(9), 132; doi:10.3390/catal6090132 -
Abstract
A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh) based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition [...] Read more.
A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh) based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities. Full article
Figures

Open AccessArticle
Electronic Structure and Optical Properties of BiOI as a Photocatalyst Driven by Visible Light
Catalysts 2016, 6(9), 133; doi:10.3390/catal6090133 -
Abstract
Bismuth oxyiodide (BiOI) is an important photoelectric functional material that has a wide range of applications. In particular, it can be used as a photocatalyst that shows photocatalytic activity under visible-light irradiation. The synthesis procedure and related photocatalytic performance of BiOI have [...] Read more.
Bismuth oxyiodide (BiOI) is an important photoelectric functional material that has a wide range of applications. In particular, it can be used as a photocatalyst that shows photocatalytic activity under visible-light irradiation. The synthesis procedure and related photocatalytic performance of BiOI have been reported. However, some of its fundamental properties still need to be further investigated. In this article, density functional theory calculations were performed to investigate the crystal structure, electronic properties, and optical properties of BiOI. Furthermore, the relationship between the intrinsic properties and the photocatalytic performance of BiOI was investigated. Based on the calculated results of the band structure, density of states, and projected wave function, the molecular-orbital bonding structure of BiOI is proposed. As a semiconductor photocatalyst, BiOI shows slight optical anisotropy in the visible-light region, indicating that it can efficiently absorb visible light if the morphology of BiOI is controlled. After comparing several computational methods, it was found that the generalized-gradient approximation corrected for on-site Coulomb interactions (GGA + U) is a suitable computational method for large sized BiOI models (e.g., impurity doping, the surface, and the interface) because it can significantly reduce the computational time while maintaining calculation accuracy. Thus, this article not only provides an in-depth understanding of the fundamental properties of BiOI as a potential efficient photocatalyst driven by visible light, but it also suggests a suitable computational method to investigate these properties. Full article
Figures

Open AccessArticle
Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts
Catalysts 2016, 6(9), 131; doi:10.3390/catal6090131 -
Abstract
γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in [...] Read more.
γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA). Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT)) and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5). The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94%) and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA). Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h). The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET) surface area, micropore area and total acidity) on catalyst activity were assessed. Full article
Figures

Open AccessReview
Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review
Catalysts 2016, 6(9), 130; doi:10.3390/catal6090130 -
Abstract
Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs). Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide [...] Read more.
Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs). Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR) and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs. Full article
Figures