Open AccessArticle
Economic-Environmental Indicators to Support Investment Decisions: A Focus on the Buildings’ End-of-Life Stage
Buildings 2017, 7(3), 65; doi:10.3390/buildings7030065 (registering DOI) -
Abstract
The aim of this paper is to propose a methodology for supporting decision making in design activities; in case of new projects or retrofitting of existing buildings. A multidisciplinary approach is adopted; involving Real Estate Appraisal and Economic Evaluation of Project and Building
[...] Read more.
The aim of this paper is to propose a methodology for supporting decision making in design activities; in case of new projects or retrofitting of existing buildings. A multidisciplinary approach is adopted; involving Real Estate Appraisal and Economic Evaluation of Project and Building Environmental Design. It is proposed a methodology for selecting the preferable solutions among technological options; considering both economic and environmental aspects; in terms of global performance. Assuming the principles of Life Cycle Thinking and Circular Economy focus is posed at the end-of-life stage. Attention is paid on disposal costs and residual value as relevant items enable to orient investment decisions. This is done through an approach for quantifying environmental indicators related to Life Cycle Assessment (Standard ISO 14040:2006); and economic indicators adopting the Life Cycle Costing (Standard ISO 15686:2008). The paper proposes a conjoint “economic-environmental indicator”. An application of Global Cost calculation is illustrated; including monetized environmental impacts (Embodied energy and Embodied carbon); disposal/dismantling costs and residual value. The result of the Global Cost calculation is expressed through a “synthetic economic-environmental indicator” in order to select; between two different technologies; the most viable solution for a multifunctional building glass façade project; in Northern Italy. The study demonstrates that the initial investment decisions depend on the design solutions; since the early stages; related to the whole building life cycle considering conjointly the construction-management phases and the end-of-life stage. Full article
Open AccessArticle
Integrating Scenarios into Life Cycle Assessment: Understanding the Value and Financial Feasibility of a Demountable Building
Buildings 2017, 7(3), 64; doi:10.3390/buildings7030064 -
Abstract
Although life cycle assessment offers insight into the long-term value of our building stock, it has become impossible to model with certainty the service life of a building. What if new lifestyles make reality diverge from the expected service life? What if the
[...] Read more.
Although life cycle assessment offers insight into the long-term value of our building stock, it has become impossible to model with certainty the service life of a building. What if new lifestyles make reality diverge from the expected service life? What if the building is decommissioned very early or forced to accommodate new functions? Would the same design decisions have been made or would an alternative have been preferred? In reaction to this challenge, the present paper proposes to integrate scenario planning and life cycle assessment. Therefore, it discusses from where scenario planning originates and how it appeared hitherto in architectural design and life cycle assessment. Thereafter, it explores how assessors can profit from scenarios when raising awareness and co-creating alternatives. Subsequently, a methodological framework for effective scenario development is proposed. To illustrate the added value of scenario integrated life cycle assessments, four divergent scenarios are developed for evaluating the financial feasibility of demountable building element reuse. With this simple case study is shown how more relevant and nuanced assessment outcomes are obtained when divergent scenarios are adopted. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Experimental In-Plane Evaluation of Light Timber Walls Panels
Buildings 2017, 7(3), 63; doi:10.3390/buildings7030063 -
Abstract
In general, the satisfactory seismic performance of timber buildings can be partially attributed to the material characteristics of the wood itself and to the lightness of its own structure. The aim of this paper is to analyze the in-plane behavior of light timber
[...] Read more.
In general, the satisfactory seismic performance of timber buildings can be partially attributed to the material characteristics of the wood itself and to the lightness of its own structure. The aim of this paper is to analyze the in-plane behavior of light timber walls panels through a series of monotonic and cyclic tests, and to evaluate how the sheathing material and the fixation to the base influence the overall response of the wall. Five tests are presented and discussed while the reliability of an analytical method to predict the response of the walls is studied. The sheathing material revealed to be important in the overall response of the wall. Moreover, the type of fixation to the base also revealed to be important in the in-plane response of timber walls. In-plane stiffnesses, static ductility, energy dissipation and damping ratio have been quantified. Full article
Figures

Figure 1a

Open AccessArticle
Performance and Compatibility of Phosphonate-Based Superplasticizers for Concrete
Buildings 2017, 7(3), 62; doi:10.3390/buildings7030062 -
Abstract
The paper deals with the effectiveness of an innovative phosphonate-based superplasticizer (PNH) for ready mixed concrete. Concrete specimens were manufactured by considering a constant initial workability, equal to 220 mm slump at the end of the mixing procedure. Workability was measured at 0,
[...] Read more.
The paper deals with the effectiveness of an innovative phosphonate-based superplasticizer (PNH) for ready mixed concrete. Concrete specimens were manufactured by considering a constant initial workability, equal to 220 mm slump at the end of the mixing procedure. Workability was measured at 0, 30, and 60 min to evaluate the workability retention performances of the innovative superplasticizer. Compressive tests at 1, 7, and 28 days were carried out to evaluate the influence of the phosphonate-based superplasticizer on concrete setting and hardening. The concrete mixes were designed by considering 13 different cements to assess the superplasticizer-cement compatibility. The PNH-based admixture showed a better performance in terms of water reduction and workability retention with respect to napthalenesulphonate based admixtures (NSF); however, a higher dosage of PNH with respect to polycarboxylate ethers (PCEs) was needed to get the same initial fluidity. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Analysis of Cylindrical Granular Material Silos under Seismic Excitation
Buildings 2017, 7(3), 61; doi:10.3390/buildings7030061 -
Abstract
Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled
[...] Read more.
Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Thermal and Economic Analysis of Renovation Strategies for a Historic Building in Mediterranean Area
Buildings 2017, 7(3), 60; doi:10.3390/buildings7030060 -
Abstract
Around 30% of the European building stock was built before 1950, when no regulations about energy efficiency were in force. Since only a small part of them has been renovated by now, the energy performance of this building stock is on average quite
[...] Read more.
Around 30% of the European building stock was built before 1950, when no regulations about energy efficiency were in force. Since only a small part of them has been renovated by now, the energy performance of this building stock is on average quite poor, resulting in a significant impact on the energy balance of European countries, as confirmed by data published by ISTAT (Italian National Statistical Institute). However, energy retrofit in historic edifices is a quite demanding issue as any intervention must take into account the need to preserve existing building materials and appearances while also allowing reversibility and low invasiveness. As an example, in these buildings it is not possible to apply an ETICS (External Thermal Insulation Composite System), since this would alter the historic and architectural value of the façade. On the other hand, internal insulation would have the drawback of reducing the net useful floor area, which also implies a loss of economic value. Moreover, internal insulation may induce overheating risks and mold formation. In this paper, all these issues are investigated with reference to an existing historic building located in southern Italy, showing that a retrofit strategy aimed at energy savings and cost-effectiveness is still possible if suitable materials and solutions are adopted. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Energy Optimized Envelope for Cold Climate Indoor Agricultural Growing Center
Buildings 2017, 7(3), 59; doi:10.3390/buildings7030059 -
Abstract
This paper presents a study of the development of building envelope design for improved energy performance of a controlled indoor agricultural growing center in a cold climate zone (Canada, 54° N). A parametric study is applied to analyze the effects of envelope parameters
[...] Read more.
This paper presents a study of the development of building envelope design for improved energy performance of a controlled indoor agricultural growing center in a cold climate zone (Canada, 54° N). A parametric study is applied to analyze the effects of envelope parameters on the building energy loads for heating, cooling and lighting, required for maintaining growing requirement as obtained in the literature. A base case building of rectangular layout, incorporating conventionally applied insulation and glazing components, is initially analyzed, employing the EnergyPlus simulation program. Insulation and glazing parameters are then modified to minimize energy loads under assumed minimal lighting requirement. This enhanced design forms a base case for analyzing effects of additional design parameters—solar radiation control, air infiltration rate, sky-lighting and the addition of phase change materials—to obtain an enhanced design that minimizes energy loads. A second stage of the investigation applies a high lighting level to the enhanced design and modifies the design parameters to improve performance. A final part of the study is an investigation of the mechanical systems and renewable energy generation. Through the enhancement of building envelope components and day-lighting design, combined heating and cooling load of the low level lighting configuration is reduced by 65% and lighting load by 10%, relative to the base case design. Employing building integrated PV (BIPV) system, this optimized model can achieve energy positive status. Solid Oxide Fuel Cells (SOFC), are discussed, as potential means to offset increased energy consumption associated with the high-level lighting model. Full article
Figures

Figure 1

Open AccessArticle
Exploratory Factors Influencing Building Development Costs in New Zealand
Buildings 2017, 7(3), 57; doi:10.3390/buildings7030057 -
Abstract
Identification of costs drivers and their influence level on building development costs play a key role in the development of construction models and improve the efficiency and effectiveness of any project. Forty-five indicators influencing building development costs in New Zealand are explored by
[...] Read more.
Identification of costs drivers and their influence level on building development costs play a key role in the development of construction models and improve the efficiency and effectiveness of any project. Forty-five indicators influencing building development costs in New Zealand are explored by literature review and pilot interviews. These indicators are grouped into seven categories. The determination and ranking of the cost drivers are carried out by a questionnaire survey distributed to key professionals working in New Zealand’s construction industry. Structural equation modeling (SEM) software was employed for analysis of the collected data. One of the key advantages of this powerful software is to provide the p-value according to the structure of the research model. Findings of this study indicate that the property market and construction industry factor, statutory and regulatory factor, and socio-economic factors are major factors affecting building development costs in New Zealand. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Seismic Reinforcement of a R.C. School Structure with Strength Irregularities throughout External Bracing Walls
Buildings 2017, 7(3), 58; doi:10.3390/buildings7030058 -
Abstract
The effect of irregularities due to the non-uniform distribution of material properties on structural elements of a significant real case is here investigated. Mechanical tests performed on a typical Italian reinforced concrete (r.c.) school building built in the 1960s showed irregularity in the
[...] Read more.
The effect of irregularities due to the non-uniform distribution of material properties on structural elements of a significant real case is here investigated. Mechanical tests performed on a typical Italian reinforced concrete (r.c.) school building built in the 1960s showed irregularity in the distribution of compression strength in columns, even though the construction is featured by substantially symmetric distribution of the frames. Extreme scenarios in the distribution of irregularities in compression strength of concrete columns are analyzed, with the hypothesis of rigid or deformable slabs. The seismic analysis showed the influence of the response due to the irregular distributions of concrete strength. A proposal of equivalent “material eccentricity” is shown to account for the mentioned irregularity. Furthermore, the practical solution of reinforcement to mitigate the effects of irregularities is also described. It consists of couple of external r.c. walls stiffened by r.c. buttresses added to the building, connected by transverse slabs. An extensive reduction of material eccentricity is achieved, together with a relevant improvement in seismic capacity. Full article
Figures

Figure 1

Open AccessArticle
Thermal Analysis and Energy-Efficient Solutions to Preserve Listed Building Façades: The INA-Casa Building Heritage
Buildings 2017, 7(3), 56; doi:10.3390/buildings7030056 -
Abstract
Energy efficiency of building heritage derived from pre-regulation period is one of the most debated topics in Europe. Building façades, through opaque walls and thermal bridges, are a major source of transmission heat losses and require sustainable and consistent solutions. Aiming to achieve
[...] Read more.
Energy efficiency of building heritage derived from pre-regulation period is one of the most debated topics in Europe. Building façades, through opaque walls and thermal bridges, are a major source of transmission heat losses and require sustainable and consistent solutions. Aiming to achieve an energy demand reduction, thermal features of building façades were evaluated by field measurements and simulations for one INA-Casa listed apartment building built in the 1950s. Non-destructive insulating solutions have been proposed and a comparison between transmission heat loss coefficient in the current situation and the designed intervention was made. Results show that before the renovation, opaque walls and thermal bridges respectively contributed to 25% and 44% of total transmission heat loss in the case-study building façade. After the renovation, total impact was reduced up to 70% depending on whether high performance windows were replaced; in particular, the impact of opaque walls and thermal bridges were reduced by 66% and 82%, respectively. Interventions performed primarily on the internal layer of the façade with insulation elements, when appropriately designed, strengthen the negative effects of thermal bridges in junctions. Findings show that an accurate insulation design allows for both more efficient conditions and the preservation of the heritage-listed buildings. Full article
Figures

Figure 1

Open AccessArticle
Outdoor Characterization of Phase Change Materials and Assessment of Their Energy Saving Potential to Reach NZEB
Buildings 2017, 7(3), 55; doi:10.3390/buildings7030055 -
Abstract
Phase change materials (PCM) are very promising materials for improving energy efficiency in buildings, especially in hot weather conditions. In spite of the growing attention paid to the integration of PCM into buildings, there are few studies on PCM evaluation under real operating
[...] Read more.
Phase change materials (PCM) are very promising materials for improving energy efficiency in buildings, especially in hot weather conditions. In spite of the growing attention paid to the integration of PCM into buildings, there are few studies on PCM evaluation under real operating conditions. This lack of data often does not allow accurate calibration and validation of building simulation models. This work aims to characterize a commercial PCM panel by RUBITHERM®. The panel was laid on the floor of a test box exposed outdoors, and the experimental data were used to validate a PCM software tool implemented in IDA Indoor Climate and Energy software. A reference office building model with characteristics prescribed by Italian regulations (STD) was provided with three PCM with melting points of approximately 21 °C, 24 °C and 26 °C, laid on the floor office. The building energy performance obtained was compared to the energy performance of a reference building prescribed by the new Italian building energy performance regulation (NZEB) for three cities in Italy (Trento, Rome and Palermo). The results showed that energy savings obtained from implementing PCM in the STD building were not sufficient to reach the NZEB reference value for all cities. Only the use of night ventilation was able to assist in reaching NZEB. PCM with a 21 °C melting point showed the best annual energy saving performance in all cities. Temperature range and temperature peaks experienced by PCM in the day/night cycle can explain the behavior of these materials in the various cities and seasons as latent and sensible heat storage systems. Full article
Figures

Figure 1

Open AccessArticle
Does the Energy Label (EL) Matter in the Residential Market? A Stated Preference Analysis in Barcelona
Buildings 2017, 7(2), 53; doi:10.3390/buildings7020053 -
Abstract
Energy performance in buildings has become a milestone in EU environmental policy in the last 15 years. Nonetheless, in some countries such as Spain the full acceptance of the Energy Performance of Buildings Directive is still relatively rare and novel, with little evidence
[...] Read more.
Energy performance in buildings has become a milestone in EU environmental policy in the last 15 years. Nonetheless, in some countries such as Spain the full acceptance of the Energy Performance of Buildings Directive is still relatively rare and novel, with little evidence as to how relevant it is in the real estate market. There are different reasons for this phenomenon: on the one hand, the real estate crisis has paralyzed the completion of most of the works in new/refurbished efficient buildings (which renders it impossible to use revealed preference methods); on the other hand, information is not complete and the consumer’s perception of the relevant cost/benefits could be incorrect. For this reason, assessing the trade-off between the energy label and other specific attributes of the housing market has become important. To that end, a choice experiment following an RPL (Random Parameter Logit) model was employed. This form is suitable to accommodate various empirical situations where the assumptions of the Conditional Logit model have to be relaxed. Results suggest that the Energy Label (EL) does matter in the real estate market in relation to other residential attributes. Marginal willingness to pay for an “A” label instead of an “E” is significantly higher than the stated savings in energy costs. The respondents’ utility function seems to be also influenced by their educational level, as well as by their preference to own a house as opposed to renting it. Full article
Figures

Figure 1

Open AccessArticle
Economic Valuation of Ground Mounted Photovoltaic Systems
Buildings 2017, 7(2), 54; doi:10.3390/buildings7020054 -
Abstract
The appraisal of ground mounted photovoltaic systems is an important question, due to increasing investments in renewable energies. The costs related to installation and maintenance, and the economic benefits related to the energy saving, suggests the use of an income approach, in order
[...] Read more.
The appraisal of ground mounted photovoltaic systems is an important question, due to increasing investments in renewable energies. The costs related to installation and maintenance, and the economic benefits related to the energy saving, suggests the use of an income approach, in order to consider the financial aspects of the photovoltaic systems. This paper proposes the use of the Discounted Cash Flow Analysis (DCFA). The DCFA allows to simulate the entire life cycle of the photovoltaic system, from the acquisition date to the end of its life cycle, to evaluate the most probable market value by discounting the annual cash flows generated by the system. In particular, the paper proposes a procedure to determine the discount rate in an innovative manner through the combination of a conventional financial method (the Build up Approach) and the analytical method which makes recourse to the use of the ascending and descending influences that act, each with positive or negative sign, on the specific risk factors related to the photovoltaic investment. To obtain an objective appraisal of the discount rate, the theory of the ascending and descending influences has been applied in this specific case for the calculation of the risk premium. The percentage incidences of the ascending and descending influences, which influence the formation of the risks to which they refer, are determined through this study for all the intrinsic factors, which are part of the photovoltaic investment risks. Full article
Open AccessArticle
The Experience of International Sustainability Protocols for Retrofitting Historical Buildings in Italy
Buildings 2017, 7(2), 52; doi:10.3390/buildings7020052 -
Abstract
The sustainability and efficiency of buildings represents a crucial issue since the building sector is currently responsible for more than 40% of energy consumption and emissions. This concern is extended to historical buildings, as they are typically low-performance constructions usually equipped with ineffective
[...] Read more.
The sustainability and efficiency of buildings represents a crucial issue since the building sector is currently responsible for more than 40% of energy consumption and emissions. This concern is extended to historical buildings, as they are typically low-performance constructions usually equipped with ineffective systems. For these reasons, the upgrade of historical constructions from an energy and environmental perspective is urgent, especially in those countries where such buildings represent more than half of the building stock. This work concerns the refurbishment of a historical Italian building by integrating passive and active solutions to optimize the indoor thermal comfort and the energy performance. To this aim, the innovative GBC Historic Building® rating system, a new tool evaluating the sustainability level of conservation-related activities on pre-industrial buildings, is applied. A combined trigeneration heat and power plant with an absorption chiller to produce cooling and powered by vegetable oil is installed in the building. A dynamic simulation of the building is also carried out to predict the post-retrofit energy performance upgrading. The final aim is to propose an integrated approach for the preservation and energy upgrading of existing constructions by improving their energy performance and environmental quality while protecting their heritage value. Full article
Figures

Figure 1

Open AccessArticle
Measuring and Interpreting Urban Externalities in Real-Estate Data: A Spatio-Temporal Difference-in-Differences (STDID) Estimator
Buildings 2017, 7(2), 51; doi:10.3390/buildings7020051 -
Abstract
It is now almost impossible to deal with spatial data without considering some explicit specification that captures possible spatial effects. One valuable feature of spatial econometrics models is their decomposition of marginal effects into spatial spillover effect and spatial externalities. Progress in interpreting
[...] Read more.
It is now almost impossible to deal with spatial data without considering some explicit specification that captures possible spatial effects. One valuable feature of spatial econometrics models is their decomposition of marginal effects into spatial spillover effect and spatial externalities. Progress in interpreting spatial econometrics models has now been extended to the spatial-panel case. However, little consideration has been given to the possible interpretation of models using spatial data pooled over time. This paper proposes a spatio-temporal difference-in-differences (STDID) estimator to measure the effect of urban externalities, such as transport infrastructures, as revealed through real-estate prices. Based on an empirical application for a new development of commuter trains in the Montreal suburbs, this paper shows how such propositions can help us to better understand and evaluate changes in mass transit systems. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
The TVT Glass Pavilion: Theoretical Study on a Highly Transparent Building Made with Long-Spanned TVT Portals Braced with Hybrid Glass-Steel Panels
Buildings 2017, 7(2), 50; doi:10.3390/buildings7020050 -
Abstract
In contemporary buildings, the architectural demand for a complete dematerialisation of load bearing structures can be satisfied only in limited cases with the exclusive structural use of glass. Otherwise, for challenging applications such as long spanned or high-rise structures, the use of hybrid
[...] Read more.
In contemporary buildings, the architectural demand for a complete dematerialisation of load bearing structures can be satisfied only in limited cases with the exclusive structural use of glass. Otherwise, for challenging applications such as long spanned or high-rise structures, the use of hybrid glass-steel systems is mandatory. Glass, fragile but highly compressive resistant, is associated with steel, ductile and tensile resistant. The present research shows the feasibility study for a fully glazed pavilion made of six TVT (Travi Vitree Tensegrity) portal frames longitudinally braced by pre-stressed hybrid glass panels. The frames are about 20 m in span and 8 m in height. Appropriate multiscalar FEM numerical analyses, calibrated on the collapse tests performed on previous TVT large-scale prototypes, stated that the structural performance would be able to withstand heavy static and dynamic loads and stated the observance of the Fail-Safe Design principles. Full article
Figures

Figure 1

Open AccessArticle
Strengthening Masonry Arches with Lime-Based Mortar Composite
Buildings 2017, 7(2), 49; doi:10.3390/buildings7020049 -
Abstract
In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs). These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure
[...] Read more.
In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs). These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix) composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM) for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load-currying and the displacement capacities of masonry arches. The Basalt-FRLM-strengthened arch exhibited higher displacement capacity when compared to arches strengthened with polymeric and cementitious matrix composites. Full article
Figures

Figure 1

Open AccessArticle
Mass Timber Rocking Panel Retrofit of a Four-Story Soft-Story Building with Full-Scale Shake Table Validation
Buildings 2017, 7(2), 48; doi:10.3390/buildings7020048 -
Abstract
Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multi-family three- and four-story structures throughout California and other cities in the United States. The majority were constructed between 1920 and 1970, with
[...] Read more.
Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multi-family three- and four-story structures throughout California and other cities in the United States. The majority were constructed between 1920 and 1970, with many being prevalent in the San Francisco Bay Area in California. The NEES-Soft project was a five-university multi-industry effort that culminated in a series of full-scale soft-story wood-frame building tests to validate retrofit philosophies proposed by (1) the Federal Emergency Management Agency (FEMA) P-807 guidelines and (2) a performance-based seismic retrofit (PBSR) approach developed within the project. Four different retrofit designs were developed and validated at full-scale, each with specified performance objectives, which were typically not the same. This paper focuses on the retrofit design using cross laminated timber (CLT) rocking panels and presents the experimental results of the full-scale shake table test of a four-story 370 m2 (4000 ft2) soft-story test building with that FEMA P-807 focused retrofit in place. The building was subjected to the 1989 Loma Prieta and 1992 Cape Mendocino ground motions scaled to 5% damped spectral accelerations ranging from 0.2 to 0.9 g. Full article
Figures

Figure 1

Open AccessArticle
Integrated Lighting Efficiency Analysis in Large Industrial Buildings to Enhance Indoor Environmental Quality
Buildings 2017, 7(2), 47; doi:10.3390/buildings7020047 -
Abstract
We present observations from evaluation of internal environmental quality of industrial halls with priority on daylighting in combination with the integral lighting. The physical parameters related to indoor lighting in large industrial halls in winter and summer periods were analyzed using in situ
[...] Read more.
We present observations from evaluation of internal environmental quality of industrial halls with priority on daylighting in combination with the integral lighting. The physical parameters related to indoor lighting in large industrial halls in winter and summer periods were analyzed using in situ measurements and computational methods. These are part of a comprehensive research on indoor environmental quality of industrial halls with the aims of saving energy and providing a comfortable environment for the workers while improving the productivity. The results showed that the procedures used for evaluation of residential or office buildings may not be used for industrial buildings. We also observed that the criteria of occupants’ comforts for indoor industrial buildings may differ from those of other kinds of buildings. Based on these results, an adequate attention is required for designing the industrial buildings. For this reason, appropriate evaluation methods and criteria should be created. We found the measured values of daylight factor very close to the skylight component of the total illumination. The skylight component was observed on average 30% that of the measured daylight factor values. Although the daylight is not emphasized when designing the industrial buildings and its contribution is small, but it is very important for the workers psychology and physiology. The workers must feel a connection with the exterior environment; otherwise, their productivity decreases. Full article
Figures

Open AccessArticle
Rooftop PV Potential in the Residential Sector of the Kingdom of Saudi Arabia
Buildings 2017, 7(2), 46; doi:10.3390/buildings7020046 -
Abstract
The Kingdom of Saudi Arabia (KSA) has a fast growing building sector driven by factors like burgeoning population, economic and infrastructure development and modernization. Buildings, owing to their energy intensive operation, are imposing significant energy, environmental and economic burdens for the country. To
[...] Read more.
The Kingdom of Saudi Arabia (KSA) has a fast growing building sector driven by factors like burgeoning population, economic and infrastructure development and modernization. Buildings, owing to their energy intensive operation, are imposing significant energy, environmental and economic burdens for the country. To overcome these challenges and improve the sustainability levels in the building and energy sectors, it has been decided to develop 9500 MWs of renewable energy projects by 2023. Given the annual solar radiation level of over 2200 kWh/m2, solar energy is expected to play the predominant role in achieving this target. Traditionally, KSA’s emphasis has been to pursue large-scale energy projects. Globally, however, small scale and building related projects have significantly contributed to the rapid growth of solar energy. Application of solar technologies in buildings is one of the important areas that has been ignored in the country. This paper explores the potential for rooftop solar photovoltaic (PV) in KSA’s residential sector. Taking into account appropriate PV design considerations and local building construction and cultural practices, it calculates the power generation potential for 13 major cities. It is found that a total of 51 TWh of electricity can be annually generated from these cities, accounting for 30% of the total domestic demand. Findings of a case study on application of the PV system on 248,452 m2 of rooftop area of the residential buildings in the King Fahd University of Petroleum and Minerals undertaken with the help of ArcGIS 10.2 and PVsyst modeling have also been provided. Full article
Figures

Figure 1