Open AccessArticle
A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury
Biosensors 2017, 7(1), 14; doi:10.3390/bios7010014 -
Abstract
Metallothioneins (MTs) are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was
[...] Read more.
Metallothioneins (MTs) are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs). This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor. Full article
Figures

Figure 1

Open AccessArticle
A Urea Potentiometric Biosensor Based on a Thiophene Copolymer
Biosensors 2017, 7(1), 13; doi:10.3390/bios7010013 -
Abstract
A potentiometric enzyme biosensor is a convenient detector for quantification of urea concentrations in industrial processes, or for monitoring patients with diabetes, kidney damage or liver malfunction. In this work, poly(3-hexylthiophene-co-3-thiopheneacetic acid) (P(3HT-co-3TAA)) was chemically synthesized, characterized and spin-coated
[...] Read more.
A potentiometric enzyme biosensor is a convenient detector for quantification of urea concentrations in industrial processes, or for monitoring patients with diabetes, kidney damage or liver malfunction. In this work, poly(3-hexylthiophene-co-3-thiopheneacetic acid) (P(3HT-co-3TAA)) was chemically synthesized, characterized and spin-coated onto conductive indium tin oxide (ITO) glass electrodes. Urease (Urs) was covalently attached to the smooth surface of this copolymer via carbodiimide coupling. The electrochemical behavior and stability of the modified Urs/P(3HT-co-3TAA)/ITO glass electrode were investigated by cyclic voltammetry, and the bound enzyme activity was confirmed by spectrophotometry. Potentiometric response studies indicated that this electrode could determine the concentration of urea in aqueous solutions, with a quasi-Nernstian response up to about 5 mM. No attempt was made to optimize the response speed; full equilibration occurred after 10 min, but the half-time for response was typically <1 min. Full article
Figures

Figure 1

Open AccessArticle
High Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae)
Biosensors 2017, 7(1), 12; doi:10.3390/bios7010012 -
Abstract
Lectins are carbohydrate-interacting proteins that play a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their
[...] Read more.
Lectins are carbohydrate-interacting proteins that play a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their potential use as biosensors for capturing and identifying bacterial species. In this work, three C-type lectins from the Lepidoptera Spodoptera exigua were produced as recombinant proteins and their bacterial agglutination properties were characterized. The lowest protein concentration producing bacterial agglutination against a panel of different Gram+ and Gram− as well as their carbohydrate binding specificities was determined for the three lectins. One of these lectins, BLL2, was able to agglutinate cells from a broad range of bacterial species at an extremely low concentration, becoming a very interesting protein to be used as a biosensor or for other biotechnological applications involving bacterial capture. Full article
Figures

Figure 1

Open AccessReview
State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes—The Need for Novel Non-Invasive Techniques
Biosensors 2017, 7(1), 11; doi:10.3390/bios7010011 -
Abstract
Muscle glycogen levels have a profound impact on an athlete’s sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete’s lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper
[...] Read more.
Muscle glycogen levels have a profound impact on an athlete’s sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete’s lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise. Full article
Figures

Figure 1

Open AccessArticle
A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV)
Biosensors 2017, 7(1), 10; doi:10.3390/bios7010010 -
Abstract
A single-use, in vitro biosensor for the detection of T-Tau protein in phosphate-buffer saline (PBS) and undiluted human serum was designed, manufactured, and tested. Differential pulse voltammetry (DPV) served as the transduction mechanism. This biosensor consisted of three electrodes: working, counter, and reference
[...] Read more.
A single-use, in vitro biosensor for the detection of T-Tau protein in phosphate-buffer saline (PBS) and undiluted human serum was designed, manufactured, and tested. Differential pulse voltammetry (DPV) served as the transduction mechanism. This biosensor consisted of three electrodes: working, counter, and reference electrodes fabricated on a PET sheet. Both working and counter electrodes were thin gold film, 10 nm in thickness. Laser ablation technique was used to define the size and structure of the biosensor. The biosensor was produced using cost-effective roll-to-roll process. Self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA) were employed to covalently immobilize the anti-T-Tau (T-Tau antibody) on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N–hydroxysuccinimide (NHS) cross-linked anti-T-Tau to the carboxylic groups on one end of the MPA. A T-Tau protein ladder with six isoforms was used in this study. The anti-T-Tau concentration used was 500,000 pg/mL. The T-Tau protein concentration ranged from 1000 pg/mL to 100,000 pg/mL. DPV measurements showed excellent responses, with a good calibration curve. Thus, a practical tool for simple detection of T-Tau protein, a biomarker of neuro-degenerative disorders, has been successfully developed. This tool could also be extended to detect other biomarkers for neuro-degenerative disorders, such as P-Tau protein and β-amyloid 42. Full article
Figures

Figure 1

Open AccessReview
Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment
Biosensors 2017, 7(1), 9; doi:10.3390/bios7010009 -
Abstract
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide
[...] Read more.
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes’ potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors’ medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy. Full article
Figures

Figure 1

Open AccessCommunication
Composite Hydrogels with Engineered Microdomains for Optical Glucose Sensing at Low Oxygen Conditions
Biosensors 2017, 7(1), 8; doi:10.3390/bios7010008 -
Abstract
There is a growing need for advanced tools that enable frequent monitoring of biomarkers for precision medicine. In this work, we present a composite hydrogel-based system providing real-time optical bioanalyte monitoring. The responsive material, alginate-in-alginate (AnA), is comprised of an alginate hydrogel with
[...] Read more.
There is a growing need for advanced tools that enable frequent monitoring of biomarkers for precision medicine. In this work, we present a composite hydrogel-based system providing real-time optical bioanalyte monitoring. The responsive material, alginate-in-alginate (AnA), is comprised of an alginate hydrogel with embedded bioactive, nanofilm-coated phosphorescent microdomains; palladium tetracarboxyphenylporphyrin serves as an optical indicator, glucose oxidase as a model enzyme, and layer-by-layer deposited polyelectrolyte multilayers (PEMs) as the diffusion barrier. Glutaraldehyde crosslinking of the nanofilms resulted in a dramatic reduction in glucose diffusion (179%) while oxygen transport was not significantly affected. The responses of the AnA hydrogels to step changes of glucose at both ambient and physiological oxygen levels were evaluated, revealing controlled tuning of sensitivity and dynamic range. Stability, assessed by alternately exposing the responsive AnA hydrogels to extremely high and zero glucose concentrations, resulted in no significant difference in the response over 20 cycles. These AnA hydrogels represent an attractive approach to biosensing based on biocompatible materials that may be used as minimally-invasive, implantable devices capable of optical interrogation. The model glucose-responsive composite material studied in this work will serve as a template that can be translated for sensing additional analytes (e.g., lactate, urea, pyruvate, cholesterol) and can be used for monitoring other chronic conditions. Full article
Figures

Figure 1

Open AccessReview
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Biosensors 2017, 7(1), 7; doi:10.3390/bios7010007 -
Abstract
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis
[...] Read more.
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Biosensors in 2016
Biosensors 2017, 7(1), 6; doi:10.3390/bios7010006 -
Abstract The editors of Biosensors would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities
Biosensors 2017, 7(1), 4; doi:10.3390/bios7010004 -
Abstract
The capability of alternating current (AC) dielectrophoresis (DEP) for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga
[...] Read more.
The capability of alternating current (AC) dielectrophoresis (DEP) for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga Chlamydomonas reinhardtii, cyanobacterium Synechocystis sp. and diatom Cyclotella meneghiniana were characterized systematically. C. reinhardtii showed an increase of the chaining efficiency from 100 Hz to 500 kHz at all field intensities; C. meneghiniana presented a decrease of chaining efficiency from 100 Hz to 1 kHz followed by a significant increase from 1 kHz to 500 kHz, while Synechocystis sp. exhibited low chaining tendency at all frequencies and all field intensities. The experimentally-determined DEP response and cell alignment of each microorganism were in agreement with their effective polarizability. Mixtures of cells in equal proportion or 10-times excess of Synechocystis sp. showed important differences in terms of chaining efficiency and length of the chains compared with the results obtained when the cells were alone in suspension. While a constant degree of chaining was observed with the mixture of C. reinhardtii and C. meneghiniana, the presence of Synechocystis sp. in each mixture suppressed the formation of chains for the two other phytoplankton species. All of these results prove the potential of DEP to discriminate different phytoplankton species depending on their effective polarizability and to enable their manipulation, such as specific collection or separation in freshwater. Full article
Figures

Figure 1

Open AccessEditorial
Aptamer Sensors
Biosensors 2017, 7(1), 5; doi:10.3390/bios7010005 -
Abstract
In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future
[...] Read more.
In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored. Full article
Open AccessArticle
A Strategy to Establish a Quality Assurance/Quality Control Plan for the Application of Biosensors for the Detection of E. coli in Water
Biosensors 2017, 7(1), 3; doi:10.3390/bios7010003 -
Abstract
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to
[...] Read more.
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities. Full article
Figures

Figure 1

Open AccessArticle
Design and Development of Non-Contact Bio-Potential Electrodes for Pervasive Health Monitoring Applications
Biosensors 2017, 7(1), 2; doi:10.3390/bios7010002 -
Abstract
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be
[...] Read more.
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals. Full article
Figures

Figure 1

Open AccessCommunication
Versatile Flexible Graphene Multielectrode Arrays
Biosensors 2017, 7(1), 1; doi:10.3390/bios7010001 -
Abstract
Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the
[...] Read more.
Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications. Full article
Figures

Figure 1

Open AccessArticle
Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry
Biosensors 2016, 6(4), 61; doi:10.3390/bios6040061 -
Abstract
Portable detection and quantitation methods for Bacillus anthracis (anthrax) spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric
[...] Read more.
Portable detection and quantitation methods for Bacillus anthracis (anthrax) spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL), while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min) result in short sample-to-signal times (less than an hour). With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field. Full article
Figures

Figure 1

Open AccessArticle
A Novel MOS Nanowire Gas Sensor Device (S3) and GC-MS-Based Approach for the Characterization of Grated Parmigiano Reggiano Cheese
Biosensors 2016, 6(4), 60; doi:10.3390/bios6040060 -
Abstract
To determine the originality of a typical Italian Parmigiano Reggiano cheese, it is crucial to define and characterize its quality, ripening period, and geographical origin. Different analytical techniques have been applied aimed at studying the organoleptic and characteristic volatile organic compounds (VOCs) profile
[...] Read more.
To determine the originality of a typical Italian Parmigiano Reggiano cheese, it is crucial to define and characterize its quality, ripening period, and geographical origin. Different analytical techniques have been applied aimed at studying the organoleptic and characteristic volatile organic compounds (VOCs) profile of this cheese. However, most of the classical methods are time consuming and costly. The aim of this work was to illustrate a new simple, portable, fast, reliable, non-destructive, and economic sensor device S3 based on an array of six metal oxide semiconductor nanowire gas sensors to assess and discriminate the quality ranking of grated Parmigiano Reggiano cheese samples and to identify the VOC biomarkers using a headspace SPME-GC-MS. The device could clearly differentiate cheese samples varying in quality and ripening time when the results were analyzed by multivariate statistical analysis involving principal component analysis (PCA). Similarly, the volatile constituents of Parmigiano Reggiano identified were consistent with the compounds intimated in the literature. The obtained results show the applicability of an S3 device combined with SPME-GC-MS and sensory evaluation for a fast and high-sensitivity analysis of VOCs in Parmigiano Reggiano cheese and for the quality control of this class of cheese. Full article
Figures

Figure 1

Open AccessArticle
A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments
Biosensors 2016, 6(4), 59; doi:10.3390/bios6040059 -
Abstract
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous
[...] Read more.
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. Full article
Figures

Figure 1

Open AccessArticle
Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor
Biosensors 2016, 6(4), 58; doi:10.3390/bios6040058 -
Abstract
Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU)
[...] Read more.
Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU) was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI) tests while wearing the custom wireless gait analysis sensor (WGAS). The small WGAS includes a tri-axial accelerometer integrated circuit (IC), two gyroscopes ICs and a Texas Instruments (TI) MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN), support vector machine (SVM), k-nearest neighbors (KNN) and binary decision trees (BDT), based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected. Full article
Figures

Figure 1

Open AccessArticle
Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells
Biosensors 2016, 6(4), 57; doi:10.3390/bios6040057 -
Abstract
Breast cancer is the most prevalent cause of cancer-associated death in women the world over, but if detected early it can be treated successfully. Therefore, it is important to diagnose this disease at an early stage and to understand the biochemical changes associated
[...] Read more.
Breast cancer is the most prevalent cause of cancer-associated death in women the world over, but if detected early it can be treated successfully. Therefore, it is important to diagnose this disease at an early stage and to understand the biochemical changes associated with cellular transformation and cancer progression. Deregulated lipid metabolism has been shown to contribute to cell transformation as well as cancer progression. In this study, we monitored the biomolecular changes associated with the transformation of a normal cell into an invasive cell associated with breast cancer using Raman microspectroscopy. We have utilized primary normal breast cells, and immortalized, transformed, non-invasive, and invasive breast cancer cells. The Raman spectra were acquired from all these cell lines under physiological conditions. The higher wavenumber (2800–3000 cm−1) and lower wavenumber (700–1800 cm−1) range of the Raman spectrum were analyzed and we observed increased lipid levels for invasive cells. The Raman spectral data were analyzed by principal component–linear discriminant analysis (PC-LDA), which resulted in the formation of distinct clusters for different cell types with a high degree of sensitivity. The subsequent testing of the PC-LDA analysis via the leave-one-out cross validation approach (LOOCV) yielded relatively high identification sensitivity. Additionally, the Raman spectroscopic results were confirmed through fluorescence staining tests with BODIPY and Nile Red biochemical assays. Furthermore, Raman maps from the above mentioned cells under fixed conditions were also acquired to visualize the distribution of biomolecules throughout the cell. The present study shows the suitability of Raman spectroscopy as a non-invasive, label-free, microspectroscopic technique, having the potential of probing changes in the biomolecular composition of living cells as well as fixed cells. Full article
Figures

Figure 1

Open AccessArticle
Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers
Biosensors 2016, 6(4), 56; doi:10.3390/bios6040056 -
Abstract
An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs) and incubation of the modified MBs with a mixture
[...] Read more.
An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs) and incubation of the modified MBs with a mixture of the target protein and horseradish peroxidase-labeled antibody (HRP-anti-p53). The resulting modified MBs are captured by a magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE) and the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as a redox mediator and H2O2 as the enzyme substrate. The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in different cell lysates without any matrix effect after a simple sample dilution. The results correlated accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor as an attractive alternative for rapid and simple determination of this protein using portable and affordable instrumentation. Full article
Figures

Figure 1