Open AccessEditorial
Acknowledgement to Reviewers of Biomedicines in 2016
Biomedicines 2017, 5(1), 6; doi:10.3390/biomedicines5010006 -
Abstract The editors of Biomedicines would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessReview
Targeting Autophagy for Oncolytic Immunotherapy
Biomedicines 2017, 5(1), 5; doi:10.3390/biomedicines5010005 -
Abstract
Oncolytic viruses (OVs) are capable of exerting anti-cancer effects by a variety of mechanisms, including immune-mediated tumor cell death, highlighting their potential use in immunotherapy. Several adaptation mechanisms such as autophagy contribute to OV-mediated anti-tumor properties. Autophagy regulates immunogenic signaling during cancer therapy
[...] Read more.
Oncolytic viruses (OVs) are capable of exerting anti-cancer effects by a variety of mechanisms, including immune-mediated tumor cell death, highlighting their potential use in immunotherapy. Several adaptation mechanisms such as autophagy contribute to OV-mediated anti-tumor properties. Autophagy regulates immunogenic signaling during cancer therapy which can be utilized to design therapeutic combinations using approaches that either induce or block autophagy to potentiate the therapeutic efficacy of OVs. In this article, we review the complicated interplay between autophagy, cancer, immunity, and OV, summarize recent progress in the contribution of OV-perturbed autophagy to oncolytic immunity, and discuss the challenges in targeting autophagy to enhance oncolytic immunotherapy. Full article
Figures

Open AccessReview
The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering
Biomedicines 2017, 5(1), 4; doi:10.3390/biomedicines5010004 -
Abstract
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe
[...] Read more.
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering. Full article
Figures

Open AccessReview
Aptamer Technology: Adjunct Therapy for Malaria
Biomedicines 2017, 5(1), 1; doi:10.3390/biomedicines5010001 -
Abstract
Malaria is a life-threatening parasitic infection occurring in the endemic areas, primarily in children under the age of five, pregnant women, and patients with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV)/(AIDS) as well as non-immune individuals. The cytoadherence of infected erythrocytes (IEs)
[...] Read more.
Malaria is a life-threatening parasitic infection occurring in the endemic areas, primarily in children under the age of five, pregnant women, and patients with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV)/(AIDS) as well as non-immune individuals. The cytoadherence of infected erythrocytes (IEs) to the host endothelial surface receptor is a known factor that contributes to the increased prevalence of severe malaria cases due to the accumulation of IEs, mainly in the brain and other vital organs. Therefore, further study is needed to discover a new potential anti-adhesive drug to treat severe malaria thus reducing its mortality rate. In this review, we discuss how the aptamer technology could be applied in the development of a new adjunct therapy for current malaria treatment. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Viroimmunotherapy of Thoracic Cancers
Biomedicines 2017, 5(1), 2; doi:10.3390/biomedicines5010002 -
Abstract
Thoracic cancers, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), and malignant pleural mesothelioma (MM), cause the highest rate of cancer mortality worldwide. Most of these deaths are as a result of NSCLC; however, prognoses for the other two diseases
[...] Read more.
Thoracic cancers, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), and malignant pleural mesothelioma (MM), cause the highest rate of cancer mortality worldwide. Most of these deaths are as a result of NSCLC; however, prognoses for the other two diseases remain as some of the poorest of any cancers. Recent advances in immunotherapy, specifically immune checkpoint inhibitors, have begun to help a small population of patients with advanced lung cancer. People who respond to these immune therapies generally have a durable response and many see dramatic decreases in their disease. However, response to immune therapies remains relatively low. Therefore, intense research is now underway to rationally develop combination therapies to expand the range of patients who will respond to and benefit from immune therapy. One promising approach is with oncolytic viruses. These oncolytic viruses (OVs) have been found to be selective for or have been engineered to preferentially infect and kill cancer cells. In pre-clinical models of different thoracic cancers, it has been found that these viruses can induce immunogenic cell death, increase the number of immune mediators brought into the tumor microenvironment and broaden the neoantigen-specific T cell response. We will review here the literature regarding the application of virotherapy toward augmenting immune responses in thoracic cancers. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies
Biomedicines 2017, 5(1), 3; doi:10.3390/biomedicines5010003 -
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer
[...] Read more.
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host’s anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations. Full article
Figures

Open AccessReview
Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela
Biomedicines 2016, 4(4), 28; doi:10.3390/biomedicines4040028 -
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems.
[...] Read more.
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed. Full article
Figures

Figure 1

Open AccessReview
Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets
Biomedicines 2016, 4(4), 27; doi:10.3390/biomedicines4040027 -
Abstract
In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach
[...] Read more.
In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment. Full article
Figures

Open AccessFeature PaperReview
Personalized Dosimetry for Radionuclide Therapy Using Molecular Imaging Tools
Biomedicines 2016, 4(4), 25; doi:10.3390/biomedicines4040025 -
Abstract
For treatment of systemic malignancies, when external radiation therapy is not applicable, radionuclide therapy can be an alternative. In this form of therapy, radionuclides are administered to the patient, often in a form where the radionuclide is labelled to a molecule that plays
[...] Read more.
For treatment of systemic malignancies, when external radiation therapy is not applicable, radionuclide therapy can be an alternative. In this form of therapy, radionuclides are administered to the patient, often in a form where the radionuclide is labelled to a molecule that plays the active part in the localization of the tumor. Since the aim is to impart lethal damage to tumor cells while maintaining possible side-effects to normal tissues at tolerable levels, a proper and accurate personalized dosimetry should be a pre-requisite. In radionuclide therapy, there is a need to measure the distribution of the radiopharmaceutical in vivo, as well as its re-distribution over time, in order estimate the total energy released in radioactive decays and subsequent charged-particle interactions, governing the absorbed dose to different organs and tumors. Measurements are usually performed by molecular imaging, more specifically planar and SPECT (Single-Photon Emission Computed Tomography) imaging, combined with CT. This review describes the different parts in the dosimetry chain of radionuclide therapy. Emphasis is given to molecular imaging tools and the requirements for determining absorbed doses from quantitative planar and SPECT images. As example solutions to the different problems that need to be addressed in such a dosimetric chain, we describe our tool, Lundadose, which is a set of methods that we have developed for personalized dosimetry. Full article
Figures

Figure 1

Open AccessReview
The Strategies to Homogenize PET/CT Metrics: The Case of Onco-Haematological Clinical Trials
Biomedicines 2016, 4(4), 26; doi:10.3390/biomedicines4040026 -
Abstract
Positron emission tomography (PET) has been a widely used tool in oncology for staging lymphomas for a long time. Recently, several large clinical trials demonstrated its utility in therapy management during treatment, paving the way to personalized medicine. In doing so, the traditional
[...] Read more.
Positron emission tomography (PET) has been a widely used tool in oncology for staging lymphomas for a long time. Recently, several large clinical trials demonstrated its utility in therapy management during treatment, paving the way to personalized medicine. In doing so, the traditional way of reporting PET based on the extent of disease has been complemented by a discrete scale that takes in account tumour metabolism. However, due to several technical, physical and biological limitations in the use of PET uptake as a biomarker, stringent rules have been used in clinical trials to reduce the errors in its evaluation. Within this manuscript we will describe shortly the evolution in PET reporting, examine the main errors in uptake measurement, and analyse which strategy the clinical trials applied to reduce them. Full article
Figures

Figure 1

Open AccessArticle
Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine
Biomedicines 2016, 4(4), 24; doi:10.3390/biomedicines4040024 -
Abstract
The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET
[...] Read more.
The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET imaging as a tool for personalized diagnosis and therapy by highlighting a case series of four patients with recurrent high grade glioma who underwent 18F-fluoromisonidazole (FMISO) PET/MR (magnetic resonance) imaging through the course of antiangiogenic therapy. Three distinct features were observed from this small cohort of patients. First, the presence of pseudoprogression was retrospectively associated with the absence of hypoxia. Second, a subgroup of patients with recurrent high grade glioma undergoing bevacizumab therapy demonstrated disease progression characterized by an enlarging nonenhancing mass with newly developed reduced diffusion, lack of hypoxia, and preserved cerebral blood volume. Finally, a reduction in hypoxic volume was observed concurrent with therapy in all patients with recurrent tumor, and markedly so in two patients that developed a nonenhancing reduced diffusion mass. This case series demonstrates how medical imaging has the potential to influence personalized medicine in several key aspects, especially involving molecular PET imaging for personalized diagnosis, patient specific disease prognosis, and therapeutic monitoring. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts
Biomedicines 2016, 4(3), 23; doi:10.3390/biomedicines4030023 -
Abstract
Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and
[...] Read more.
Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells. Full article
Open AccessFeature PaperArticle
An Abraded Surface of Doxorubicin-Loaded Surfactant-Containing Drug Delivery Systems Effectively Reduces the Survival of Carcinoma Cells
Biomedicines 2016, 4(3), 22; doi:10.3390/biomedicines4030022 -
Abstract
An effective antitumor remedy is yet to be developed. All previous approaches for a targeted delivery of anticancer medicine have relied on trial and error. The goal of this study was to use structural insights gained from the study of delivery systems and
[...] Read more.
An effective antitumor remedy is yet to be developed. All previous approaches for a targeted delivery of anticancer medicine have relied on trial and error. The goal of this study was to use structural insights gained from the study of delivery systems and malignant cells to provide for a systematic approach to the development of next-generation drugs. We used doxorubicin (Dox) liposomal formulations. We assayed for cytotoxicity via the electrical current exclusion method. Dialysis of the samples yielded information about their drug release profiles. Information about the surface of the delivery systems was obtained through synchrotron small-angle X-ray scattering (SAXS) measurements. SAXS measurements revealed that Dox-loading yielded an abraded surface of our Dox liposomal formulation containing soybean oil, which also correlated with an effective reduction of the survival of carcinoma cells. Furthermore, a dialysis assay revealed that a higher burst of Dox was released from soybean oil-containing preparations within the first five hours. We conclude from our results that an abraded surface of Dox-loaded drug delivery system increases their efficacy. The apparent match between surface geometry of drug delivery systems and target cells is suggested as a steppingstone for refined development of drug delivery systems. This is the first study to provide a systematic approach to developing next-generation drug carrier systems using structural insights to guide the development of next-generation drug delivery systems with increased efficacy and reduced side effects. Full article
Figures

Open AccessFeature PaperReview
Capitalizing on Cancer Specific Replication: Oncolytic Viruses as a Versatile Platform for the Enhancement of Cancer Immunotherapy Strategies
Biomedicines 2016, 4(3), 21; doi:10.3390/biomedicines4030021 -
Abstract
The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being
[...] Read more.
The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being obtained in the last 5 years. It is becoming increasingly apparent that these two approaches are not mutually exclusive and that much of the therapeutic benefit obtained from the use of oncolytic viruses (OVs) is in fact the result of their immunotherapeutic function. Indeed, OVs have been shown to recruit and activate an antitumor immune response and much of the current work in this field centers around increasing this activity through strategies such as engineering genes for immunomodulators into OV backbones. Because of their broad immunostimulatory functions, OVs can also be rationally combined with a variety of other immunotherapeutic approaches including cancer vaccination strategies, adoptive cell transfer and checkpoint blockade. Therefore, while they are important therapeutics in their own right, the true power of OVs may lie in their ability to enhance the effectiveness of a wide range of immunotherapies. Full article
Figures

Open AccessReview
Emerging Therapeutic Potential of Nanoparticles in Pancreatic Cancer: A Systematic Review of Clinical Trials
Biomedicines 2016, 4(3), 20; doi:10.3390/biomedicines4030020 -
Abstract
Pancreatic cancer is an aggressive disease with a five year survival rate of less than 5%, which is associated with late presentation. In recent years, research into nanomedicine and the use of nanoparticles as therapeutic agents for cancers has increased. This article describes
[...] Read more.
Pancreatic cancer is an aggressive disease with a five year survival rate of less than 5%, which is associated with late presentation. In recent years, research into nanomedicine and the use of nanoparticles as therapeutic agents for cancers has increased. This article describes the latest developments in the use of nanoparticles, and evaluates the risks and benefits of nanoparticles as an emerging therapy for pancreatic cancer. The Preferred Reporting Items of Systematic Reviews and Meta-Analyses checklist was used. Studies were extracted by searching the Embase, MEDLINE, SCOPUS, Web of Science, and Cochrane Library databases from inception to 18 March 2016 with no language restrictions. Clinical trials involving the use of nanoparticles as a therapeutic or prognostic option in patients with pancreatic cancer were considered. Selected studies were evaluated using the Jadad score for randomised control trials and the Therapy CA Worksheet for intervention studies. Of the 210 articles found, 10 clinical trials including one randomised control trial and nine phase I/II clinical trials met the inclusion criteria and were analysed. These studies demonstrated that nanoparticles can be used in conjunction with chemotherapeutic agents increasing their efficacy whilst reducing their toxicity. Increased efficacy of treatment with nanoparticles may improve the clinical outcomes and quality of life in patients with pancreatic cancer, although the long-term side effects are yet to be defined. The study registration number is CRD42015020009. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Recombinant Poxvirus and the Tumor Microenvironment: Oncolysis, Immune Regulation and Immunization
Biomedicines 2016, 4(3), 19; doi:10.3390/biomedicines4030019 -
Abstract
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by
[...] Read more.
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses. Full article
Figures

Open AccessFeature PaperReview
From Benchtop to Bedside: A Review of Oncolytic Virotherapy
Biomedicines 2016, 4(3), 18; doi:10.3390/biomedicines4030018 -
Abstract
Oncolytic viruses (OVs) demonstrate the ability to replicate selectively in cancer cells, resulting in antitumor effects by a variety of mechanisms, including direct cell lysis and indirect cell death through immune-mediate host responses. Although the mechanisms of action of OVs are still not
[...] Read more.
Oncolytic viruses (OVs) demonstrate the ability to replicate selectively in cancer cells, resulting in antitumor effects by a variety of mechanisms, including direct cell lysis and indirect cell death through immune-mediate host responses. Although the mechanisms of action of OVs are still not fully understood, major advances have been made in our understanding of how OVs function and interact with the host immune system, resulting in the recent FDA approval of the first OV for cancer therapy in the USA. This review provides an overview of the history of OVs, their selectivity for cancer cells, and their multifaceted mechanism of antitumor action, as well as strategies employed to augment selectivity and efficacy of OVs. OVs in combination with standard cancer therapies are also discussed, as well as a review of ongoing human clinical trials. Full article
Open AccessArticle
In Vitro Anti-Oxidant and Anti-Microbial Potentiality Investigation of Different Fractions of Caryota urens Leaves
Biomedicines 2016, 4(3), 17; doi:10.3390/biomedicines4030017 -
Abstract
Background: Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against
[...] Read more.
Background: Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against different pathogenic microorganism. Methods: The leaves of C. urens were extracted and fractioned using different reagents (chloroform, n-hexane and carbon tetrachloride). Disc diffusion method was implemented for the assessment of in vitro anti-microbial potency (500 and 250 µg/disc). Result: The entire fraction showed good effect (with the zone of inhibition 19–25 mm) against both gram positive (Bacillus subtilis, Bacillus megaterium, Bacillus cereus, Sarina lutea) and gram negative (Vibrio mimicus, Shigella boydii, Escherichia coli, Pseudomonas aeruginosa) bacterial pathogens and fungal strains (Aspergillus niger, Saccharomyces cerevisiae). The plants also possess effective free radical scavenging potency with an IC50 of 130.32 µg/mL. Conclusion: This finding reflects a link between the presence of anti-oxidative material and a substantial anti-microbial activity, and substantiates all previous claims against C. urens. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate!
Biomedicines 2016, 4(3), 16; doi:10.3390/biomedicines4030016 -
Abstract
This review provides an overview of 50 years of basic and clinical research on an oncolytic avian virus, Newcastle Disease Virus (NDV), which has particular anti-neoplastic and immune stimulatory properties. Of special interest is the fact that this biological agent induces immunogenic cell
[...] Read more.
This review provides an overview of 50 years of basic and clinical research on an oncolytic avian virus, Newcastle Disease Virus (NDV), which has particular anti-neoplastic and immune stimulatory properties. Of special interest is the fact that this biological agent induces immunogenic cell death and systemic anti-tumor immunity. Furthermore, localized oncolytic virotherapy with NDV was shown to overcome systemic tumor resistance to immune checkpoint blockade immunotherapy. Clinical experience attests to low side effects and a high safety profile. This is due among others to the strong virus-induced type I interferon response. Other viral characteristics are lack of interaction with host cell DNA, lack of genetic recombination and independence of virus replication from cell proliferation. In this millennium, new recombinant strains of viruses are being produced with improved therapeutic properties. Clinical applications include single case observations, case series studies and Phase I to III studies. Full article
Figures

Open AccessArticle
Design, Synthesis and Biochemical Evaluation of Novel Selective Estrogen Receptor Ligand Conjugates Incorporating an Endoxifen-Combretastatin Hybrid Scaffold
Biomedicines 2016, 4(3), 15; doi:10.3390/biomedicines4030015 -
Abstract
Nuclear-receptors are often overexpressed in tumours and can thereby be used as targets when designing novel selective chemotherapeutic agents. To date, many conjugates incorporating an estrogen receptor (ER) ligand have been synthesised in order to direct chemical agents to tissue sites containing ERs.
[...] Read more.
Nuclear-receptors are often overexpressed in tumours and can thereby be used as targets when designing novel selective chemotherapeutic agents. To date, many conjugates incorporating an estrogen receptor (ER) ligand have been synthesised in order to direct chemical agents to tissue sites containing ERs. A series of ER ligand conjugates were synthesised incorporating an antagonistic ER ligand scaffold based on endoxifen, covalently-bound via an amide linkage to a variety of combretastatin-based analogues, which may act as antimitotic agents. These novel endoxifen-combretastatin hybrid scaffold analogues were biochemically evaluated in order to determine their antiproliferative and cytotoxicity effects in both the ER-positive MCF-7 and the ER-negative MDA-MB-231 human breast cancer cell lines. ER competitive binding assays were carried out to assess the binding affinity of the lead conjugate 28 towards both the ERα and ERβ isoforms. In results from the NCI 60-cell line screen, the lead conjugate 28 displayed potent and highly selective antiproliferative activity towards the MCF-7 human cancer cell line (IC50 = 5 nM). In the ER-binding assays, the lead conjugate 28 demonstrated potent ER competitive binding in ERα (IC50 value: 0.9 nM) and ERβ (IC50 value: 4.7 nM). Preliminary biochemical results also demonstrate that the lead conjugate 28 may exhibit pure antagonism. This series makes an important addition to the class of ER antagonists and may have potential applications in anticancer therapy. Full article
Figures