Open AccessArticle
In Vivo Effects of Lipopolysaccharide on Peroxisome Proliferator-Activated Receptor Expression in Juvenile Gilthead Seabream (Sparus Aurata)
Biology 2017, 6(4), 36; doi:10.3390/biology6040036 -
Abstract
Fish are constantly exposed to microorganisms in the aquatic environment, many of which are bacterial pathogens. Bacterial pathogens activate the innate immune response in fish involving the production of pro-inflammatory molecules that, in addition to their immune-related role, can affect non-immune tissues. In
[...] Read more.
Fish are constantly exposed to microorganisms in the aquatic environment, many of which are bacterial pathogens. Bacterial pathogens activate the innate immune response in fish involving the production of pro-inflammatory molecules that, in addition to their immune-related role, can affect non-immune tissues. In the present study, we aimed at investigating how inflammatory responses can affect metabolic homeostasis in the gilthead seabream (Sparus aurata), a teleost of considerable economic importance in Southern European countries. Specifically, we mimicked a bacterial infection by in vivo administration of lipopolysaccharide (LPS, 6 mg/kg body weight) and measured metabolic parameters in the blood and, importantly, the mRNA expression levels of the three isotypes of peroxisome proliferator activated receptors (PPARα, β, and γ) in metabolically-relevant tissues in seabream. PPARs are nuclear receptors that are important for lipid and carbohydrate metabolism in mammals and that act as biological sensors of altered lipid metabolism. We show here that LPS-induced inflammatory responses result in the modulation of triglyceride plasma levels that are accompanied most notably by a decrease in the hepatic mRNA expression levels of PPARα, β, and γ and by the up-regulation of PPARγ expression only in adipose tissue and the anterior intestine. In addition, LPS-induced inflammation results in an increase in the hepatic mRNA expression and protein activity levels of members of the mitogen-activated protein kinase (MAPK) family, known in mammals to regulate the transcription and activity of PPARs. Our results provide evidence for the involvement of PPARs in the metabolic response to inflammatory stimuli in seabream and offer insights into the molecular mechanisms underlying the redirection of metabolic activities under inflammatory conditions in vertebrates. Full article
Figures

Figure 1

Open AccessFeature PaperReview
The Role of Oocyte Organelles in Determining Developmental Competence
Biology 2017, 6(3), 35; doi:10.3390/biology6030035 -
Abstract
The ability of an oocyte to undergo successful cytoplasmic and nuclear maturation, fertilization and embryo development is referred to as the oocyte’s quality or developmental competence. Quality is dependent on the accumulation of organelles, metabolites and maternal RNAs during the growth and maturation
[...] Read more.
The ability of an oocyte to undergo successful cytoplasmic and nuclear maturation, fertilization and embryo development is referred to as the oocyte’s quality or developmental competence. Quality is dependent on the accumulation of organelles, metabolites and maternal RNAs during the growth and maturation of the oocyte. Various models of good and poor oocyte quality have been used to understand the essential contributors to developmental success. This review covers the current knowledge of how oocyte organelle quantity, distribution and morphology differ between good and poor quality oocytes. The models of oocyte quality are also described and their usefulness for studying the intrinsic quality of an oocyte discussed. Understanding the key critical features of cytoplasmic organelles and metabolites driving oocyte quality will lead to methods for identifying high quality oocytes and improving oocyte competence, both in vitro and in vivo. Full article
Figures

Figure 1

Open AccessFeature PaperReview
MicroRNA Signaling in Embryo Development
Biology 2017, 6(3), 34; doi:10.3390/biology6030034 -
Abstract
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment.
[...] Read more.
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation. Full article
Figures

Figure 1

Open AccessArticle
Seed Coating with Hydro-Absorbers as Potential Mitigation of Early Season Drought in Sorghum (Sorghum bicolor L. Moench)
Biology 2017, 6(3), 33; doi:10.3390/biology6030033 -
Abstract
Climate change poses a threat to sorghum production systems by shifting the onset of the rainy season to a later date, increasing the risk of crop failure during crop establishment. The effects of drought on sorghum during seedling establishment have not been determined.
[...] Read more.
Climate change poses a threat to sorghum production systems by shifting the onset of the rainy season to a later date, increasing the risk of crop failure during crop establishment. The effects of drought on sorghum during seedling establishment have not been determined. Coating seeds with a water absorbing substance offers a way to buffer the seed against insufficient moisture in the surrounding soil. Seeds of two different sorghum varieties were coated with one of two commercially available hydro-absorbers: Stokosorb® and Geohumus®. These hydro-absorbers have the capacity to store water several times their own weight. The aim of this study was to compare the effects of the cited hydro-absorbers on early seedling growth of two sorghum landraces under different levels of soil water deficit. Seedlings were grown for 12 days under three water availability levels (Field capacity (FC), 50% of FC, and 25% of FC). The seedlings under water limited treatments were subsequently re-watered. Biomass, root length, plant height, leaf area, and leaf extension rate were monitored in two-day intervals for 24 days. Coating strongly affected seedling growth both under fully watered and water deficit conditions. Sorghum varieties differed in their responses to both soil water deficit and coating materials. In general, Stockosorb improved seedling performance under water limited conditions particularly by promoting root growth, whereas Geohumus did not. Full article
Figures

Figure 1

Open AccessCommunication
Physical Forces May Cause the HoxD Gene Cluster Elongation
Biology 2017, 6(3), 32; doi:10.3390/biology6030032 -
Abstract
Hox gene collinearity was discovered be Edward B. Lewis in 1978. It consists of the Hox1, Hox2, Hox3 ordering of the Hox genes in the chromosome from the telomeric to the centromeric side of the chromosome. Surprisingly, the spatial activation of the Hox
[...] Read more.
Hox gene collinearity was discovered be Edward B. Lewis in 1978. It consists of the Hox1, Hox2, Hox3 ordering of the Hox genes in the chromosome from the telomeric to the centromeric side of the chromosome. Surprisingly, the spatial activation of the Hox genes in the ontogenetic units of the embryo follows the same ordering along the anterior-posterior embryonic axis. The chromosome microscale differs from the embryo macroscale by 3 to 4 orders of magnitude. The traditional biomolecular mechanisms are not adequate to comprise phenomena at so divergent spatial domains. A Biophysical Model of physical forces was proposed which can bridge the intermediate space and explain the results of genetic engineering experiments. Recent progress in constructing instruments and achieving high resolution imaging (e.g., 3D DNA FISH, STORM etc.) enable the assessment of the geometric structure of the chromatin during the different phases of Hox gene activation. It is found that the mouse HoxD gene cluster is elongated up to 5–6 times during Hox gene transcription. These unexpected findings agree with the BM predictions. It is now possible to measure several physical quantities inside the nucleus during Hox gene activation. New experiments are proposed to test further this model. Full article
Figures

Figure 1

Open AccessArticle
Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds
Biology 2017, 6(2), 31; doi:10.3390/biology6020031 -
Abstract
Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency
[...] Read more.
Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency is due to a shift in the enzymatic cleavage of sucrose from invertase to sucrose synthase in the embryonic tissue caused by a reduced oxygen availability induced by oversaturation with water caused by the coating during early germination. We investigated the effect of coating on barley, rye, and wheat seed imbibition during the first 30 h after seeds were placed in moisture. We profiled oxygen in the embryos and measured sucrose and acid invertase levels as imbibition progressed. We found that seeds within coatings absorbed significantly more moisture than uncoated seeds. Coating resulted in near anoxic oxygen concentrations in the developing embryonic tissues in all three species. In barley, sucrose was not cleaved via the invertase pathway, despite the fact that invertase activity in coated seeds was increased. In rye and wheat, invertase activities were significantly lower in embryos from coated seeds without significantly changing the sugar composition. Full article
Figures

Figure 1

Open AccessArticle
Treatment of Real-World HCV Genotype 2-Infected Japanese Patients with Sofosbuvir plus Ribavirin
Biology 2017, 6(2), 30; doi:10.3390/biology6020030 -
Abstract
The aim of this study was to characterize the treatment response and tolerability of sofosbuvir plus ribavirin therapies in Japanese patients infected with hepatitis C virus (HCV) genotype (GT)-2. This retrospective study analyzed 114 Japanese HCV GT-2 patients treated for 12 weeks with
[...] Read more.
The aim of this study was to characterize the treatment response and tolerability of sofosbuvir plus ribavirin therapies in Japanese patients infected with hepatitis C virus (HCV) genotype (GT)-2. This retrospective study analyzed 114 Japanese HCV GT-2 patients treated for 12 weeks with 400 mg of sofosbuvir plus weight-based ribavirin daily. This treatment led to higher sustained virologic response at 12-weeks post-treatment (SVR12) rates in both treatment-naïve and treatment-experienced patients. The efficacy of this treatment in compensated cirrhotics was the same as that in patients with chronic hepatitis. HCV GT-2a infection and lower estimated glomerular filtration rates (eGFR) tended to be associated with SVR12. Of 114 patients, 113 completed the combination of sofosbuvir plus ribavirin for 12 weeks. Seven patients without SVR12 did not have HCV NS5B-S282 mutations. The overall SVR12 rate was 90.4% (103 of 114). More effective therapeutic options with less adverse events are desired to achieve higher SVR rates in HCV GT-2 Japanese patients. Full article
Figures

Figure 1

Open AccessArticle
Characterisation of Arctic Bacterial Communities in the Air above Svalbard
Biology 2017, 6(2), 29; doi:10.3390/biology6020029 -
Abstract
Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part,
[...] Read more.
Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate sampling and analytical methodology. In this study, three different methods were used to investigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbard were selected due to their relatively remote location, low human population, geographical location with respect to air movement and the tradition and history of scientific investigation on the archipelago, ensuring the presence of existing research infrastructure. The aerial bacterial biodiversity found was similar to that described in other aerobiological studies from both polar and non-polar environments, with Proteobacteria, Actinobacteria, and Firmicutes being the predominant groups. Twelve different phyla were detected in the air collected above Svalbard, although the diversity was considerably lower than in urban environments elsewhere. However, only 58 of 196 bacterial genera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteria were present at all sampling locations, showing that living bacteria are ubiquitous in the air around Svalbard. Sampling location influenced the results obtained, as did sampling method. Specifically, impaction with a Sartorius MD8 produced a significantly higher number of viable colony forming units (CFUs) than drop plates alone. Full article
Figures

Figure 1

Open AccessArticle
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes
Biology 2017, 6(2), 28; doi:10.3390/biology6020028 -
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to
[...] Read more.
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3′ inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3′ CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression. Full article
Figures

Figure 1

Open AccessReview
Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?
Biology 2017, 6(2), 27; doi:10.3390/biology6020027 -
Abstract
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of
[...] Read more.
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain. Full article
Figures

Figure 1

Open AccessArticle
Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice
Biology 2017, 6(2), 25; doi:10.3390/biology6020025 -
Abstract
Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS), a genetic condition that scores within the
[...] Read more.
Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS), a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients. Full article
Figures

Figure 1

Open AccessArticle
Identification of Highly Specific scFvs against Total Adiponectin for Diagnostic Purposes
Biology 2017, 6(2), 26; doi:10.3390/biology6020026 -
Abstract
Adiponectin is one of the most abundant adipokines secreted from adipose tissue. It acts as an endogenous insulin sensitizer and plasma concentrations are inversely correlated with obesity and metabolic syndrome. A decrease in plasma adiponectin levels normally indicates increased hormonal activity of the
[...] Read more.
Adiponectin is one of the most abundant adipokines secreted from adipose tissue. It acts as an endogenous insulin sensitizer and plasma concentrations are inversely correlated with obesity and metabolic syndrome. A decrease in plasma adiponectin levels normally indicates increased hormonal activity of the visceral lipid tissue, which is associated with decreased insulin sensitivity. It may therefore be considered a valuable biomarker for elucidating the underlying deteriorations resulting in type 2 diabetes and macrovascular disease. Here we present the use of phage display technology to identify highly specific antibody fragments (scFvs) against adiponectin. The selected scFvs showed highly specific binding to globular and native adiponectin in ELISA tests. By using our phage display technology, we were able to obtain monoclonal antibodies with specific high affinity binding to the target protein in an effective and easy to upscale manner. The selected scFvs against adiponectin can be used for developing immunoassays suitable for use in metabolic syndrome diagnosis and monitoring. Full article
Figures

Figure 1

Open AccessReview
Coenzyme-A-Independent Transacylation System; Possible Involvement of Phospholipase A2 in Transacylation
Biology 2017, 6(2), 23; doi:10.3390/biology6020023 -
Abstract
The coenzyme A (CoA)-independent transacylation system catalyzes fatty acid transfer from phospholipids to lysophospholipids in the absence of cofactors such as CoA. It prefers to use C20 and C22 polyunsaturated fatty acids such as arachidonic acid, which are esterified in the glycerophospholipid at
[...] Read more.
The coenzyme A (CoA)-independent transacylation system catalyzes fatty acid transfer from phospholipids to lysophospholipids in the absence of cofactors such as CoA. It prefers to use C20 and C22 polyunsaturated fatty acids such as arachidonic acid, which are esterified in the glycerophospholipid at the sn-2 position. This system can also acylate alkyl ether-linked lysophospholipids, is involved in the enrichment of arachidonic acid in alkyl ether-linked glycerophospholipids, and is critical for the metabolism of eicosanoids and platelet-activating factor. Despite their importance, the enzymes responsible for these reactions have yet to be identified. In this review, we describe the features of the Ca2+-independent, membrane-bound CoA-independent transacylation system and its selectivity for arachidonic acid. We also speculate on the involvement of phospholipase A2 in the CoA-independent transacylation reaction. Full article
Figures

Figure 1

Open AccessArticle
The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites
Biology 2017, 6(2), 24; doi:10.3390/biology6020024 -
Abstract
Many enzymes make “mistakes”. Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this
[...] Read more.
Many enzymes make “mistakes”. Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain “mistakes” of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants. Full article
Figures

Figure 1

Open AccessArticle
Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel)
Biology 2017, 6(2), 22; doi:10.3390/biology6020022 -
Abstract
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish
[...] Read more.
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. Full article
Figures

Figure 1

Open AccessReview
SNP Discovery Using a Pangenome: Has the Single Reference Approach Become Obsolete?
Biology 2017, 6(1), 21; doi:10.3390/biology6010021 -
Abstract
Increasing evidence suggests that a single individual is insufficient to capture the genetic diversity within a species due to gene presence absence variation. In order to understand the extent to which genomic variation occurs in a species, the construction of its pangenome is
[...] Read more.
Increasing evidence suggests that a single individual is insufficient to capture the genetic diversity within a species due to gene presence absence variation. In order to understand the extent to which genomic variation occurs in a species, the construction of its pangenome is necessary. The pangenome represents the complete set of genes of a species; it is composed of core genes, which are present in all individuals, and variable genes, which are present only in some individuals. Aside from variations at the gene level, single nucleotide polymorphisms (SNPs) are also an important form of genetic variation. The advent of next-generation sequencing (NGS) coupled with the heritability of SNPs make them ideal markers for genetic analysis of human, animal, and microbial data. SNPs have also been extensively used in crop genetics for association mapping, quantitative trait loci (QTL) analysis, analysis of genetic diversity, and phylogenetic analysis. This review focuses on the use of pangenomes for SNP discovery. It highlights the advantages of using a pangenome rather than a single reference for this purpose. This review also demonstrates how extra information not captured in a single reference alone can be used to provide additional support for linking genotypic data to phenotypic data. Full article
Figures

Figure 1

Open AccessReview
STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity
Biology 2017, 6(1), 20; doi:10.3390/biology6010020 -
Abstract
Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B
[...] Read more.
Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5. Full article
Figures

Figure 1

Open AccessArticle
Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System
Biology 2017, 6(1), 19; doi:10.3390/biology6010019 -
Abstract
The increasing concentration of CO2 in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how
[...] Read more.
The increasing concentration of CO2 in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO2 in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO2 was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO2 without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO2 on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO2-enriched environment, at 408.5 ± 38.5 × 104 cells/cm2, compared to the control site at 176.5 ± 6.9 × 104 cells/cm2 (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO2 injector. Quadrat 16, which was nearing the end of the CO2 valve injector, showed an exceptionally high algal density—2-fold higher than the average density at 796 ± 38.5 × 104 cells/cm2. In contrast, Quadrat 9, which was located in the center of the ring (lower CO2 concentration), recorded only 277 ± 38.5 × 104 cells/cm2, which further supports the previous claim. Based on the data obtained, this study provides useful data in understanding the positive effect of CO2 on algal density, in a natural environment, and suggests the use of epiphytic terrestrial algae as a biomarker. Full article
Figures

Figure 1

Open AccessReview
Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways
Biology 2017, 6(1), 18; doi:10.3390/biology6010018 -
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In
[...] Read more.
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme. Full article
Figures

Figure 1

Open AccessReview
Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase
Biology 2017, 6(1), 17; doi:10.3390/biology6010017 -
Abstract
The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA) and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in
[...] Read more.
The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA) and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s) converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT) and its degradation by glutamate dehydrogenase (GDH). Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA). Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here. Full article
Figures

Figure 1