Open AccessArticle
Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry
Bioengineering 2016, 3(4), 34; doi:10.3390/bioengineering3040034 -
Abstract
Crude glycerol is generated as a by-product during transesterification process and during hydrolysis of fat in the soap-manufacturing process, and poses a problem for waste management. In the present approach, an efficient process was designed for simultaneous production of 0.2 g/L extracellular ε-polylysine
[...] Read more.
Crude glycerol is generated as a by-product during transesterification process and during hydrolysis of fat in the soap-manufacturing process, and poses a problem for waste management. In the present approach, an efficient process was designed for simultaneous production of 0.2 g/L extracellular ε-polylysine and 64.6% (w/w) intracellular polyhydroxyalkanoate (PHA) in the same fermentation broth (1 L shake flask) utilizing Jatropha biodiesel waste residues as carbon rich source by marine bacterial strain (Bacillus licheniformis PL26), isolated from west coast of India. The synthesized ε-polylysine and polyhydroxyalkanoate PHA by Bacillus licheniformis PL26 was characterized by thermogravimetric analysis (TGA), differential scanning colorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 1H Nuclear magnetic resonance spectroscopy (NMR). The PHA produced by Bacillus licheniformis was found to be poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV). The developed process needs to be statistically optimized further for gaining still better yield of both the products in an efficient manner. Full article
Figures

Open AccessArticle
An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars
Bioengineering 2016, 3(4), 33; doi:10.3390/bioengineering3040033 -
Abstract
Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs) rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that
[...] Read more.
Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs) rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM) was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose) were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002), total polyphenols (p = 0.03) and DPPH free-radical scavenging activity (p = 0.004) increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols. Full article
Figures

Open AccessArticle
Fluorometric In Situ Monitoring of an Escherichia coli Cell Factory with Cytosolic Expression of Human Glycosyltransferase GalNAcT2: Prospects and Limitations
Bioengineering 2016, 3(4), 32; doi:10.3390/bioengineering3040032 -
Abstract
The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli) SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but
[...] Read more.
The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli) SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but is a critical process parameter. Therefore, it has to be monitored closely. This study evaluates fluorometric in situ monitoring as option to access this critical process parameter during complex E. coli fermentations. Partial least square regression (PLS) models were built based on the fluorometric data recorded during the EnPresso® B fermentations. Capable models for the prediction of glucose and acetate concentrations were built for these fermentations with rout mean squared errors for prediction (RMSEP) of 0.19 g·L−1 and 0.08 g·L−1, as well as for the prediction of the optical density (RMSEP 0.24). In situ monitoring of soluble enzyme to cell dry weight ratios (RMSEP 5.5 × 10−4 µg w/w) and specific activity of the glycosyltransferase (RMSEP 33.5 pmol·min−1·µg−1) proved to be challenging, since HisDapGalNAcT2 had to be extracted from the cells and purified. However, fluorescence spectroscopy, in combination with PLS modeling, proved to be feasible for in situ monitoring of complex expression systems. Full article
Figures

Figure 1

Open AccessArticle
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays
Bioengineering 2016, 3(4), 31; doi:10.3390/bioengineering3040031 -
Abstract
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of
[...] Read more.
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. Full article
Figures

Figure 1

Open AccessReview
Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review
Bioengineering 2016, 3(4), 30; doi:10.3390/bioengineering3040030 -
Abstract
Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of
[...] Read more.
Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years. Full article
Figures

Open AccessArticle
Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces
Bioengineering 2016, 3(4), 29; doi:10.3390/bioengineering3040029 -
Abstract
Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs), as part of a post-processing method
[...] Read more.
Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs), as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM). The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues. Full article
Figures

Figure 1

Open AccessArticle
Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine
Bioengineering 2016, 3(4), 28; doi:10.3390/bioengineering3040028 -
Abstract
The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered
[...] Read more.
The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine. Full article
Figures

Open AccessCommunication
A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling
Bioengineering 2016, 3(4), 27; doi:10.3390/bioengineering3040027 -
Abstract
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser
[...] Read more.
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure. Full article
Figures

Figure 1

Open AccessCommunication
A Proof-of-Concept Study: Simple and Effective Detection of P and T Waves in Arrhythmic ECG Signals
Bioengineering 2016, 3(4), 26; doi:10.3390/bioengineering3040026 -
Abstract
A robust and numerically-efficient method based on two moving average filters, followed by a dynamic event-related threshold, has been developed to detect P and T waves in electrocardiogram (ECG) signals as a proof-of-concept. Detection of P and T waves is affected by the
[...] Read more.
A robust and numerically-efficient method based on two moving average filters, followed by a dynamic event-related threshold, has been developed to detect P and T waves in electrocardiogram (ECG) signals as a proof-of-concept. Detection of P and T waves is affected by the quality and abnormalities in ECG recordings; the proposed method can detect P and T waves simultaneously through a unique algorithm despite these challenges. The algorithm was tested on arrhythmic ECG signals extracted from the MIT-BIH arrhythmia database with 21,702 beats. These signals typically suffer from: (1) non-stationary effects; (2) low signal-to-noise ratio; (3) premature atrial complexes; (4) premature ventricular complexes; (5) left bundle branch blocks; and (6) right bundle branch blocks. Interestingly, our algorithm obtained a sensitivity of 98.05% and a positive predictivity of 97.11% for P waves, and a sensitivity of 99.86% and a positive predictivity of 99.65% for T waves. These results, combined with the simplicity of the method, demonstrate that an efficient and simple algorithm can suit portable, wearable, and battery-operated ECG devices. Full article
Figures

Figure 1

Open AccessReview
Microfluidics for Antibiotic Susceptibility and Toxicity Testing
Bioengineering 2016, 3(4), 25; doi:10.3390/bioengineering3040025 -
Abstract
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for
[...] Read more.
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing. Full article
Figures

Open AccessArticle
Purification of Monoclonal Antibodies Using a Fiber Based Cation-Exchange Stationary Phase: Parameter Determination and Modeling
Bioengineering 2016, 3(4), 24; doi:10.3390/bioengineering3040024 -
Abstract
Monoclonal antibodies (mAb) currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of
[...] Read more.
Monoclonal antibodies (mAb) currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of ongoing research. Within this study it was demonstrated that the description and prediction of mAb purification on a novel fiber based cation-exchange stationary phase can be achieved using a physico-chemical model. All relevant mass-transport phenomena during a bind and elute chromatographic cycle, namely convection, axial dispersion, boundary layer mass-transfer, and the salt dependent binding behavior in the fiber bed were described. This work highlights the combination of model adaption, simulation, and experimental parameter determination through separate measurements, correlations, or geometric considerations, independent from the chromatographic cycle. The salt dependent binding behavior of a purified mAb was determined by the measurement of adsorption isotherms using batch adsorption experiments. Utilizing a combination of size exclusion and protein A chromatography as analytic techniques, this approach can be extended to a cell culture broth, describing the salt dependent binding behavior of multiple components. Model testing and validation was performed with experimental bind and elute cycles using purified mAb as well as a clarified cell culture broth. A comparison between model calculations and experimental data showed a good agreement. The influence of the model parameters is discussed in detail. Full article
Figures

Open AccessArticle
Horizontally Aligned Carbon Nanotube Based Biosensors for Protein Detection
Bioengineering 2016, 3(4), 23; doi:10.3390/bioengineering3040023 -
Abstract
A novel horizontally aligned single-walled carbon nanotube (CNT) Field Effect Transistor (FET)-based biosensing platform for real-time and sensitive protein detections is proposed. Aligned nanotubes were synthesized on quartz substrate using catalyst contact stamping, surface-guided morphological growth and chemical vapor deposition gas-guided growth methods.
[...] Read more.
A novel horizontally aligned single-walled carbon nanotube (CNT) Field Effect Transistor (FET)-based biosensing platform for real-time and sensitive protein detections is proposed. Aligned nanotubes were synthesized on quartz substrate using catalyst contact stamping, surface-guided morphological growth and chemical vapor deposition gas-guided growth methods. Real-time detection of prostate-specific antigen (PSA) using as-prepared FET biosensors was demonstrated. The kinetic measurements of the biosensor revealed that the drain current (Id) decreased exponentially as the concentration of PSA increased, indicating that the proposed FET sensor is capable of quantitative protein detection within a detection window of up to 1 µM. The limit of detection (LOD) achieved by the proposed platform was demonstrated to be 84 pM, which is lower than the clinically relevant level (133 pM) of PSA in blood. Additionally, the reported aligned CNT biosensor is a uniform sensing platform that could be extended to real-time detections of various biomarkers. Full article
Figures

Figure 1

Open AccessCommunication
Eventogram: A Visual Representation of Main Events in Biomedical Signals
Bioengineering 2016, 3(4), 22; doi:10.3390/bioengineering3040022 -
Abstract
Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main
[...] Read more.
Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main events within the processed signal. This paper attempts to provide an event-related framework to overcome the drawbacks of the traditional visualization methods and describe the main events within the biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram signals are used in the analysis to demonstrate the differences between the traditional visualization methods, and their performance is compared against the proposed method, referred to as the “eventogram” in this paper. The proposed method is based on two event-related moving averages that visualizes the main time-domain events in the processed biomedical signals. The traditional visualization methods were unable to find dominant events in processed signals while the eventogram was able to visualize dominant events in signals in terms of duration and morphology. Moreover, eventogram-based detection algorithms succeeded with detecting main events in different biomedical signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured unique patterns and signatures of physiological events, which could be used to visualize and identify abnormal waveforms in any quasi-periodic signal. Full article
Figures

Figure 1

Open AccessArticle
Optimal Signal Quality Index for Photoplethysmogram Signals
Bioengineering 2016, 3(4), 21; doi:10.3390/bioengineering3040021 -
Abstract
A photoplethysmogram (PPG) is a noninvasive circulatory signal related to the pulsatile volume of blood in tissue and is typically collected by pulse oximeters. PPG signals collected via mobile devices are prone to artifacts that negatively impact measurement accuracy, which can lead to
[...] Read more.
A photoplethysmogram (PPG) is a noninvasive circulatory signal related to the pulsatile volume of blood in tissue and is typically collected by pulse oximeters. PPG signals collected via mobile devices are prone to artifacts that negatively impact measurement accuracy, which can lead to a significant number of misleading diagnoses. Given the rapidly increased use of mobile devices to collect PPG signals, developing an optimal signal quality index (SQI) is essential to classify the signal quality from these devices. Eight SQIs were developed and tested based on: perfusion, kurtosis, skewness, relative power, non-stationarity, zero crossing, entropy, and the matching of systolic wave detectors. Two independent annotators annotated all PPG data (106 recordings, 60 s each) and a third expert conducted the adjudication of differences. The independent annotators labeled each PPG signal with one of the following labels: excellent, acceptable or unfit for diagnosis. All indices were compared using Mahalanobis distance, linear discriminant analysis, quadratic discriminant analysis, and support vector machine with leave-one-out cross-validation. The skewness index outperformed the other seven indices in differentiating between excellent PPG and acceptable, acceptable combined with unfit, and unfit recordings, with overall F1 scores of 86.0%, 87.2%, and 79.1%, respectively. Full article
Figures

Figure 1

Open AccessArticle
Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology
Bioengineering 2016, 3(3), 20; doi:10.3390/bioengineering3030020 -
Abstract
Biological signals such as electrocardiogram (ECG) and electromyography (EMG) that can be measured at home can reveal vital information about the patient’s health. In today modern technology, the measured ECG or EMG signals at home can be monitored by medical staff from long
[...] Read more.
Biological signals such as electrocardiogram (ECG) and electromyography (EMG) that can be measured at home can reveal vital information about the patient’s health. In today modern technology, the measured ECG or EMG signals at home can be monitored by medical staff from long distance through the use of internet. Biopotential electrodes are crucial in monitoring ECG, EMG, etc., signals. Applying the right type of electrode that lasts for a long time and assists in recording high signal quality is desirable in medical devices industry. Three types of electrodes (Silver/Silver Chloride (Ag/AgCl) electrodes, Orbital electrodes and Stainless steel electrodes) were tested to identify the most appropriate one for recording biological signals. The evaluation was based on determining the electrode circuit model components and having high capacitance value or high capacitor value of electrode circuit model (Cd) and low electrode-skin impedance value or low resistor value of electrode circuit model (Rd). The results revealed that Ag/AgCl is the best type of electrodes, followed by Orbital electrodes. Stainless steel electrodes had performed poorly. However, Orbital electrodes material can last longer than Ag/AgCl and hence perform similar to Ag/AgCl electrodes, which can be idle for monitoring biological signals at home without the need for medical staff to replace the electrodes in a short period of time. Full article
Figures

Figure 1

Open AccessArticle
Multi-Response Optimization of Granaticinic Acid Production by Endophytic Streptomyces thermoviolaceus NT1, Using Response Surface Methodology
Bioengineering 2016, 3(3), 19; doi:10.3390/bioengineering3030019 -
Abstract
Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the
[...] Read more.
Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. Full article
Figures

Open AccessArticle
Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber
Bioengineering 2016, 3(3), 18; doi:10.3390/bioengineering3030018 -
Abstract
Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this study is
[...] Read more.
Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this study is to provide a dynamic modeling of the human hand that describes the biodynamic response of Parkinson’s patients and to design an effective tuned vibration absorber able to suppress their pathological tremor. The hand is modeled as a three degrees-of-freedom (DOF) system describing the flexion motion at the proximal joints on the horizontal plane. Resting tremor is modeled as dual harmonic excitation due to shoulder and elbow muscle activation operating at resonance frequencies. The performance of the single dynamic vibration absorber (DVA) is studied when attached to the forearm and compared with the dual DVA tuned at both excitation frequencies. Equations of motion are derived and solved using the complex transfer function of the non-Lagrangian system. The absorber’s systems are designed as a stainless steel alloy cantilevered beam with an attached copper mass. The dual DVA was the most efficient absorber which reduces 98.3%–99.5%, 97.0%–97.3% and 97.4%–97.5% of the Parkinson’s tremor amplitude at the shoulder, elbow and wrist joint. Full article
Figures

Open AccessArticle
Optimization and Characterization of Chitosan Enzymolysis by Pepsin
Bioengineering 2016, 3(3), 17; doi:10.3390/bioengineering3030017 -
Abstract
Pepsin was used to effectively degrade chitosan in order to make it more useful in biotechnological applications. The optimal conditions of enzymolysis were investigated on the basis of the response surface methodology (RSM). The structure of the degraded product was characterized by degree
[...] Read more.
Pepsin was used to effectively degrade chitosan in order to make it more useful in biotechnological applications. The optimal conditions of enzymolysis were investigated on the basis of the response surface methodology (RSM). The structure of the degraded product was characterized by degree of depolymerization (DD), viscosity, molecular weight, FTIR, UV-VIS, SEM and polydispersity index analyses. The mechanism of chitosan degradation was correlated with cleavage of the glycosidic bond, whereby the chain of chitosan macromolecules was broken into smaller units, resulting in decreasing viscosity. The enzymolysis by pepsin was therefore a potentially applicable technique for the production of low molecular chitosan. Additionally, the substrate degradation kinetics of chitosan were also studied over a range of initial chitosan concentrations (3.0~18.0 g/L) in order to study the characteristics of chitosan degradation. The dependence of the rate of chitosan degradation on the concentration of the chitosan can be described by Haldane’s model. In this model, the initial chitosan concentration above which the pepsin undergoes inhibition is inferred theoretically to be about 10.5 g/L. Full article
Figures

Open AccessArticle
Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind
Bioengineering 2016, 3(2), 16; doi:10.3390/bioengineering3020016 -
Abstract
Deep drying and torrefaction compose a thermal pretreatment method where biomass is heated in the temperature range of 150–300 °C in an inert or reduced environment. The process parameters, like torrefaction temperature and residence time, have a significant impact on the proximate, ultimate,
[...] Read more.
Deep drying and torrefaction compose a thermal pretreatment method where biomass is heated in the temperature range of 150–300 °C in an inert or reduced environment. The process parameters, like torrefaction temperature and residence time, have a significant impact on the proximate, ultimate, and energy properties. In this study, torrefaction experiments were conducted on 2-mm ground lodgepole pine (Pinus contorta) using a thermogravimetric analyzer. Both deep drying and torrefaction temperature (160–270 °C) and time (15–120 min) were selected. Torrefied samples were analyzed for the proximate, ultimate, and higher heating value. The results indicate that moisture content decreases with increases in torrefaction temperature and time, where at 270 °C and 120 min, the moisture content is found to be 1.15% (w.b.). Volatile content in the lodgepole pine decreased from about 80% to about 45%, and ash content increased from 0.77% to about 1.91% at 270 °C and 120 min. The hydrogen, oxygen, and sulfur content decreased to 3%, 28.24%, and 0.01%, whereas the carbon content and higher heating value increased to 68.86% and 23.67 MJ/kg at 270 °C and 120 min. Elemental ratio of hydrogen to carbon and oxygen to carbon (H/C and O/C) calculated at 270 °C and a 120-min residence time were about 0.56 and 0.47. Based on this study, it can be concluded that higher torrefaction temperatures ≥230 °C and residence time ≥15 min influence the proximate, ultimate, and energy properties of ground lodgepole pine. Full article
Figures

Open AccessReview
Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review
Bioengineering 2016, 3(2), 15; doi:10.3390/bioengineering3020015 -
Abstract
During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment
[...] Read more.
During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented. Full article
Figures