Open AccessArticle
Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy
Bioengineering 2018, 5(2), 34; doi:10.3390/bioengineering5020034 (registering DOI) -
Abstract
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae, at
[...] Read more.
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae, at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches. Full article
Figures

Figure 1

Open AccessArticle
Efficient Computational Design of a Scaffold for Cartilage Cell Regeneration
Bioengineering 2018, 5(2), 33; doi:10.3390/bioengineering5020033 (registering DOI) -
Abstract
Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical
[...] Read more.
Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology. Full article
Figures

Figure 1

Open AccessReview
Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design
Bioengineering 2018, 5(2), 32; doi:10.3390/bioengineering5020032 (registering DOI) -
Abstract
Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological
[...] Read more.
Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role. Full article
Figures

Open AccessArticle
Musculoskeletal Model Development of the Elbow Joint with an Experimental Evaluation
Bioengineering 2018, 5(2), 31; doi:10.3390/bioengineering5020031 -
Abstract
A dynamic musculoskeletal model of the elbow joint in which muscle, ligament, and articular surface contact forces are predicted concurrently would be an ideal tool for patient-specific preoperative planning, computer-aided surgery, and rehabilitation. Existing musculoskeletal elbow joint models have limited clinical applicability because
[...] Read more.
A dynamic musculoskeletal model of the elbow joint in which muscle, ligament, and articular surface contact forces are predicted concurrently would be an ideal tool for patient-specific preoperative planning, computer-aided surgery, and rehabilitation. Existing musculoskeletal elbow joint models have limited clinical applicability because of idealizing the elbow as a mechanical hinge joint or ignoring important soft tissue (e.g., cartilage) contributions. The purpose of this study was to develop a subject-specific anatomically correct musculoskeletal elbow joint model and evaluate it based on experimental kinematics and muscle electromyography measurements. The model included three-dimensional bone geometries, a joint constrained by multiple ligament bundles, deformable contacts, and the natural oblique wrapping of ligaments. The musculoskeletal model predicted the bone kinematics reasonably accurately in three different velocity conditions. The model predicted timing and number of muscle excitations, and the normalized muscle forces were also in agreement with the experiment. The model was able to predict important in vivo parameters that are not possible to measure experimentally, such as muscle and ligament forces, and cartilage contact pressure. In addition, the developed musculoskeletal model was computationally efficient for body-level dynamic simulation. The maximum computation time was less than 30 min for our 35 s simulation. As a predictive clinical tool, the potential medical applications for this model and modeling approach are significant. Full article
Figures

Open AccessArticle
Biocatalyst Screening with a Twist: Application of Oxygen Sensors Integrated in Microchannels for Screening Whole Cell Biocatalyst Variants
Bioengineering 2018, 5(2), 30; doi:10.3390/bioengineering5020030 -
Abstract
Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-protection schemes
[...] Read more.
Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-protection schemes and toxic compounds usually applied in conventional organic chemistry. The identification of enzymes with the adequate properties for the target reaction and/or substrate requires better and faster screening strategies. In this manuscript, a microchannel with integrated oxygen sensors was applied to the screening of wild-type and site-directed mutated variants of naphthalene dioxygenase (NDO) from Pseudomonas sp. NICB 9816-4. The oxygen sensors were used to measure the oxygen consumption rate of several variants during the conversion of styrene to 1-phenylethanediol. The oxygen consumption rate allowed the distinguishing of endogenous respiration of the cell host from the oxygen consumed in the reaction. Furthermore, it was possible to identify the higher activity and different reaction rate of two variants, relative to the wild-type NDO. The meander microchannel with integrated oxygen sensors can therefore be used as a simple and fast screening platform for the selection of dioxygenase mutants, in terms of their ability to convert styrene, and potentially in terms of substrate specificity. Full article
Figures

Open AccessArticle
A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion
Bioengineering 2018, 5(2), 29; doi:10.3390/bioengineering5020029 -
Abstract
We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated
[...] Read more.
We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis). It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs. Full article
Figures

Open AccessReview
Therapeutic Use of Stem Cells for Myocardial Infarction
Bioengineering 2018, 5(2), 28; doi:10.3390/bioengineering5020028 -
Abstract
Myocardial infarction is a leading cause of morbidity and mortality worldwide. Although medical and surgical treatments can significantly improve patient outcomes, no treatment currently available is able to generate new contractile tissue or reverse ischemic myocardium. Driven by the recent/novel understanding that regenerative
[...] Read more.
Myocardial infarction is a leading cause of morbidity and mortality worldwide. Although medical and surgical treatments can significantly improve patient outcomes, no treatment currently available is able to generate new contractile tissue or reverse ischemic myocardium. Driven by the recent/novel understanding that regenerative processes do exist in the myocardium—tissue previously thought not to possess regenerative properties—the use of stem cells has emerged as a promising therapeutic approach with high expectations. The literature describes the use of cells from various sources, categorizing them as either embryonic, induced pluripotent, or adult/tissue stem cells (mesenchymal, hematopoietic, skeletal myoblasts, cardiac stem cells). Many publications show the successful use of these cells to regenerate damaged myocardium in both animal and human models; however, more studies are needed to directly compare cells of various origins in efforts to draw conclusions on the ideal source. Although numerous challenges exist in this developing area of research and clinical practice, prospects are encouraging. The following aims to provide a concise review outlining the different types of stem cells used in patients after myocardial infarction. Full article
Open AccessReview
Non-Transfusional Hemocomponents: From Biology to the Clinic—A Literature Review
Bioengineering 2018, 5(2), 27; doi:10.3390/bioengineering5020027 -
Abstract
Non-transfusional hemocomponents for surgical use are autogenous products prepared through the centrifugation of a blood sample from a patient. Their potential beneficial outcomes include hard and soft tissue regeneration, local hemostasis, and the acceleration of wound healing. Therefore, they are suitable for application
[...] Read more.
Non-transfusional hemocomponents for surgical use are autogenous products prepared through the centrifugation of a blood sample from a patient. Their potential beneficial outcomes include hard and soft tissue regeneration, local hemostasis, and the acceleration of wound healing. Therefore, they are suitable for application in different medical fields as therapeutic options and in surgical practices that require tissue regeneration. Full article
Figures

Figure 1

Open AccessArticle
Towards Control of a Transhumeral Prosthesis with EEG Signals
Bioengineering 2018, 5(2), 26; doi:10.3390/bioengineering5020026 -
Abstract
Robotic prostheses are expected to allow amputees greater freedom and mobility. However, available options to control transhumeral prostheses are reduced with increasing amputation level. In addition, for electromyography-based control of prostheses, the residual muscles alone cannot generate sufficiently different signals for accurate distal
[...] Read more.
Robotic prostheses are expected to allow amputees greater freedom and mobility. However, available options to control transhumeral prostheses are reduced with increasing amputation level. In addition, for electromyography-based control of prostheses, the residual muscles alone cannot generate sufficiently different signals for accurate distal arm function. Thus, controlling a multi-degree of freedom (DoF) transhumeral prosthesis is challenging with currently available techniques. In this paper, an electroencephalogram (EEG)-based hierarchical two-stage approach is proposed to achieve multi-DoF control of a transhumeral prosthesis. In the proposed method, the motion intention for arm reaching or hand lifting is identified using classifiers trained with motion-related EEG features. For this purpose, neural network and k-nearest neighbor classifiers are used. Then, elbow motion and hand endpoint motion is estimated using a different set of neural-network-based classifiers, which are trained with motion information recorded using healthy subjects. The predictions from the classifiers are compared with residual limb motion to generate a final prediction of motion intention. This can then be used to realize multi-DoF control of a prosthesis. The experimental results show the feasibility of the proposed method for multi-DoF control of a transhumeral prosthesis. This proof of concept study was performed with healthy subjects. Full article
Figures

Figure 1

Open AccessArticle
Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling
Bioengineering 2018, 5(1), 25; doi:10.3390/bioengineering5010025 -
Abstract
Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream
[...] Read more.
Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R2 ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R2 ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R2 ≥ 0.96) glucose concentration based on online cell concentration measurements using turbidity or Raman spectroscopy. Future approaches will use these online substrate concentration measurements with turbidity and Raman measurements, in combination with the kinetic model, in order to control the bioprocess in terms of feeding strategies, by employing an open platform communication (OPC) network—either in fed-batch or perfusion mode, integrated into a continuous operation of upstream and downstream. Full article
Figures

Open AccessArticle
Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions
Bioengineering 2018, 5(1), 24; doi:10.3390/bioengineering5010024 -
Abstract
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale
[...] Read more.
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions. Full article
Figures

Open AccessReview
Stem Cells and Engineered Scaffolds for Regenerative Wound Healing
Bioengineering 2018, 5(1), 23; doi:10.3390/bioengineering5010023 -
Abstract
The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity
[...] Read more.
The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds. Full article
Figures

Figure 1

Open AccessArticle
Metabolic Reprogramming and the Recovery of Physiological Functionality in 3D Cultures in Micro-Bioreactors
Bioengineering 2018, 5(1), 22; doi:10.3390/bioengineering5010022 -
Abstract
The recovery of physiological functionality, which is commonly seen in tissue mimetic three-dimensional (3D) cellular aggregates (organoids, spheroids, acini, etc.), has been observed in cells of many origins (primary tissues, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and immortal cell lines).
[...] Read more.
The recovery of physiological functionality, which is commonly seen in tissue mimetic three-dimensional (3D) cellular aggregates (organoids, spheroids, acini, etc.), has been observed in cells of many origins (primary tissues, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and immortal cell lines). This plurality and plasticity suggest that probably several basic principles promote this recovery process. The aim of this study was to identify these basic principles and describe how they are regulated so that they can be taken in consideration when micro-bioreactors are designed. Here, we provide evidence that one of these basic principles is hypoxia, which is a natural consequence of multicellular structures grown in microgravity cultures. Hypoxia drives a partial metabolic reprogramming to aerobic glycolysis and an increased anabolic synthesis. A second principle is the activation of cytoplasmic glutaminolysis for lipogenesis. Glutaminolysis is activated in the presence of hypo- or normo-glycaemic conditions and in turn is geared to the hexosamine pathway. The reducing power needed is produced in the pentose phosphate pathway, a prime function of glucose metabolism. Cytoskeletal reconstruction, histone modification, and the recovery of the physiological phenotype can all be traced to adaptive changes in the underlying cellular metabolism. These changes are coordinated by mTOR/Akt, p53 and non-canonical Wnt signaling pathways, while myc and NF-kB appear to be relatively inactive. Partial metabolic reprogramming to aerobic glycolysis, originally described by Warburg, is independent of the cell’s rate of proliferation, but is interwoven with the cells abilities to execute advanced functionality needed for replicating the tissues physiological performance. Full article
Figures

Open AccessArticle
Topical Digitoxigenin for Wound Healing: A Feasibility Study
Bioengineering 2018, 5(1), 21; doi:10.3390/bioengineering5010021 -
Abstract
(1) Background: Cardiotonic steroids have been found to stimulate collagen synthesis and might be potential wound healing therapeutics. The objective of this study was to evaluate the feasibility of digitoxigenin and its topical formulation for wound healing; (2) Methods: In the in vitro
[...] Read more.
(1) Background: Cardiotonic steroids have been found to stimulate collagen synthesis and might be potential wound healing therapeutics. The objective of this study was to evaluate the feasibility of digitoxigenin and its topical formulation for wound healing; (2) Methods: In the in vitro study, the human dermal fibroblast cells were treated with digitoxigenin and collagen synthesis was assessed. In the in vivo study, digitoxigenin was applied to excisional full-thickness wounds in rats immediately after wounding and remained for three days, and wound open was evaluated over 10 days. A digitoxigenin formulation for topical administration was prepared, and the in vitro release and in vivo wound healing effect were investigated; (3) Results: The expression of procollagen in human dermal fibroblast was significantly increased with the exposure to 0.1 nM digitoxigenin. Topical application of digitoxigenin in olive oil or alginate solution for three days significantly decreased the wound open in rats. Similarly, topical administration of the developed digitoxigenin formulation for three days also significantly increased wound healing. No wound healing effects were observed at days 7 and 10 after wounding when digitoxigenin was not applied; and, (4) Conclusions: It was possible to deliver digitoxigenin using the developed formulation. However, the wound healing effect of digitoxigenin and its mechanisms need to be further investigated in future studies. Full article
Figures

Open AccessReview
Microbiological Sensing Technologies: A Review
Bioengineering 2018, 5(1), 20; doi:10.3390/bioengineering5010020 -
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested
[...] Read more.
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications. Full article
Figures

Figure 1

Open AccessArticle
Evaluation of Peripheral Blood and Cord Blood Platelet Lysates in Isolation and Expansion of Multipotent Mesenchymal Stromal Cells
Bioengineering 2018, 5(1), 19; doi:10.3390/bioengineering5010019 -
Abstract
Background: Multipotent Mesenchymal Stromal Cells (MSCs) are used in tissue engineering and regenerative medicine. The in vitro isolation and expansion of MSCs involve the use of foetal bovine serum (FBS). However, many concerns have been raised regarding the safety of this product. In
[...] Read more.
Background: Multipotent Mesenchymal Stromal Cells (MSCs) are used in tissue engineering and regenerative medicine. The in vitro isolation and expansion of MSCs involve the use of foetal bovine serum (FBS). However, many concerns have been raised regarding the safety of this product. In this study, alternative additives derived either from peripheral or cord blood were tested as an FBS replacement. Methods: Platelet lysates (PL) from peripheral and cord blood were used for the expansion of MSCs. The levels of growth factors in peripheral blood (PB) and cord blood (CB) PLs were determined using the Multiple Reaction Monitoring (MRM). Finally, the cell doubling time (CDT), tri-lineage differentiation and phenotypic characterization of the MSCs expanded with FBS and PLs were determined. Results: MSCs treated with culture media containing FBS and PB-PL, were successfully isolated and expanded, whereas MSCs treated with CB-PL could not be maintained in culture. Furthermore, the MRM analysis yielded differences in growth factor levels between PB-PL and CB-PL. In addition, the MSCs were successfully expanded with FBS and PB-PL and exhibited tri-lineage differentiation and stable phenotypic characteristics. Conclusion: PB-PL could be used as an alternative additive for the production of MSCs culture medium applied to xenogeneic-free expansion and maintenance of MSCs in large scale clinical studies. Full article
Figures

Open AccessArticle
Effects of Sterilization Cycles on PEEK for Medical Device Application
Bioengineering 2018, 5(1), 18; doi:10.3390/bioengineering5010018 -
Abstract
The effects of the sterilization process have been studied on medical grade thermoplastic polyetheretherketone (PEEK). For a reusable medical device, material reliability is an important parameter to decide its lifetime, as it will be subjected to the continuous steam sterilization process. A spring
[...] Read more.
The effects of the sterilization process have been studied on medical grade thermoplastic polyetheretherketone (PEEK). For a reusable medical device, material reliability is an important parameter to decide its lifetime, as it will be subjected to the continuous steam sterilization process. A spring nature, clip component was selected out of a newly designed medical device (patented) to perform this reliability study. This clip component was sterilized for a predetermined number of cycles (2, 4, 6, 8, 10, 20…100) at 121 °C for 30 min. A significant decrease of ~20% in the compression force of the spring was observed after 30 cycles, and a ~6% decrease in the lateral dimension of the clip was observed after 50 cycles. No further significant change in the compression force or dimension was observed for the subsequent sterilization cycles. Vickers hardness and differential scanning calorimetry (DSC) techniques were used to characterize the effects of sterilization. DSC results exhibited no significant change in the degree of cure and melting behavior of PEEK before and after the sterilization. Hardness measurement exhibited an increase of ~49% in hardness after just 20 cycles. When an unsterilized sample was heated for repetitive cycles without the presence of moisture (121 °C, 10 and 20 cycles), only ~7% of the maximum change in hardness was observed. Full article
Figures

Figure 1

Open AccessArticle
Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production
Bioengineering 2018, 5(1), 17; doi:10.3390/bioengineering5010017 -
Abstract
Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated
[...] Read more.
Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris. To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast. Full article
Figures

Open AccessArticle
Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement
Bioengineering 2018, 5(1), 16; doi:10.3390/bioengineering5010016 -
Abstract
The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and
[...] Read more.
The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. Full article
Figures

Open AccessArticle
Theoretical Insight into the Biodegradation of Solitary Oil Microdroplets Moving through a Water Column
Bioengineering 2018, 5(1), 15; doi:10.3390/bioengineering5010015 -
Abstract
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation
[...] Read more.
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil–water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate. Full article
Figures