**Abstract: **In nuclear experimental, training and teaching laboratories such as a subcritical reactor facility, huge measures of external radiation doses could be caused by neutron and gamma radiation. It becomes imperative to place the health and safety of staff and students in the reactor facility under proper scrutiny. The protection of these individuals against ionization radiation is facilitated by expected dose mapping and shielding calculations. A three-dimensional (3D) Monte Carlo model was developed to calculate the dose rate from neutrons and gamma, using the ANSI/ANS-6.1.1 and the ICRP-74 flux-to-dose conversion factors. Estimation for the dose was conducted across 39 areas located throughout the reactor hall of the facility and its training platform. It was found that the range of the dose rate magnitude is between 7.50 E−01 μSv/h and 1.96 E−04 μSv/h in normal operation mode. During reactor start-up/shut-down mode, it was observed that a large area of the facility can experience exposure to a significant radiation field. This field ranges from 2.99 E+03 μSv/h to 3.12 E+01 μSv/h. There exists no noticeable disparity between results using the ICRP-74 or ANSI/ANS-6.1.1 flux-to-dose rate conversion factors. It was found that the dose rate due to gamma rays is higher than that of neutrons.

**Abstract: **Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ${\omega}_{q}$ . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ${\omega}_{q}$ with a statistical uncertainty of 37 parts per billion (ppb) on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

**Abstract: **Using a thermal gas, we model the signal of a trapped interferometer. This interferometer uses two short laser pulses, separated by time T, which act as a phase grating for the matter waves. Near time $2T$ , there is an echo in the cloud’s density due to the Talbot-Lau effect. Our model uses the Wigner function approach and includes a weak residual harmonic trap. The analysis shows that the residual potential limits the interferometer’s visibility, shifts the echo time of the interferometer, and alters its time dependence. Loss of visibility can be mitigated by optimizing the initial trap frequency just before the interferometer cycle begins.

**Abstract: **We re-examine the series of resonances found earlier in atomic three-body systems by solving the Faddeev-Merkuriev integral equations. These resonances are rather broad and line up at each threshold with gradually increasing gaps. This lining up takes place in the same way for all thresholds and is irrespective of the spatial symmetry. We relate these resonances to the Gailitis mechanism, which is a consequence of the polarization potential.

**Abstract: **Relativistic configuration interaction results are presented for several B-like ions (Ge XXVIII, Rb XXXIII, Sr XXXIV, Ru XL, Sn XLVI, and Ba LII) using the multi-configuration Dirac–Hartree–Fock (MCDHF) method. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. Results for fine structure energy levels for 1s^{2}2s^{2}2p and 2s2p^{2} configurations relative to the ground state are reported. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths for 2s^{2}2p–2s2p^{2} electric dipole (E1) transitions are calculated. Both valence and core-valence correlation effects were accounted for through single-double multireference (SD-MR) expansions to increasing sets of active orbitals. Comparisons are made with the available data and good agreement is achieved. The values calculated using core–valence correlation are found to be very close to other theoretical and experimental values. The behavior of oscillator strengths as a function of nuclear charge is studied. We believe that our results can guide experimentalists in identifying the fine-structure levels in their future work.

**Abstract: **Numerical implementation of the modified Faddeev Equation (MFE) is presented in some detail. The Faddeev channel wave function displays unique properties of each and every open channel, respectively. In particular, near resonant energies, the structures of the resonances are beautifully displayed, from which, the life-time of the resonances can be determined by simply using the uncertainty principle. The phase shift matrix, or the K-matrix, provides unique information for each and every resonance. This information enables the identification of the physical formation mechanism of the Gailitis resonances. A few of these resonances, previously known as the mysterious shape resonances, have occurred in a number of different collision systems. The Gailitis resonances are actually produced by a quantized Stark-effect within the various collision systems. Since the Stark-effect is a universal phenomenon, the Gailitis resonances are expected to occur in much broader classes of collision systems. We will present the results of a precision calculation using the MFE method in sufficient detail for interested students who wish to explore the mysteries of nature with a powerful theoretical tool.