Open AccessArticle
Bulgecin A: The Key to a Broad‐Spectrum Inhibitor  That Targets Lytic Transglycosylases
Antibiotics 2017, 6(1), 8; doi:10.3390/antibiotics6010008 -
Abstract
Lytic transglycosylases (Lts) are involved in recycling, cell division, and metabolism of the peptidoglycan. They have been understudied for their usefulness as potential antibacterial targets due to their high redundancy in Gram‐negative bacteria. Bulgecin A is an O‐sulphonated glycopeptide that targets primarily soluble
[...] Read more.
Lytic transglycosylases (Lts) are involved in recycling, cell division, and metabolism of the peptidoglycan. They have been understudied for their usefulness as potential antibacterial targets due to their high redundancy in Gram‐negative bacteria. Bulgecin A is an O‐sulphonated glycopeptide that targets primarily soluble lytic tranglycosylases (Slt). It has been shown that bulgecin A increases the efficacy of β‐lactams that target penicillin bindings proteins (PBPs). Here, we present the high‐resolution crystal structure of LtgA from Neisseria meningitidis strain MC58, a membrane bound homolog of Escherichia coli Slt, in complex with bulgecin A. The LtgA‐bulgecin A complex reveals the mechanism of inhibition by bulgecin A at near atomic resolution. We further demonstrate that bulgecin A is not only a potent inhibitor of LtgA, but most importantly, it restores the efficacy of β‐lactam antibiotics in strains of N. meningitidis and Neisseria gonorrhoeae that have reduced susceptibility to β‐lactams. This is particularly relevant for N. gonorrhoeae where no vaccines are available. This work illustrates how best to target dangerous pathogens using a multiple drug target approach, a new and alternative approach to fighting antibiotic resistance. Full article
Figures

Figure 1

Open AccessArticle
Final Demonstration of the Co-Identity of Lipiarmycin A3 and Tiacumicin B (Fidaxomicin) through Single Crystal X-ray Analysis
Antibiotics 2017, 6(1), 7; doi:10.3390/antibiotics6010007 -
Abstract
Lipiarmycin A3 and tiacumicin B possess the same chemical structure and have been considered identical till recently, when some authors have suggested the possibility of a minor difference between the chemical structures of the two antibiotics. In this work we performed a comparative
[...] Read more.
Lipiarmycin A3 and tiacumicin B possess the same chemical structure and have been considered identical till recently, when some authors have suggested the possibility of a minor difference between the chemical structures of the two antibiotics. In this work we performed a comparative X-ray analysis of lipiarmycin A3 and tiacumicin B. Although the commercial samples of the aforementioned compounds crystallize into two different crystal systems—evidently due to the different crystallization conditions—their chemical structures are identical. These results confirmed the previous assigned chemical structure of lipiarmycin A3 and its absolute configuration as well as its co-identity with the chemical structure of tiacumicin B, providing the definitive proof that these pharmaceutical compounds are identical in all respects. Full article
Figures

Open AccessCommunication
Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive
Antibiotics 2017, 6(1), 6; doi:10.3390/antibiotics6010006 -
Abstract
The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show
[...] Read more.
The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain), histatin 5 (only one strain), lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis. Full article
Open AccessArticle
Moxifloxacin Increases Heart Rate in Humans
Antibiotics 2017, 6(1), 5; doi:10.3390/antibiotics6010005 -
Abstract
(1) Background: We assessed the effect of moxifloxacin on heart rate, and reviewed the heart rate effects of other antibiotics; (2) Methods: A total of 335 normal volunteers had 12-lead electrocardiograms recorded at multiple time points before and during treatment with
[...] Read more.
(1) Background: We assessed the effect of moxifloxacin on heart rate, and reviewed the heart rate effects of other antibiotics; (2) Methods: A total of 335 normal volunteers had 12-lead electrocardiograms recorded at multiple time points before and during treatment with moxifloxacin and with placebo in seven consecutive, thorough QT studies of crossover design; (3) Results: The average baseline heart rate across the seven studies was 61.5 bpm. The heart rate after moxifloxacin dosing was analyzed at five time points shared by all seven studies (hours 1, 2, 3, 12 and 24). The maximum mean heart rate (HR) increase for the seven studies combined was 2.4 bpm (95% CI 1.6, 3.3) at hour 2. The range of mean maximum increases among the seven studies was 2.1 to 4.3 bpm. For the seven studies combined, the increase was statistically significant at all but the 24 h time point. The maximum observed individual increase in HR was 36 bpm and the mean maximum increase was 30 ± 4.1 bpm by time point and 8 ± 6.9 bpm by subject. Many antibiotics increase HR, some several-fold more than moxifloxacin. However, clinicians and clinical investigators give little attention to this potential adverse effect in the medical literature; (4) Conclusions: The observed moxifloxacin-induced increase in HR is large enough to be clinically relevant, and it is a potentially important confounder in thorough QT studies using moxifloxacin as an active control. More attention to heart rate effects of antibiotics is warranted. Full article
Figures

Figure 1

Open AccessArticle
Docking into Mycobacterium tuberculosis Thioredoxin Reductase Protein Yields Pyrazolone Lead Molecules for Methicillin-Resistant Staphylococcus aureus
Antibiotics 2017, 6(1), 4; doi:10.3390/antibiotics6010004 -
Abstract
The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus.
[...] Read more.
The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics. Full article
Figures

Figure 1

Open AccessReview
Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action
Antibiotics 2017, 6(1), 3; doi:10.3390/antibiotics6010003 -
Abstract
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against
[...] Read more.
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as in vivo as a therapy for mice infected with multi-drug resistant strains of Mtb, or for human subjects infected with extensively drug resistant (XDR) Mtb. The mechanisms of action by which TZ brings about successful therapeutic outcomes are presented in detail. Full article
Figures

Figure 1

Open AccessArticle
Fused-Ring Oxazolopyrrolopyridopyrimidine Systems with Gram-Negative Activity
Antibiotics 2017, 6(1), 2; doi:10.3390/antibiotics6010002 -
Abstract
Fused polyheterocyclic derivatives are available by annulation of a tetramate scaffold, and been shown to have antibacterial activity against a Gram-negative, but not a Gram-positive, bacterial strain. While the activity is not potent, these systems are structurally novel showing, in particular, a high
[...] Read more.
Fused polyheterocyclic derivatives are available by annulation of a tetramate scaffold, and been shown to have antibacterial activity against a Gram-negative, but not a Gram-positive, bacterial strain. While the activity is not potent, these systems are structurally novel showing, in particular, a high level of polarity, and offer potential for the optimization of antibacterial activity. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Antibiotics in 2016
Antibiotics 2017, 6(1), 1; doi:10.3390/antibiotics6010001 -
Abstract The editors of Antibiotics would like to express their sincere gratitude to the following reviewers  for assessing manuscripts in 2016.[...] Full article
Open AccessArticle
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria
Antibiotics 2016, 5(4), 39; doi:10.3390/antibiotics5040039 -
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides
[...] Read more.
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach. Full article
Open AccessArticle
Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin
Antibiotics 2016, 5(4), 38; doi:10.3390/antibiotics5040038 -
Abstract
Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them, streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant (MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit protein synthesis. Genetic, structural, and biochemical studies
[...] Read more.
Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them, streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant (MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit protein synthesis. Genetic, structural, and biochemical studies indicate that local and long-range conformational rearrangements of the 30S subunit account for this inhibition. Here, we use intramolecular FRET between the C- and N-terminus domains of the flexible IF3 to monitor real-time perturbations of their binding sites on the 30S platform. Steady and pre-steady state binding experiments show that both aminoglycosides bring IF3 domains apart, promoting an elongated state of the factor. Binding of Initiation Factor IF1 triggers closure of IF3 bound to the 30S complex, while both aminoglycosides revert the IF1-dependent conformation. Our results uncover dynamic perturbations across the 30S subunit, from the A-site to the platform, and suggest that both aminoglycosides could interfere with prokaryotic translation initiation by modulating the interaction between IF3 domains with the 30S platform. Full article
Figures

Figure 1

Open AccessReview
Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review
Antibiotics 2016, 5(4), 37; doi:10.3390/antibiotics5040037 -
Abstract
Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We
[...] Read more.
Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU) and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS), Escherichia coli (E. coli), and Campylobacter spp. (mainly from Vietnam and Thailand), Enterococcus spp. (Malaysia), and methicillin-resistant Staphylococcus aureus (MRSA) (Thailand). However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI) guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam) indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons). The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region. Full article
Figures

Figure 1

Open AccessArticle
Pectocin M1 (PcaM1) Inhibits Escherichia coli Cell Growth and Peptidoglycan Biosynthesis through Periplasmic Expression
Antibiotics 2016, 5(4), 36; doi:10.3390/antibiotics5040036 -
Abstract
Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin
[...] Read more.
Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin M homologue from Pectobacterium carotovorum, pectocin M1 (PcaM1), capable of inhibiting E. coli cell growth by bypassing these reception and translocation steps. This goal was achieved through periplasmic expression of this pectocin. Indeed, when appropriately addressed to the periplasm of E. coli, this pectocin could exert its deleterious effects, i.e., the enzymatic degradation of the peptidoglycan lipid II precursor, which resulted in the arrest of the biosynthesis of this essential cell wall polymer, dramatic morphological changes and, ultimately, cell lysis. This result leads to the conclusion that colicin M and its various orthologues constitute powerful antibacterial molecules able to kill any kind of bacterium, once they can reach their lipid II target. They thus have to be seriously considered as promising alternatives to antibiotics. Full article
Figures

Figure 1

Open AccessReview
Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins
Antibiotics 2016, 5(4), 35; doi:10.3390/antibiotics5040035 -
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on
[...] Read more.
Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context. Full article
Figures

Figure 1

Open AccessCommunication
Discrepancy in Vancomycin AUC/MIC Ratio Targeted Attainment Based upon the Susceptibility Testing in Staphylococcus aureus
Antibiotics 2016, 5(4), 34; doi:10.3390/antibiotics5040034 -
Abstract
This study demonstrated a statistically significant difference in vancomycin minimum inhibitory concentration (MIC) for Staphylococcus aureus between a common automated system (Vitek 2) and the E-test method in patients with S. aureus bloodstream infections. At an area under the serum concentration time curve
[...] Read more.
This study demonstrated a statistically significant difference in vancomycin minimum inhibitory concentration (MIC) for Staphylococcus aureus between a common automated system (Vitek 2) and the E-test method in patients with S. aureus bloodstream infections. At an area under the serum concentration time curve (AUC) threshold of 400 mg∙h/L, we would have reached the current Infectious Diseases Society of America (IDSA)/American Society of Health System Pharmacists (ASHP)/Society of Infectious Diseases Pharmacists (SIDP) guideline suggested AUC/MIC target in almost 100% of patients while using the Vitek 2 MIC data; however, we could only generate 40% target attainment while using E-test MIC data (p < 0.0001). An AUC of 450 mg∙h/L or greater was required to achieve 100% target attainment using either Vitek 2 or E-test MIC results. Full article
Figures

Figure 1

Open AccessArticle
The Peptidoglycan Pattern of Staphylococcus carnosus TM300—Detailed Analysis and Variations Due to Genetic and Metabolic Influences
Antibiotics 2016, 5(4), 33; doi:10.3390/antibiotics5040033 -
Abstract
The Gram-positive bacterium Staphylococcus carnosus (S. carnosus) TM300 is an apathogenic staphylococcal species commonly used in meat starter cultures. As with all Gram-positive bacteria, its cytoplasmic membrane is surrounded by a thick peptidoglycan (PGN) or murein sacculus consisting of several layers
[...] Read more.
The Gram-positive bacterium Staphylococcus carnosus (S. carnosus) TM300 is an apathogenic staphylococcal species commonly used in meat starter cultures. As with all Gram-positive bacteria, its cytoplasmic membrane is surrounded by a thick peptidoglycan (PGN) or murein sacculus consisting of several layers of glycan strands cross-linked by peptides. In contrast to pathogenic staphylococci, mainly Staphylococcus aureus (S. aureus), the chemical composition of S. carnosus PGN is not well studied so far. UPLC/MS analysis of enzymatically digested S. carnosus TM300 PGN revealed substantial differences in its composition compared to the known pattern of S. aureus. While in S. aureus the uncross-linked stem peptide consists of a pentapeptide, in S. carnosus, this part of the PGN is shortened to tripeptides. Furthermore, we found the PGN composition to vary when cells were incubated under certain conditions. The collective overproduction of HlyD, FtsE and FtsX—a putative protein complex interacting with penicillin-binding protein 2 (PBP2)—caused the reappearance of classical penta stem peptides. In addition, under high sugar conditions, tetra stem peptides occur due to overflow metabolism. This indicates that S. carnosus TM300 cells adapt to various conditions by modification of their PGN. Full article
Figures

Figure 1

Open AccessArticle
The Novel Aminomethylcycline Omadacycline Has High Specificity for the Primary Tetracycline-Binding Site on the Bacterial Ribosome
Antibiotics 2016, 5(4), 32; doi:10.3390/antibiotics5040032 -
Abstract
Omadacycline is an aminomethylcycline antibiotic with potent activity against many Gram-positive and Gram-negative pathogens, including strains carrying the major efflux and ribosome protection resistance determinants. This makes it a promising candidate for therapy of severe infectious diseases. Omadacycline inhibits bacterial protein biosynthesis and
[...] Read more.
Omadacycline is an aminomethylcycline antibiotic with potent activity against many Gram-positive and Gram-negative pathogens, including strains carrying the major efflux and ribosome protection resistance determinants. This makes it a promising candidate for therapy of severe infectious diseases. Omadacycline inhibits bacterial protein biosynthesis and competes with tetracycline for binding to the ribosome. Its interactions with the 70S ribosome were, therefore, analyzed in great detail and compared with tigecycline and tetracycline. All three antibiotics are inhibited by mutations in the 16S rRNA that mediate resistance to tetracycline in Brachyspira hyodysenteriae, Helicobacter pylori, Mycoplasma hominis, and Propionibacterium acnes. Chemical probing with dimethyl sulfate and Fenton cleavage with iron(II)-complexes of the tetracycline derivatives revealed that each antibiotic interacts in an idiosyncratic manner with the ribosome. X-ray crystallography had previously revealed one primary binding site for tetracycline on the ribosome and up to five secondary sites. All tetracyclines analyzed here interact with the primary site and tetracycline also with two secondary sites. In addition, each derivative displays a unique set of non-specific interactions with the 16S rRNA. Full article
Figures

Figure 1

Open AccessArticle
Reconsultation and Antimicrobial Treatment of Urinary Tract Infection in Male and Female Patients in General Practice
Antibiotics 2016, 5(3), 31; doi:10.3390/antibiotics5030031 -
Abstract
Current antimicrobial prescribing guidelines indicate that male and female patients with urinary tract infections (UTIs) should be treated with same antimicrobials but for different durations. The aim of this study was to explore the differences in reconsultations and antimicrobial prescribing for UTI for
[...] Read more.
Current antimicrobial prescribing guidelines indicate that male and female patients with urinary tract infections (UTIs) should be treated with same antimicrobials but for different durations. The aim of this study was to explore the differences in reconsultations and antimicrobial prescribing for UTI for both males and females. A total of 2557 adult suspected UTI patients participating in the Supporting the Improvement and Management of Prescribing for urinary tract infection (SIMPle) study from 30 general practices were analyzed. An antimicrobial was prescribed significantly more often to females (77%) than males (63%). Nitrofurantoin was prescribed more often for females and less often for males (58% vs. 41%), while fluoroquinolones were more often prescribed for males (11% vs. 3%). Overall, reconsultation was 1.4 times higher in females, and if the antimicrobial prescribed was not the recommended first-line (nitrofurantoin), reconsultation after empirical prescribing was significantly higher. However, the reconsultation was similar for males and females if the antimicrobial prescribed was first-line. When a urine culture was obtained, a positive culture was the most important predictor of reconsultation (Odds ratio 1.8 (95% CI 1.3–2.5)). This suggests, when prescribing empirically, that male and female UTI patients should initially be treated with first-line antimicrobials (nitrofurantoin) with different durations (50–100 mg four times daily for three days in females and seven days for males). However, the consideration of a culture test before prescribing antimicrobials may improve outcomes. Full article
Figures

Figure 1

Open AccessArticle
The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals
Antibiotics 2016, 5(3), 30; doi:10.3390/antibiotics5030030 -
Abstract
Recently, the emergence and spread of pathogenic bacterial resistance to many antibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants
[...] Read more.
Recently, the emergence and spread of pathogenic bacterial resistance to many antibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants may serve as a resource for new antimicrobials to replace or augment current therapeutic options. In this work, we have carried out a molecular docking study of a total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4 steroidal alkaloids, and 28 miscellaneous alkaloids), 99 terpenoids (5 monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25 chalcones, 41 isoflavonoids, 5 neoflavonoids, 12 pterocarpans, 10 chromones, 7 condensed tannins, 11 coumarins, 30 stilbenoids, 2 lignans, 5 phenylpropanoids, 13 xanthones, 5 hydrolyzable tannins, and 56 miscellaneous phenolics), 30 quinones, and 46 miscellaneous phytochemicals, with six bacterial protein targets (peptide deformylase, DNA gyrase/topoisomerase IV, UDP-galactose mutase, protein tyrosine phosphatase, cytochrome P450 CYP121, and NAD+-dependent DNA ligase). In addition, 35 known inhibitors were docked with their respective targets for comparison purposes. Prenylated polyphenolics showed the best docking profiles, while terpenoids had the poorest. The most susceptible protein targets were peptide deformylases and NAD+-dependent DNA ligases. Full article
Figures

Open AccessReview
From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials
Antibiotics 2016, 5(3), 29; doi:10.3390/antibiotics5030029 -
Abstract
Macrolides, as a class of natural or semisynthetic products, express their antibacterial activity primarily by reversible binding to the bacterial 50S ribosomal subunits and by blocking nascent proteins’ progression through their exit tunnel in bacterial protein biosynthesis. Generally considered to be bacteriostatic, they
[...] Read more.
Macrolides, as a class of natural or semisynthetic products, express their antibacterial activity primarily by reversible binding to the bacterial 50S ribosomal subunits and by blocking nascent proteins’ progression through their exit tunnel in bacterial protein biosynthesis. Generally considered to be bacteriostatic, they may also be bactericidal at higher doses. The discovery of azithromycin from the class of macrolides, as one of the most important new drugs of the 20th century, is presented as an example of a rational medicinal chemistry approach to drug design, applying classical structure-activity relationship that will illustrate an impressive drug discovery success story. However, the microorganisms have developed several mechanisms to acquire resistance to antibiotics, including macrolide antibiotics. The primary mechanism for acquiring bacterial resistance to macrolides is a mutation of one or more nucleotides from the binding site. Although azithromycin is reported to show different, two-step process of the inhibition of ribosome function of some species, more detailed elaboration of that specific mode of action is needed. New macrocyclic derivatives, which could be more potent and less prone to escape bacterial resistance mechanisms, are also continuously evaluated. A novel class of antibiotic compounds—macrolones, which are derived from macrolides and comprise macrocyclic moiety, linker, and either free or esterified quinolone 3-carboxylic group, show excellent antibacterial potency towards key erythromycin-resistant Gram-positive and Gram-negative bacterial strains, with possibly decreased potential of bacterial resistance to macrolides. Full article
Figures

Figure 1

Open AccessReview
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets
Antibiotics 2016, 5(3), 28; doi:10.3390/antibiotics5030028 -
Abstract
Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and
[...] Read more.
Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues. Full article
Figures

Figure 1